Доклад: Вирусы. Вирусные заболевания – перечень распространенных недугов и самые опасные вирусы Что такое вирусы в биологии кратко рассказать

Структура

Примеры структур икосаэдрических вирионов.
А. Вирус, не имеющий липидной оболочки (например, пикорнавирус).
B. Оболочечный вирус (например, герпесвирус).
Цифрами обозначены: (1) капсид, (2) геномная нуклеиновая кислота, (3) капсомер, (4) нуклеокапсид, (5) вирион, (6) липидная оболочка, (7) мембранные белки оболочки.

Классификация

Отряд (-virales ) Семейство (-viridae ) Подсемейство (-virinae ) Род (-virus ) Вид (-virus )

Классификация Балтимора

Нобелевский лауреат, биолог Дэвид Балтимор, предложил свою схему классификации вирусов, основываясь на различиях в механизме продукции мРНК .Эта система включает в себя семь основных групп:

  • (I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы , поксвирусы, паповавирусы, мимивирус).
  • (II) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
  • (III) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы).
  • (IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы , флавивирусы).
  • (V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
  • (VI) Вирусы, содержащие одноцепочечную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
  • (VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).

В настоящее время, для классификации вирусов используются обе системы одновременно, как дополняющие друг друга.

Дальнейшее деление производится на основе таких признаков как структура генома (наличие сегментов, кольцевая или линейная молекула), генетическое сходство с другими вирусами, наличие липидной оболочки, таксономическая принадлежнось организма-хозяина и так далее.

История

Применение вирусов

Ссылки

  • "Нобелевский комитет поразили вирусы" Статья. Газета «Коммерсантъ» № 181(3998) от 07.10.2008.

Литература

  • Mayo M.A., Pringle C.R. Virus taxonomy - 1997 // Journal of General Virology . - 1998. - № 79. - С. 649-657.

Представителями неклеточной формы жизни являются вирусы - мельчайшие частицы, внедряющиеся внутрь клетки. Раздел микробиологии, изучающий вирусы, называется вирусологией.

Общее описание

Вирусы находятся в атмосфере, почве, воде. Различают вирусы растений, животных, грибов, бактерий. Вирусы, поражающие бактерии, называются бактериофагами. Существуют сателлиты, которые попадают в клетку только при наличии в ней дополнительного вируса.

Рис. 1. Бактериофаг.

Большинство вирусов вызывает инфекции, некоторые виды не оказывают видимого влияния. Одним из интересных фактов является наличие остатков вирусов в ДНК человека.

Вирусы имеют разнообразную форму (шары, спирали, палочки) и мельчайшие размеры - 20-300 нм (в 1 мм 1 млн. нм). Самые крупные вирусы - мимивирусы, имеющие диаметр в 500 нм. Они имитируют строение и жизнедеятельность бактерий, и некоторые учёные считают мимивирусы переходной формой от вирусов к бактериям.

Рис. 2. Мимивирусы.

Кратко о вирусах и их отличиях от живой и неживой материи представлено в таблице.

ТОП-4 статьи которые читают вместе с этой

Вирусы выделяются в отдельное царство и классифицируются по пяти таксонам. Большинство вирусов ещё не изучено и не классифицировано.
Современная классификация включает:

  • 9 отрядов;
  • 127 семейств;
  • 44 подсемейств;
  • 782 рода;
  • 4686 видов.

Биолог Дейвид Балтимор в 1971 году разработал альтернативную классификацию вирусов по особенностям генетической информации. Балтимор разграничил, какие бывают вирусы по содержанию РНК или ДНК.
Его классификацию можно объединить в три крупные группы:

  • ДНК-вирусы;
  • РНК-вирусы;
  • Вирусы, превращающие РНК в ДНК.

Основные виды вирусов в биологии по Балтимору представлены в таблице.

Название

Класс по Балтимору

Особенности

Примеры

ДНК-вирусы

Двуцепочечная ДНК. Размножение в ядре клетки

Вирусы оспы, герпеса, папиллом

Одноцепочечная ДНК. Размножение в ядре

Парвовирусы

ДНК одновременно двуцепочечная и одноцепочечная

Вирус гепатита В

РНК-вирусы

Двуцепочечная РНК. Размножение в цитоплазме

Реовирусы, ротавирусы

Одноцепочечная информативная РНК (плюс-цепь)

Пикорнавирусы, флавивирусы

Одноцепочечная РНК, не несущая информацию (минус-цепь)

Ортомиксовирусы, филовирусы

РНК и ДНК

Одноцепочечная РНК (плюс-цепь) превращается в ДНК

Ретровирусы (ВИЧ)

Вирусы - структуры, меняющие ДНК клетки, в результате чего клетка производит новые вирусы. Когда вирусов становится слишком много, они разрывают клеточную мембрану, выходят наружу и поражают новые клетки. Иногда не убивают клетку, а отпочковываются от неё.

Рис. 3. Вирус, внедряющийся в клетку.

Что мы узнали?

Из доклада 5-6 класса узнали о строении, особенностях, классификации вирусов. Их нельзя отнести ни к живой природе, ни к неживой материи. По структуре вирусы - белки, несущие наследственную информацию, которая встраивается в живую клетку. Биолог Балтимор выделил семь классов вирусов в зависимости от особенностей строения генетического материала.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 1097.


Открытие вирусов Д.И.Ивановским в 1892г. положило начало развитию науки вирусологии. Более быстрому ее развитию способствовали: изобретение электронного микроскопа, разработка метода культивирования микроорганизмов в культурах клеток.

В настоящее время вирусология- бурно развивающаяся наука, что связано с рядом причин:

Ведущей ролью вирусов в инфекционной патологии человека (примеры- вирус гриппа, ВИЧ- вирус иммунодефицита человека, цитомегаловирус и другие герпесвирусы) на фоне практически полного отсутствия средств специфической химиотерапии;

Использованием вирусов для решения многих фундаментальных вопросов биологии и генетики.

Основные свойства вирусов (и плазмид), по которым они отличаются от остального живого мира.

1. Ультрамикроскопические размеры (измеряются в нанометрах). Крупные вирусы (вирус оспы) могут достигать размеров 300 нм, мелкие- от 20 до 40 нм. 1 мм=1000 мкм, 1 мкм=1000 нм.

3. Вирусы не способны к росту и бинарному делению.

4. Вирусы размножаются путем воспроизводства себя в инфицированной клетке хозяина за счет собственной геномной нуклеиновой кислоты.

6. Средой обитания вирусов являются живые клетки- бактерии (это вирусы бактерий или бактериофаги), клетки растений, животных и человека.

Все вирусы существуют в двух качественно разных формах: внеклеточной- вирион и внутриклеточной- вирус. Таксономия этих представителей микромира основана на характеристике вирионов- конечной фазы развития вирусов.

Строение (морфология) вирусов.

1. Геном вирусов образуют нуклеиновые кислоты, представленные одноцепочечными молекулами РНК (у большинства РНК- вирусов) или двухцепочечными молекулами ДНК (у большинства ДНК- вирусов).

2. Капсид - белковая оболочка, в которую упакована геномная нуклеиновая кислота. Капсид состоит из идентичных белковых субъединиц- капсомеров. Существуют два способа упаковки капсомеров в капсид- спиральный (спиральные вирусы) и кубический (сферические вирусы).

При спиральной симметрии белковые субъединицы располагаются по спирали, а между ними, также по спирали, уложена геномная нуклеиновая кислота (нитевидные вирусы). При кубическом типе симметрии вирионы могут быть в виде многогранников, чаще всего- двадцатигранники - икосаэдры.

3. Просто устроенные вирусы имеют только нуклеокапсид , т.е. комплекс генома с капсидом и называются “голыми”.

4. У других вирусов поверх капсида есть дополнительная мембраноподобная оболочка, приобретаемая вирусом в момент выхода из клетки хозяина- суперкапсид. Такие вирусы называют “одетыми”.

Кроме вирусов, имеются еще более просто устроенные формы способных передаваться агентов - плазмиды, вироиды и прионы.

Основные этапы взаимодействия вируса с клеткой хозяина.

1. Адсорбция- пусковой механизм, связанный со взаимодействием специфических рецепторов вируса и хозяина (у вируса гриппа- гемагглютинин, у вируса иммунодефицита человека- гликопротеин gp 120).

2. Проникновение- путем слияния суперкапсида с мембраной клетки или путем эндоцитоза (пиноцитоза).

3. Освобождение нуклеиновых кислот- “раздевание” нуклеокапсида и активация нуклеиновой кислоты.

4. Синтез нуклеиновых кислот и вирусных белков, т.е. подчинение систем клетки хозяина и их работа на воспроизводство вируса.

5. Сборка вирионов- ассоциация реплицированных копий вирусной нуклеиновой кислоты с капсидным белком.

6. Выход вирусных частиц из клетки, приобретения суперкапсида оболочечными вирусами.

Исходы взаимодействия вирусов с клеткой хозяина.

1. Абортивный процесс - когда клетки освобождаются от вируса:

При инфицировании дефектным вирусом, для репликации которого нужен вирус- помощник, самостоятельная репликация этих вирусов невозможна (так называемые вирусоиды). Например, вирус дельта (D) гепатита может реплицироваться только при наличии вируса гепатита B, его Hbs - антигена, аденоассоциированный вирус- в присутствии аденовируса);

При инфицировании вирусом генетически нечувствительных к нему клеток;

При заражении чувствительных клеток вирусом в неразрешающих условиях.

2. Продуктивный процесс - репликация (продукция) вирусов:

- гибель (лизис) клеток (цитопатический эффект)- результат интенсивного размножения и формирования большого количества вирусных частиц - характерный результат продуктивного процесса, вызванного вирусами с высокой цитопатогенностью. Цитопатический эффект действия на клеточные культуры для многих вирусов носит достаточно узнаваемый специфический характер;

- стабильное взаимодействие , не приводящее к гибели клетки (персистирующие и латентные инфекции) - так называемая вирусная трансформация клетки.

3. Интегративный процесс - интеграция вирусного генома с геномом клетки хозяина. Это особый вариант продуктивного процесса по типу стабильного взаимодействия. Вирус реплицируется вместе с геномом клетки хозяина и может длительно находиться в латентном состоянии. Встраиваться в ДНК- геном хозяина могут только ДНК- вирусы (принцип “ДНК- в ДНК”). Единственные РНК- вирусы, способные интегрироваться в геном клетки хозяина- ретровирусы, имеют для этого специальный механизм. Особенность их репродукции- синтез ДНК провируса на основе геномной РНК с помощью фермента обратной транскриптазы с последующим встраиванием ДНК в геном хозяина.

Основные методы культивирования вирусов.

1. В организме лабораторных животных.

2. В куриных эмбрионах.

3. В клеточных культурах - основной метод.

Типы клеточных культур.

1. Первичные (трипсинизированные) культуры - фибробласты эмбриона курицы (ФЭК), человека (ФЭЧ), клетки почки различных животных и т.д. Первичные культуры получают из клеток различных тканей чаще путем их размельчения и трипсинизации, используют однократно, т.е. постоянно необходимо иметь соответствующие органы или ткани.

2. Линии диплоидных клеток пригодны к повторному диспергированию и росту, как правило не более 20 пассажей (теряют исходные свойства).

3. Перевиваемые линии (гетероплоидные культуры), способны к многократному диспергированию и перевиванию, т.е. к многократным пассажам, наиболее удобны в вирусологической работе- например, линии опухолевых клеток Hela, Hep и др.

Специальные питательные среды для культур клеток.

Используются разнообразные синтетические вирусологические питательные среды сложного состава, включающие большой набор различных факторов роста- среда 199, Игла, раствор Хэнкса, гидролизат лактальбумина. В среды добавляют стабилизаторы рН (Hepes), различные в видовом отношении сыворотки крови (наиболее эффективной считают эмбриональную телячью сыворотку), L-цистеин и L-глютамин.

В зависимости от функционального использования среды могут быть ростовые (с большим содержанием сыворотки крови) - их используют для выращивания клеточных культур до внесения вирусных проб, и поддерживающие (с меньшим содержанием сыворотки или ее отсутствием)- для содержания инфицированных вирусом клеточных культур.

Выявляемые проявления вирусной инфекции клеточных культур.

1. Цитопатический эффект.

2. Выявление телец включений.

3. Выявление вирусов методом флюоресцирующих антител (МФА), электронной микроскопией, авторадиографией.

4. Цветная проба. Обычный цвет используемых культуральных сред, содержащих в качестве индикатора рН феноловый красный, при оптимальных для клеток условиях культивирования (рН около 7,2)- красный. Размножение клеток меняет рН и соответственно- цвет среды с красного на желтый за счет смещения рН в кислую сторону. При размножении в клеточных культурах вирусов происходит лизис клеток, изменения рН и цвета среды не происходит.

5. Выявление гемагглютинина вирусов- гемадсорбция, гемагглютинация.

6. Метод бляшек (бляшкообразования). В результате цитолитического действия многих вирусов на клеточные культуры образуются зоны массовой гибели клеток. Выявляют бляшки- вирусные “ клеточно- негативные” колонии.

Номенклатура вирусов.

Название семейства вирусов заканчивается на “viridae”, рода- “virus”, для вида обычно используют специальные названия, например - вирус краснухи, вирус иммунодефицита человека- ВИЧ, вирус парагриппа человека типа 1 и т.д.

Вирусы бактерий (бактериофаги).

Естественной средой обитания фагов является бактериальная клетка, поэтому фаги распространены повсеместно (например, в сточных водах). Фагам присущи биологические особенности, свойственные и другим вирусам.

Наиболее морфологически распространенный тип фагов характеризуется наличием головки- икосаэдра, отростка (хвоста) со спиральной симметрией (часто имеет полый стержень и сократительный чехол), шипов и отростков (нитей), т.е. внешне несколько напоминают сперматозоид.

Взаимодействие фагов с клеткой (бактерией) строго специфично, т.е. бактериофаги способны инфицировать только определенные виды и фаготипы бактерий.

Основные этапы взаимодействия фагов и бактерий.

1. Адсорбция (взаимодействие специфических рецепторов).

2. Внедрение вирусной ДНК (инъекция фага) осуществляется за счет лизирования веществами типа лизоцима участка клеточной стенки, сокращения чехла, вталкивания стержня хвоста через цитоплазматическую мембрану в клетку, впрыскивание ДНК в цитоплазму.

3. Репродукция фага.

4. Выход дочерних популяций.

Основные свойства фагов.

Различают вирулентные фаги , способные вызвать продуктивную форму процесса, и умеренные фаги , вызывающие редуктивную фаговую инфекцию (редукцию фага). В последнем случае геном фага в клетке не не реплицируется, а внедряется (интегрируется) в хромосому клетки хозяина (ДНК в ДНК), фаг превращается в профаг. Этот процесс получил название лизогении . Если в результате внедрения фага в хромосому бактериальной клетки она приобретает новые наследуемые признаки, такую форму изменчивости бактерий называют лизогенной (фаговой) конверсией. Бактериальную клетку, несущую в своем геноме профаг, называют лизогенной, поскольку профаг при нарушении синтеза особого белка- репрессора может перейти в литический цикл развития, вызвать продуктивную инфекцию с лизисом бактерии.

Умеренные фаги имеют важное значение в обмене генетическим материалом между бактериями- в трансдукции (одна из форм генетического обмена). Например, способностью вырабатывать экзотоксин обладают только возбудитель дифтерии, в хромосому которого интегрирован умеренный профаг, несущий оперон tox, отвечающий за синтез дифтерийного экзотоксина. Умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токсигенную.

По спектру действия на бактерии фаги разделяют на:

Поливалентные (лизируют близкородственные бактерии, например сальмонеллы);

Моновалентные (лизируют бактерии одного вида);

Типоспецифические (лизируют только определенные фаговары возбудителя).

На плотных средах фаги обнаруживают чаще с помощью спот (spot) - теста (образование негативного пятна при росте колоний) или методом агаровых слоев (титрования по Грациа).

Практическое использование бактериофагов.

1. Для идентификации (определение фаготипа).

2. Для фагопрофилактики (купирование вспышек).

3. Для фаготерапии (лечение дисбактериозов).

4. Для оценки санитарного состояния окружающей среды и эпидемиологического анализа.



Содержание статьи

ВИРУСЫ, мельчайшие возбудители инфекционных болезней. В переводе с латинского virus означает «яд, ядовитое начало». До конца 19 в. термин «вирус» использовался в медицине для обозначения любого инфекционного агента, вызывающего заболевание. Современное значение это слово приобрело после 1892, когда русский ботаник Д.И.Ивановский установил «фильтруемость» возбудителя мозаичной болезни табака (табачной мозаики). Он показал, что клеточный сок из зараженных этой болезнью растений, пропущенный через специальные фильтры, задерживающие бактерии, сохраняет способность вызывать то же заболевание у здоровых растений. Пять лет спустя другой фильтрующийся агент – возбудитель ящура крупного рогатого скота – был обнаружен немецким бактериологом Ф.Лёффлером. В 1898 голландский ботаник М.Бейеринк повторил в расширенном варианте эти опыты и подтвердил выводы Ивановского. Он назвал «фильтрующееся ядовитое начало», вызывающее табачную мозаику, «фильтрующимся вирусом». Этот термин использовался на протяжении многих лет и постепенно сократился до одного слова – «вирус».

В 1901 американский военный хирург У.Рид и его коллеги установили, что возбудитель желтой лихорадки также является фильтрующимся вирусом. Желтая лихорадка была первым заболеванием человека, опознанным как вирусное, однако потребовалось еще 26 лет, чтобы ее вирусное происхождение было окончательно доказано.

Свойства и происхождение вирусов.

Принято считать, что вирусы произошли в результате обособления (автономизации) отдельных генетических элементов клетки, получивших, кроме того, способность передаваться от организма к организму. В нормальной клетке происходят перемещения нескольких типов генетических структур, например матричной, или информационной, РНК (мРНК), транспозонов, интронов, плазмид. Такие мобильные элементы, возможно, были предшественниками, или прародителями, вирусов.

Являются ли вирусы живыми организмами?

РЕПЛИКАЦИЯ ВИРУСОВ

Генетическую информацию, закодированную в отдельном гене, в общем можно рассматривать как инструкцию по производству определенного белка в клетке. Такая инструкция воспринимается клеткой только в том случае, если она послана в виде мРНК. Поэтому клетки, у которых генетический материал представлен ДНК, должны «переписать» (транскрибировать) эту информацию в комплементарную копию мРНК . ДНК-содержащие вирусы по способу репликации отличаются от РНК-содержащих вирусов.

ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо.

Первый этап репликации вирусов связан с проникновением вирусной нуклеиновой кислоты в клетку организма-хозяина. Этому процессу могут способствовать специальные ферменты, входящие в состав капсида или внешней оболочки вириона, причем оболочка остается снаружи клетки или вирион теряет ее сразу после проникновения внутрь клетки. Вирус находит подходящую для его размножения клетку, контактируя отдельными участками своего капсида (или внешней оболочки) со специфическими рецепторами на поверхности клетки по типу «ключ – замок». Если специфические («узнающие») рецепторы на поверхности клетки отсутствуют, то клетка не чувствительна к вирусной инфекции: вирус в нее не проникает.

Для того чтобы реализовать свою генетическую информацию, проникшая в клетку вирусная ДНК транскрибируется специальными ферментами в мРНК. Образовавшаяся мРНК перемещается к клеточным «фабрикам» синтеза белка – рибосомам, где она заменяет клеточные «послания» собственными «инструкциями» и транслируется (прочитывается), в результате чего синтезируются вирусные белки. Сама же вирусная ДНК многократно удваивается (дуплицируется) при участии другого набора ферментов, как вирусных, так и принадлежащих клетке.

Синтезированный белок, который используется для строительства капсида, и размноженная во многих копиях вирусная ДНК объединяются и формируют новые, «дочерние» вирионы. Сформированное вирусное потомство покидает использованную клетку и заражает новые: цикл репродукции вируса повторяется. Некоторые вирусы во время отпочковывания от поверхности клетки захватывают часть клеточной мембраны, в которую «заблаговременно» встроились вирусные белки, и таким образом приобретают оболочку. Что касается клетки-хозяина, то она в итоге оказывается поврежденной или даже полностью разрушенной.

У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.

У некоторых РНК-содержащих вирусов геном (РНК) может непосредственно выполнять роль мРНК. Однако эта особенность характерна только для вирусов с «+» нитью РНК (т.е. с РНК, имеющей положительную полярность). У вирусов с «-» нитью РНК последняя должна сначала «переписаться» в «+» нить; только после этого начинается синтез вирусных белков и происходит репликация вируса.

Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков.

КЛАССИФИКАЦИЯ ВИРУСОВ

Если вирусы действительно являются мобильными генетическими элементами, получившими «автономию» (независимость) от генетического аппарата их хозяев (разных типов клеток), то разные группы вирусов (с разным геномом, строением и репликацией) должны были возникнуть независимо друг от друга. Поэтому построить для всех вирусов единую родословную, связывающую их на основе эволюционных взаимоотношений, невозможно. Принципы «естественной» классификации, используемые в систематике животных, не подходят для вирусов.

Тем не менее система классификации вирусов необходима в практической работе, и попытки ее создания предпринимались неоднократно. Наиболее продуктивным оказался подход, основанный на структурно-функциональной характеристике вирусов: чтобы отличить разные группы вирусов друг от друга, описывают тип их нуклеиновой кислоты (ДНК или РНК, каждая из которых может быть одноцепочечной или двухцепочечной), ее размеры (число нуклеотидов в цепочке нуклеиновой кислоты), число молекул нуклеиновой кислоты в одном вирионе, геометрию вириона и особенности строения капсида и наружной оболочки вириона, тип хозяина (растения, бактерии, насекомые, млекопитающие и т.д.), особенности вызываемой вирусами патологии (симптомы и характер заболевания), антигенные свойства вирусных белков и особенности реакции иммунной системы организма на внедрение вируса.

В систему классификации вирусов не вполне укладывается группа микроскопических возбудителей болезней, называемая вироидами (т.е. вирусоподобными частицами). Вироиды вызывают многие распространенные среди растений болезни. Это мельчайшие инфекционные агенты, лишенные даже простейшего белкового чехла (имеющегося у всех вирусов); они состоят только из замкнутой в кольцо одноцепочечной РНК.

ВИРУСНЫЕ ЗАБОЛЕВАНИЯ

Эволюция вирусов и вирусных инфекций.

Природным резервуаром для вирусов лошадиных энцефалитов, особо опасных для лошадей и в несколько меньшей степени для человека, являются птицы. Эти вирусы переносятся кровососущими комарами, в которых вирус размножается без существенного вреда для комара. Иногда вирусы могут передаваться насекомыми пассивно (без размножения в них), однако чаще всего они репродуцируются в переносчиках.

Для многих вирусов, например кори, герпеса и отчасти гриппа, основным природным резервуаром является человек. Передача этих вирусов происходит воздушно-капельным или контактным путем.

Распространение некоторых вирусных заболеваний, как и других инфекций, полно неожиданностей. Например, в группах людей, проживающих в антисанитарных условиях, практически все дети в раннем возрасте переносят полиомиелит, обычно протекающий в легкой форме, и приобретают иммунитет. Если же условия жизни в этих группах улучшаются, дети младшего возраста обычно полиомиелитом не болеют, но заболевание может возникнуть в более старшем возрасте, и тогда оно часто протекает в тяжелой форме.

Многие вирусы не могут долго сохраняться в природе при низкой плотности расселения вида-хозяина. Малочисленность популяций первобытных охотников и сборщиков растений создавала неблагоприятные условия для существования некоторых вирусов; поэтому весьма вероятно, что какие-то вирусы человека возникли позже, с появлением городских и сельских поселений. Предполагается, что вирус кори первоначально существовал среди собак (как возбудитель лихорадки), а натуральная оспа человека могла появиться в результате эволюции оспы коров или мышей. К наиболее «свежим» примерам эволюции вирусов можно отнести синдром приобретенного иммунодефицита человека (СПИД). Существуют данные о генетическом сходстве вирусов иммунодефицита человека и африканских зеленых мартышек.

«Новые» инфекции обычно протекают в тяжелой форме, нередко со смертельным исходом, но в процессе эволюции возбудителя они могут стать более легкими. Хороший пример – история вируса миксоматоза. В 1950 этот вирус, эндемичный для Южной Америки и довольно безобидный для местных кроликов, вместе с европейскими породами этих животных был завезен в Австралию. Заболевание австралийских кроликов, ранее не встречавшихся с данным вирусом, было смертельным в 99,5% случаев. Несколько лет спустя смертность от этого заболевания значительно снизилась, в некоторых районах до 50%, что объясняется не только «аттенуирующими» (ослабляющими) мутациями в вирусном геноме, но и возросшей генетической устойчивостью кроликов к заболеванию, причем в обоих случаях эффективная природная селекция произошла под мощным давлением естественного отбора.

Репродукция вирусов в природе поддерживается разными типами организмов: бактериями, грибами, простейшими, растениями, животными. Например, насекомые часто страдают от вирусов, которые накапливаются в их клетках в виде крупных кристаллов. Растения нередко поражаются мелкими и просто устроенными РНК-содержащими вирусами. Эти вирусы даже не имеют специальных механизмов для проникновения в клетку. Они переносятся насекомыми (которые питаются клеточным соком), круглыми червями и контактным способом, заражая растение при его механическом повреждении. Вирусы бактерий (бактериофаги) имеют наиболее сложный механизм доставки своего генетического материала в чувствительную бактериальную клетку. Сначала «хвост» фага, имеющий вид тонкой трубочки, прикрепляется к стенке бактерии. Затем специальные ферменты «хвоста» растворяют участок бактериальной стенки и в образовавшееся отверстие через «хвост», как через иглу шприца, впрыскивается генетический материал фага (обычно ДНК).

Более десяти основных групп вирусов патогенны для человека. Среди ДНК-содержащих вирусов это семейство поксвирусов (вызывающих натуральную оспу, коровью оспу и другие оспенные инфекции), вирусы группы герпеса (герпетические высыпания на губах, ветряная оспа), аденовирусы (заболевания дыхательных путей и глаз), семейство паповавирусов (бородавки и другие разрастания кожи), гепаднавирусы (вирус гепатита B). РНК-содержащих вирусов, болезнетворных для человека, значительно больше. Пикорнавирусы (от лат. pico – очень мелкий, англ. RNA – РНК) – самые мелкие вирусы млекопитающих, похожие на некоторые вирусы растений; они вызывают полиомиелит, гепатит А, острые простудные заболевания. Миксовирусы и парамиксовирусы – причина разных форм гриппа, кори и эпидемического паротита (свинки). Арбовирусы (от англ. ar thropod bo rne – «переносимые членистоногими») – самая большая группа вирусов (более 300) – переносятся насекомыми и являются возбудителями клещевого и японского энцефалитов, желтой лихорадки, менингоэнцефалитов лошадей, колорадской клещевой лихорадки, шотландского энцефалита овец и других опасных болезней. Реовирусы – довольно редкие возбудители респираторных и кишечных заболеваний человека – стали предметом особого научного интереса в силу того, что их генетический материал представлен двухцепочечной фрагментированной РНК.

Лечение и профилактика.

Репродукция вирусов тесно переплетается с механизмами синтеза белка и нуклеиновых кислот клетки в зараженном организме. Поэтому создать лекарства, избирательно подавляющие вирус, но не наносящие вреда организму, – задача чрезвычайно трудная. Все же оказалось, что у наиболее крупных вирусов герпеса и оспы геномные ДНК кодируют большое число ферментов, отличающихся по свойствам от сходных клеточных ферментов, и это послужило основой для разработки противовирусных препаратов. Действительно, создано несколько препаратов, механизм действия которых основан на подавлении синтеза вирусных ДНК. Некоторые соединения, слишком токсичные для общего применения (внутривенно или через рот), годятся для местного использования, например при поражении глаз вирусом герпеса.

Известно, что в организме человека вырабатываются особые белки – интерфероны. Они подавляют трансляцию вирусных нуклеиновых кислот и таким образом угнетают размножение вируса. Благодаря генной инженерии стали доступны и проходят проверку в медицинской практике интерфероны, производимые бактериями см. ГЕННАЯ ИНЖЕНЕРИЯ) .

К самым действенным элементам естественной защиты организма относятся специфические антитела (специальные белки, вырабатываемые иммунной системой), которые взаимодействуют с соответствующим вирусом и тем самым эффективно препятствуют развитию болезни; однако они не могут нейтрализовать вирус, уже проникший в клетку. Примером может служить герпетическая инфекция: вирус герпеса сохраняется в клетках нервных узлов (ганглиев), где антитела не могут его достичь. Время от времени вирус активируется и вызывает рецидивы заболевания.

Обычно специфические антитела образуются в организме в результате проникновения в него возбудителя инфекции. Организму можно помочь, усиливая выработку антител искусственно, в том числе создавая иммунитет заранее, с помощью вакцинации. Именно таким способом, путем массовой вакцинации, заболевание натуральной оспой было практически ликвидировано во всем мире.

Современные методы вакцинации и иммунизации разделяются на три основных группы. Во-первых, это использование ослабленного штамма вируса, который стимулирует в организме продуцирование антител, эффективно действующих против более патогенного штамма. Во-вторых, введение убитого вируса (например, инактивированного формалином), который тоже индуцирует образование антител. Третий вариант – т.н. «пассивная» иммунизация, т.е. введение уже готовых «чужих» антител. Животное, например лошадь, иммунизируют, затем из ее крови выделяют антитела, очищают их и используют для введения пациенту, чтобы создать немедленный, но непродолжительный иммунитет. Иногда используют антитела из крови человека, перенесшего данное заболевание (например, корь, клещевой энцефалит).

Накопление вирусов.

Для приготовления вакцинных препаратов необходимо накопить вирус. С этой целью часто используют развивающиеся куриные эмбрионы, которых заражают данным вирусом. После инкубирования зараженных эмбрионов в течение определенного времени накопившийся в них вследствие размножения вирус собирают, очищают (центрифугированием или другим способом) и, если нужно, инактивируют. Очень важно удалить из препаратов вируса все балластные примеси, которые могут вызывать серьезные осложнения при вакцинации. Конечно, не менее важно убедиться, что в препаратах не осталось неинактивированного патогенного вируса. В последние годы для накопления вирусов широко используют различные типы клеточных культур.

МЕТОДЫ ИЗУЧЕНИЯ ВИРУСОВ

Вирусы бактерий первыми стали объектом детальных исследований как наиболее удобная модель, обладающая рядом преимуществ по сравнению с другими вирусами. Полный цикл репликации фагов, т.е. время от заражения бактериальной клетки до выхода из нее размножившихся вирусных частиц, происходит в течение одного часа. Другие вирусы обычно накапливаются в течение нескольких суток или даже более продолжительного времени. Незадолго до Второй мировой войны и вскоре после ее окончания были разработаны методы изучения отдельных вирусных частиц. Чашки с питательным агаром, на котором выращен монослой (сплошной слой) бактериальных клеток, заражают частицами фага, используя для этого его последовательные разведения. Размножаясь, вирус убивает «приютившую» его клетку и проникает в соседние, которые тоже гибнут после накопления фагового потомства. Участок погибших клеток виден невооруженным глазом как светлое пятно. Такие пятна называют «негативными колониями», или бляшками. Разработанный метод позволил изучать потомство отдельных вирусных частиц, обнаружить генетическую рекомбинацию вирусов и определить генетическую структуру и способы репликации фагов в деталях, казавшихся ранее невероятными.

Работы с бактериофагами способствовали расширению методического арсенала в изучении вирусов животных. До этого исследования вирусов позвоночных выполнялись в основном на лабораторных животных; такие опыты были очень трудоемки, дороги и не очень информативны. Впоследствие появились новые методы, основанные на применении тканевых культур; бактериальные клетки, использовавшиеся в экспериментах с фагами, были заменены на клетки позвоночных. Однако для изучения механизмов развития вирусных заболеваний эксперименты на лабораторных животных очень важны и продолжают проводиться в настоящее время.

Человеческий организм подвержен всякого рода заболеваниям и инфекциям, также довольно часто болеют животные и растения. Ученые прошлого века пытались выявить причину многих заболеваний, но, даже определив симптоматику и течение болезни, они не могли уверенно сказать о ее причине. И лишь в конце девятнадцатого века появился такой термин, как "вирусы". Биология, а точнее один из ее разделов - микробиология, стала изучать новые микроорганизмы, которые, как оказалось, уже давно соседствуют с человеком и вносят свою лепту в ухудшение его здоровья. Для того чтобы эффективнее бороться с вирусами, выделилась новая наука - вирусология. Именно она может рассказать о древних микроорганизмах очень много интересного.

Вирусы (биология): что это такое?

Только в девятнадцатом веке ученые выяснили, что возбудителями кори, гриппа, ящура и других инфекционных заболеваний не только у людей, но и у животных и растений являются микроорганизмы, невидимые человеческому глазу.

После того как были открыты вирусы, биология не сразу смогла дать ответы на поставленные вопросы об их строении, возникновении и классификации. У человечества появилась потребность в новой науке - вирусологии. В настоящий момент вирусологи работают над изучением уже знакомых вирусов, наблюдают за их мутациями и изобретают вакцины, позволяющие уберечь живые организмы от заражения. Довольно часто с целью эксперимента создается новый штамм вируса, который хранится в "спящем" состоянии. На его основе разрабатываются препараты и проводятся наблюдения по их воздействию на организмы.

В современном обществе вирусология является одной из самых важных наук, а самый востребованный научный сотрудник - это вирусолог. Профессия вирусолога, по прогнозам социологов, с каждым годом становится все более популярной, что хорошо отражает тенденции современности. Ведь, как считают многие ученые, скоро с помощью микроорганизмов будут вестись войны и устанавливаться правящие режимы. В таких условиях государство, имеющее высококвалифицированных вирусологов, может оказаться самым стойким, а его население наиболее жизнеспособным.

Появление вирусов на Земле

Ученые относят возникновение вирусов к самым древним временам на планете. Хотя с точностью сказать, каким образом они появились и какую форму имели в то время, невозможно. Ведь вирусы имеют способность проникать в абсолютно любые живые организмы, им доступны простейшие формы жизни, растения, грибы, животные и, конечно же, человек. Но вирусы не оставляют после себя никаких видимых остатков в виде окаменелостей, например. Все эти особенности жизни микроорганизмов существенно затрудняют их изучение.

  • они были частью ДНК и со временем отделились;
  • они были встроены в геном изначально и при определенных обстоятельствах "проснулись", начали размножаться.

Ученые предполагают, что в геноме современных людей находится огромное количество вирусов, которыми были заражены наши предки, и теперь они естественным образом встроились в ДНК.

Вирусы: когда были обнаружены

Изучение вирусов - это достаточно новый раздел в науке, ведь считается, что он появился только в конце девятнадцатого века. На самом деле можно сказать, что неосознанно открыл сами вирусы и вакцины от них английский врач в конце девятнадцатого века. Он работал над созданием лекарства от оспы, косившей в те времена сотни тысяч людей во время эпидемии. Он сумел создать экспериментальную вакцину прямо из болячки одной из девушек, болевшей оспой. Эта прививка оказалась весьма эффективной и спасла не одну жизнь.

Но официальным "отцом" вирусов считается Д. И. Ивановский. Этот русский ученый долгое время изучал болезни растений табака и сделал предположение о мелких микроорганизмах, которые проходят через все известные фильтры и не могут существовать самостоятельно.

Спустя несколько лет француз Луи Пастер в процессе борьбы с бешенством выявил его возбудителей и ввел термин "вирусы". Интересен тот факт, что микроскопы конца девятнадцатого века не могли показать ученым вирусы, поэтому все предположения делались относительно невидимых микроорганизмов.

Развитие вирусологии

Середина прошлого века дала мощный толчок в развитии вирусологии. К примеру, изобретенный электронный микроскоп позволил, наконец, увидеть вирусы и провести их классификацию.

В пятидесятые годы двадцатого века была изобретена вакцина от полиомиелита, ставшая спасением от этого страшного заболевания для миллионов детей по всему миру. К тому же ученые научились выращивать человеческие клетки в специальной среде, что привело к появлению возможности изучать вирусы человека в лабораторных условиях. В настоящий момент описано уже около полутора тысяч вирусов, хотя еще пятьдесят лет назад известными были всего лишь двести подобных микроорганизмов.

Свойства вирусов

Вирусы имеют ряд свойств, которые отличают их от других микроорганизмов:

  • Очень маленькие размеры, измеряющиеся в нанометрах. Крупные вирусы человека, например оспы, имеют размер триста нанометров (это всего лишь 0,3 миллиметра).
  • Каждый живой организм на планете содержит два вида нуклеиновых кислот, а вирусы имеют только одну.
  • Микроорганизмы не могут расти.
  • Размножение вирусов происходит только в живой клетке хозяина.
  • Существование происходит только внутри клетки, вне ее микроорганизм не может проявлять признаков жизнедеятельности.

Формы вирусов

К настоящему моменту ученые могут с уверенностью заявлять о двух формах данного микроорганизма:

  • внеклеточная - вирион;
  • внутриклеточная - вирус.

Вне клетки вирион находится в "спящем" состоянии, он не поддет никаких признаков жизни. Попав в организм человека, он находит подходящую клетку и, только проникнув в нее, начинает активно размножаться, превращаясь в вирус.

Строение вируса

Практически все вирусы, несмотря на то что они довольно разнообразны, имеют однотипное строение:

  • нуклеиновые кислоты, образующие геном;
  • белковая оболочка (капсид);
  • некоторые микроорганизмы поверх оболочки имеют еще и мембранное покрытие.

Ученые считают, что подобная простота строения позволяет вирусам выживать и приспосабливаться в изменяющихся условиях.

В настоящий момент вирусологи выделяют семь классов микроорганизмов:

  • 1 - состоят из двуцепочечной ДНК;
  • 2 - содержат одноцепочечную ДНК;
  • 3 - вирусы, копирующие свою РНК;
  • 4 и 5 - содержат одноцепочечную РНК;
  • 6 - трансформируют РНК в ДНК;
  • 7 - трансформируют двуцепочечную ДНК через РНК.

Несмотря на то что классификация вирусов и их изучение шагнули далеко вперед, ученые допускают возможность появления новых видов микроорганизмов, отличающихся от всех уже перечисленных выше.

Типы вирусной инфекции

Взаимодействие вирусов с живой клеткой и способ выхода из нее определяет тип инфекции :

  • Литическая

В процессе инфицирования все вирусы одновременно выходят из клетки, и в результате она погибает. В дальнейшем вирусы "селятся" в новых клетках и продолжают их разрушать.

  • Персистентная

Вирусы выходят из клетки хозяина постепенно, они начинают поражать новые клетки. Но прежняя продолжает свою жизнедеятельность и "рождает" все новые вирусы.

  • Латентная

Вирус встраивается в саму клетку, в процессе ее деления он передается другим клеткам и распространяется по всему организму. В подобном состоянии вирусы могут находиться достаточно долгое время. При необходимом стечении обстоятельств они начинают активно размножаться и инфекция протекает по уже перечисленным выше типам.

Россия: где изучают вирусы?

В нашей стране вирусы изучают уже достаточно давно, и именно российские специалисты лидируют в этой области. В Москве расположен НИИ вирусологии имени Д. И. Ивановского, специалисты которого вносят существенный вклад в развитии науки. На базе НИИ работаю научно-исследовательские лаборатории, содержится консультативный центр и кафедра вирусологии.

Параллельно российские вирусологи работают с ВОЗ и пополняют свою коллекцию штаммов вирусов. Специалисты НИИ работают по всем разделам вирусологии:

  • общей:
  • частной;
  • молекулярной.

Стоит отметить, что в последние годы наметилась тенденция к объединению усилий вирусологов всего мира. Такая совместная работа является более эффективной и позволяет серьезно продвинуться в изучении вопроса.

Вирусы (биология как наука это подтвердила) - это микроорганизмы, сопровождающие все живое на планете на протяжении всего их существования. Поэтому их изучение является столь важным для выживания многих видов на планете, в том числе и человека, который уже не раз в истории становился жертвой различных эпидемий, вызванных вирусами.