Иерархия intel. Линейки и маркировка современных процессоров Intel

В первых числах января Intel официально представила новое поколение процессоров Intel Core на архитектуре Kaby Lake . Обновление получилось довольно странным, поэтому мы сегодня обойдемся без пространных рассуждений и расскажем только о том, что реально надо знать.

Факт первый: никакого «Тик-так»

Долгое время Intel следовала простой схеме обновления процессоров: «Тик-так». В один год обновлялся техпроцесс, а в следующем выходила новая архитектура. Первые несколько лет ритм выдерживался почти безукоризненно, но в последние годы схема начала ощутимо сбоить. И вот с Kaby Lake производитель официально признался, что с «тик-так» больше жить нельзя и к нему добавляется еще один этап, под названием «оптимизация», на котором будут допиливать уже созданные кристаллы. К сожалению, именно на этот новый виток и попали Kaby Lake.

Почему Intel решила изменить сама себе, трудно сказать. По заявлению самой компании, во всем виновата высокая стоимость перехода на новые техпроцессы. Мы, правда, считаем, что виноват скорее общий спад продаж на рынке компьютеров — становится все сложнее отбивать деньги при столь коротких циклах производства.

Факт второй: архитектура

Несмотря на новое название и солидное слово «оптимизация», технически и структурно Kaby Lake в точности копирует прошлогодние Skylake. Строение чипов, структура памяти, логика работы, наборы инструкций - все осталось таким же. Не поменялись даже численные показатели: максимум четыре ядра, 8 МБ кэша и 16 линий PCIe для общения с видеокартой. В общем, кроме названия - никаких инноваций.

Факт третий: техпроцесс

Неизменным остался и техпроцесс. Kaby Lake производят по тем же самым 14-нанометровым нормам. Только теперь к их названию приписывают плюсик (14 nm+), за которым и правда кроются некоторые обновления. В Kaby Lake у транзисторов чуть увеличились высота ребер и расстояние между ними. Как итог - токи утечки и тепловыделение слегка снизились, а это позволило нарастить частоту кристаллов.

Факт четвертый: частота работы



Официальный рекорд частоты для Core i7-7700K - 7383 МГц. Установлен, кстати, российской командой на материнке ASUS Maximus IX Apex.

По сравнению с процессорами прошлого поколения, у новых кристаллов частота в среднем увеличилась на 200-300 МГц. При этом TDP моделей остался прежним. То есть при тех же 90 Вт новый Core i7-7700K берет планку в 4,5 ГГц, в то время как i7-6700K поднимался только до 4,2 ГГц.

Мало того, процессоры еще и лучше разгоняются. Если из Skylake в среднем удавалось выжать 4,4-4,5 ГГц, то для Kaby Lake нормой считаются 4,8 ГГц, а при удачном стечении обстоятельств и 5 ГГц. И да, речь сейчас идет о работе под обычными воздушными кулерами.

Тут же отметим, что, как и раньше, все кристаллы Intel Core и Pentium можно разогнать по шине, а модели с индексом «K» гонятся еще и по множителю. Кстати, разблокированные кристаллы отныне есть не только в сериях Core i5 и Core i7, но и в Core i3. А семейство Pentium , самые дешевые Kaby Lake, теперь поддерживает Hyper-Threading.

Факт пятый: встроенное ядро

Осталась в Kaby Lake и встроенная графика. Но если раньше это была Intel HD Graphics 530, то теперь это HD Graphics 630 . Эволюция? Отнюдь нет, на борту все те же 24 блока частотой 1150 МГц. Новая цифра в названии прописалась благодаря обновленному медиадвижку Quick Sync . Он теперь может на лету декодировать видео в форматах H.265 и VP.9. Другими словами, если вы тонкий ценитель фильмов в 4К или собираетесь стримить в этом разрешении, знайте - с Kaby Lake процессор больше не будет нагружен на все 100%.

Что же касается производительности самой графики, то на нее грех жаловаться. С отрисовкой Windows она справляется без проблем, а в качестве бонуса еще и тянет не особо требовательные игрушки. Можно и деревню в Rim World построить, и тюрьму в Prison Architect отгрохать, и даже в DOTA 2 погонять. Последняя в Full HD и на средних настройках выдает вполне приличные 62 fps.



Факт шестой: чипсеты

Вместе с Kaby Lake компания Intel представила и новые чипсеты 200-й серии. Изменений в них, правда, так же мало, как и в процессорах. Старшие модели, Z270, получили дополнительные четыре линии PCIe, к которым производители материнских плат могут подвязать лишние порты USB или M.2. Прямо скажем, список не особо интригующий, но скудность в некоторой степени компенсируют производители плат.

Так, к примеру, в топовых материнках ASUS Apex появилась технология DIMM.2, позволяющая в слот под оперативку установить два накопителя M.2. А к нашей тестовой Maximus IX Formula можно было без проблем подключить кастомную «водянку», чтобы отвести тепло от цепей питания.

Впрочем, если ни одна из этих новинок вас не привлекает, у нас есть в запасе приятный факт. Сокет под Kaby Lake менять не стали, оставив уже привычный LGA 1151. То есть новые процессоры прекрасно работают на старых материнках Z170 Express, ну а Skylake хорошо себя чувствуют на Z270.

Факт седьмой: производительность

Результаты тестов
Процессор Intel Core i7-7700K Intel Core i7-6700K
Cinebench R15
One Core 196 175
All Cores 988 897
Multiplier 5,05 5,11
WinRar (КБ/с)
One Core 2061 1946
All Cores 11258 10711
TrueCrypt (МБ/с)
AES-Twofish-Serpent 336 295
PCMark (Work)
Work 5429 5281
Rise of the Tomb Raider
1920x1080, VeryHigh 118,1 119
Tom Clancy"s Rainbow Six: Siege
1920x1080, Ultra 115,7 114,9
Tom Clancy"s The Division
1920x1080, Max 93 92,6

Ну и наконец, о самом главном: о производительности. На тестах у нас побывал старший представитель линейки - Core i7-7700K, пришедший на смену Core i7-6600K. Как мы уже говорили, технически кристаллы различаются только частотой: под Turbo Boost новинка выдает на 300 МГц больше, а в стандарте держит скорость на 200 МГц выше. Собственно, в эту разницу по частоте и укладывается прирост производительности. Во всех задачах i7-7700K оказывается примерно на 5-6% быстрее предшественника. А при сравнении на одинаковой частоте разница укладывается в погрешность измерений.

Что же касается температуры процессора, то здесь ничего не поменялось. На пределе процессор легко добирается до 80°С. Но у нас процессор был скальпирован и даже на частоте в 4,8 ГГц не грелся выше 70°С.

* * *

Седьмое поколение Intel Core i7 сложно назвать «новым». По сути, перед нами те же самые Skylake, но на чуть более высоких частотах. Хорошо это или плохо, решайте сами, наше же мнение таково. Если вы сидите на относительно свежей архитектуре Intel (Skylake или Haswell), обновляться до Kaby Lake смысла нет. Но если вы собираете компьютер «с нуля», то до выхода AMD Ryzen седьмые Core - единственно правильный вариант.

Благодарим компанию ASUS за предоставленное оборудование.

Тестовый стенд
Охлаждение Thermalright Macho HR-02
Материнская плата ASUS ROG Maximus IX Formula
Память 2x 4 ГБ DDR4-2666 МГц Kingston HyperX Fury
Видеокарта NVIDIA GeForce GTX 1070
Накопители Toshiba OCZ RD400 (512 ГБ)
Блок питания Hiper K900
Дополнительно Windows 10 64-bit
Драйверы NVIDIA 378.41

Технические характеристики Core i7
Процессор Intel Core i7-7700K Intel Core i7-7700
Архитектура Kaby Lake Kaby Lake
Технологический процесс 14 нм 14 нм
Сокет LGA1151 LGA1151
Количество ядер/потоков 4/8 шт. 4/8 шт.
Размер кэша третьего уровня 8 МБ 8 МБ
Штатная тактовая частота 4,2 ГГц 3,6 ГГц
4,5 ГГц 4,2 ГГц
Количество каналов памяти 2 шт. 2 шт.
Поддерживаемый тип памяти DDR4-2400/DDR3L-1600 DDR4-2400/DDR3L-1600
16 16
Теплопакет (TDP) 91 Вт 65 Вт
Цена на январь 2017 года 20 700 рублей ($345) 18 600 рублей ($310)

Технические характеристики Core i5
Процессор Core i5-7600K Core i5-7600 Core i5-7500 Core i5-7400
Архитектура Kaby Lake Kaby Lake Kaby Lake Kaby Lake
Технологический процесс 14 нм 14 нм 14 нм 14 нм
Сокет LGA1151 LGA1151 LGA1151 LGA1151
Количество ядер/потоков 4/4 шт. 4/4 шт. 4/4 шт. 4/4 шт.
Размер кэша третьего уровня 6 МБ 6 МБ 6 МБ 6 МБ
Штатная тактовая частота 3,8 ГГц 3,5 ГГц 3,4 ГГц 3,0 ГГц
Максимальная частота в режиме Turbo Boost 4,2 ГГц 4,1 ГГц 3,8 ГГц 3,5 ГГц
Количество каналов памяти 2 шт. 2 шт. 2 шт. 2 шт.
Поддерживаемый тип памяти DDR4-2400/DDR3L-1600 DDR4-2400/DDR3L-1600 DDR4-2400/DDR3L-1600 DDR4-2400/DDR3L-1600
Количество поддерживаемых линий PCI Express 3.0 16 16 16 16
Теплопакет (TDP) 91 Вт 65 Вт 65 Вт 65 Вт
Цена на январь 2017 года 14 500 рублей ($242) 13 200 рублей ($220) 12 000 рублей ($200) 11 100 рублей ($185)

Технические характеристики Core i3
Процессор Core i3-7350K Core i3-7320 Core i3-7300 Core i3-7100
Архитектура Kaby Lake Kaby Lake Kaby Lake Kaby Lake
Технологический процесс 14 нм 14 нм 14 нм 14 нм
Сокет LGA1151 LGA1151 LGA1151 LGA1151
Количество ядер/потоков 2/4 шт. 2/4 шт. 2/4 шт. 2/4 шт.
Размер кэша третьего уровня 4 МБ 4 МБ 4 МБ 3 МБ
Штатная тактовая частота 4,2 ГГц 4,1 ГГц 4,0 ГГц 3,9 ГГц
Максимальная частота в режиме Turbo Boost -
Количество каналов памяти 2 шт. 2 шт. 2 шт. 2 шт.
Поддерживаемый тип памяти DDR4-2400/DDR3L-1600 DDR4-2400/DDR3L-1600 DDR4-2400/DDR3L-1600 DDR4-2400/DDR3L-1600
Количество поддерживаемых линий PCI Express 3.0 16 16 16 16
Теплопакет (TDP) 60 Вт 51 Вт 51 Вт 51 Вт
Цена на январь 2017 года 10 500 рублей ($175) 9300 рублей ($155) 8700 рублей ($145) 7000 рублей ($117)

В августе 2017 года компания Intel порадовала нас анонсом процессоров Intel Core 8 поколения. Пользователи, скорее всего уже давно перестали ориентироваться в отличиях одних поколений от других, их особенностях, а главное, преимуществах. Ведь маркировка у них более-менее одинаковая. Так есть ли смысл в переходе с одного поколения на другое?

Несколько лет назад мы опубликовали , которая покрывала вопросы развития архитектуры процессоров Intel. Там мы рассказали о том, что развитие архитектур ядер подчиняется двухэтапной концепции «Тик-Так»: развитие каждый тик - это появление нового техпроцесса и выпуск процессоров на нем, используя имеющуюся архитектуру, а каждый так - это появление новой архитектуры (второе поколение, если хотите). Весь цикл длится примерно 2 года, по году на каждую стадию.

Существующая нумерация поколений процессоров Core начинается с 2009 года, когда было представлено ядро Westmere, пришедшая на смену Nahalem.

  • 1-е поколение «Westmere » и 2-е поколение «Sandy Bridge » (2011 г.). Технологический процесс в этом случае был идентичным - 32 нм, а вот изменения в плане архитектуры чипа существенные - северный мост материнской платы и встроенный графический ускоритель перенесены в ядро CPU.
  • 3-е поколение «Ivy Bridge » (2012 г.) и 4-е поколение «Haswell » (2013 г.) — техпроцесс 22 нм. Уменьшено энергопотребление процессоров на 30-50% благодаря внедрению множества новых технологических особенностей в производство, таких как 3D трехзатворные транзисторы, повышены тактовые частоты чипов, при этом производмтельность возросла незначительно. Процессоры Haswell потребовали переход на новый сокет в связи с изменением системной шины и новой шины памяти.
  • 5-е поколение «Broadwell » (2014 г.) и 6-е поколение «Skylake » (2015 г.) – техпроцесс 14 нм. Снова повышены частота, еще более улучшено энергопотребление (улучшение автономной работы на 10-30%) и добавлены несколько новых инструкций, которые улучшают быстродействие. Однако, 5-е поколение подкупает не только автономной работой. Помимо этого, такие процессоры способны укладывать загрузку в не более чем 3 секунды, проводить конвертацию видео до 8 раз быстрей, а также работать с некоторыми 3D играми в 12 раз эффективней своих предшественников Haswell. Также новые процессоры поддерживают самые последние технологии, среди которых особенно хочется выделить 4К, беспроводной экран Wi-Di и встроенную опцию безопасности с возможностью быстрого шифрования передаваемых данных.
    А вот Skylake стал самым серьезным обновлением микроархитектуры за последние 10 лет: выделим поддержку DDR4 и одновременно DDR3L с пониженным напряжением питания памяти, USB3.1 первого поколения, беспроводной зарядки и работу с Thunderbolt 3. Однако, стоит обратить внимание, что здесь поддержка Thunderbolt 3 требует отдельного Thunderbolt контроллера, который по умолчанию не входит в состав чипсета. Помимо этого в ядро интегрировали достаточно мощное графическое ядро Intel HD 520/530. Надо сказать, что процессор стал удачным маркетинговым решениям, предлагая не только привычное небольшое увлечение производительности за счет оптимизации архитектуры, но и привнес поддержку ряда технологических решений. Это привело к необходимости редизайна материнских плат и переписывая BIOS для поддержки новых возможностей. По признанию HP, их ноутбуки Elitebook имели массу проблем со стабильностью именно из-за включения множества новых необкатанных технологий, включая Thunderbolt 3. Пропатченные версии BIOS сменяли один другого каждый месяц.

7 поколение Core — наше настоящее

Седьмое поколение, носящее кодовое наименование «Kaby Lake », было представлено в 2016 году, а устройства на нем выпускаются до сих пор. Эта платформа удивила использование техпроцесса 14 нм. Да, на этом ядре традиционный цикл обновления ядер Intel сломался – перехода на техпроцесс 10 нм не произошло. Не хватило времени для технологической подготовки к еще большему увеличению плотности чипов за счет уменьшения транзисторов. Kaby Lake - это всего лишь «доработанная» версия Skylake, но она приносит с собой некоторые важные новые функции:

  1. Новый встроенный видеоадаптер Intel HD 630, обеспечивающий производительность на целых 30% в синтетических тестах выше по сравнению с предыдущим Intel HD 620.
  2. В новой микроархитектуре существенно улучшено энергопотребление, составляющее 7.5 Вт у Kaby Lake, чего не скажешь о Skylake с его 15-ти ваттным потреблением.
  3. В Kaby Lake была реализована нативная поддержка портов USB 3.1 в отличие от Skylake, где для этого требовались дополнительные контроллеры на материнской плате.

Поддержка чипсетов

Важный момент заключается в том, что Kaby Lake используют тот же разъем LGA 1151, поэтому вы можете использовать Kaby Lake на материнской плате, на которой был установлен чип Skylake. Однако, материнские платы для Skylake 100-й серии не поддерживают ряд новых функций, поэтому рекомендуется переход на чипсеты 200-й серии. Изменилась системная шина, связывающая процессор и чипсет. Несмотря на то, что оба поколения процессоров имеют 6 PCIe 3.0 линий от CPU, Kaby Lake использует 24 линии PCIe линиями от PCH (Platform Controller Hub), в то время как Skylake обладает только 20-ю линиями.

Я напомню, что процессоры на сокете LGA1150 использовали системную шину DMI 2.0, в то время как начиная со Skylake с разъема LGA1150 стала применяться шина DMI 3.0, имеющая пропускную способность 8 Гигатранзакций в секунду (32 Гбит/с или 4 ГБ/с в каждом направлении). DMI 3.0, по сути, является эквивалентом четырем линиями PCIe 3.0. Все данные с интерфейсов ввода-вывода, включая USB флеш-накопители, SATA SSD и гигабитную сеть Ethernet, проходят сначала через PCH, и уже потом через DMI попадают в системную память, после чего достигают ЦП. Строго говоря, шина DMI 3.0 никогда не загружается на полную, однако при наличии большого числа быстрой периферии типа массива SSD, она имеет смысл. Интересно, что бюджетные чипсеты как 100-го, так и 200-го семейства (например, H110 и С226) использовали DMI 2.0, в то время как более производительные чипсеты в то же время используют DMI 3.0.

Топовый чипсет 100-го семейства Z170 имеет в общей сложности 26 линий шины HSIO (High-Speed Input-Output), шесть из которых выделены под шесть постоянных портов USB 3.0. Таким образом, на чипсете остается 20 конфигурируемых линий HSIO, которые можно назначить для работы с тем или иным устройством или шиной. Каждый порт SATA также использует линию HSIO, если он не подключен через сторонний контроллер (хотя контроллеру также нужна, по крайней мере, одна линия для связи с PCH). На схеме видно, что контроллеры GbE и SSD с интерфейсом PCIe также используют доступные линии HSIO.

А вот скромный чипсет H110 начального уровня использует только 14 линий HSIO. Lkя интересующихся тонкостями того, как производитель вводит нас в заблуждение, я приведу сводную таблицу, описывающую реальное число линий, которые позволяют подключить то или иное число периферии. Именно с этим числом может играть производитель материнских плат, устанавливая то или иное количество нужным ему интерфейсов.

Так выглядит структурная схема топового чипсета Intel Z270 :

Kaby Lake процессоры также обладают широким диапазоном требований по теплоотводу, варьирующимся от 3.5Вт и до 95 Вт . Среди общих характеристик, можно выделить поддержку до 4-х ядер в главных процессорах, кеш-память L4 от 64 до 128 Мб. Это самая масштабируемая линейка процессоров за 10 лет, отсюда и множественные индексы в названиях процессоров – Y (ультранизкое энергопотребление 4,5 Вт), U (15 Вт), H и S (десктопные процессоры).

С точки зрения главных фишек для пользователя наиболее значительно, что обновленный графический чип поддерживает аппаратное кодирование и декодирование 4K видео. Для этого применяется кодек HEVC (High Efficiency Video Coding – H.265). Кодек HEVC при высоком качестве изображения позволяет менять на ходу и уменьшить битрейт, а соответственно, и размер файла. Экономия места в сравнении со стандартом H.264 может достигать 25-50% при сохранении качества, кроме того он поддерживает параллельное кодирование! Вычисления на себя берет GPU, что разгружает основное ядро, чем страдал Skylake. Это же привело и к увеличению времени автономной работы.

В целом же производительность во всех остальных приложениях осталось почти прежней: прирост составил несколько процентов за счет увеличения базовой частоты моделей на 100 МГц. Здесь также слегка обновлена технология Turbo Boost.

Turbo Boost - технология компании Intel для автоматического увеличения тактовой частоты процессора свыше номинальной, если при этом не превышаются ограничения мощности, температуры и тока в составе расчетной мощности (TDP). Это приводит к увеличению производительности однопоточных и многопоточных приложений. Фактически, это технология «саморазгона» процессора. Доступность технологии Turbo Boost зависит от наличия одного или нескольких ядер, работающих с мощностью ниже расчетной. Время работы системы в режиме Turbo Boost зависит от рабочей нагрузки. Включается и выключается эта опция через BIOS.

Так вот, Turbo Boost в Kaby Lake усовершенствована за счет более быстрого переключения между частотами ядер.

В 7-ом поколении Intel решила поменять названия моделей процессоров, и если в линейке Skylake у нас были три модели с именами m3, m5 и m7, то Kaby Lake назвала свои модели m3, i5 и i7. Теперь, чтобы не ввести себя в заблуждение, и разобраться, какие перед вами i5 и i7 процессоры – маломощные Kaby Lake или же более мощные Skylake — придется обращать внимание на полное название процессора. Модели «m» содержат букву «Y» в своем названии, тогда как у более мощных процессоров вместо нее будет присутствовать буква «U».

Thunderbolt 3 – раскат грома в платформостроении

Внедрение Thunderbolt 3 на уровне чипсета в Kaby Lake стало важной вехой в развитии интересов и платформостроении. Это до сих пор пока еще странная и малопонятная вещь, которая имеет большие перспективы на рынке. Это универсальный интерфейс, который в себе объединяет совершенно различные порты в одно единое целое. В основе его лежит шина PCI Express, которая и позволяет перекоммутировать все современные последовательные интерфейсы между собой.

Контроллер Thunderbolt 3 обеспечивает подключение со скоростью до 40 Гбит, удвоив скорость предыдущего поколения, он же поддерживает USB 3.1 второго поколения (Gen2) на 10 Гб/с (а не 5 Гб/с как у Skylake) и DisplayPort 1.2, HDMI 2.0, что позволяет подключить два 4К дисплея, выводить видео и аудио сигналы одновременно. Кроме того, Thunderbolt 3 обратно совместим с Thunderbolt 2. Сам же интерфейс Thunderbolt 3 использует разъем на базе USB Type-C как основной.

Вы, наверное, обратили внимание, что многие ноутбуки с 2016 года имеют многие из этих интерфейсов сразу на борту, а заявленная поддержка USB 3.1 как раз реализована новыми портами USB Type-C. Через этот порт, например, происходит, и зарядка планшетных компьютеров, и подключение док-станций, имеющих и видео, и аудио интерфейсы в одном. Так, например, таблетка HP Elite x2 1012 имеет два порта USB-C, к которым подключается док Elite USB-C dock, а все дисплеи, локальная сеть и аудиоустройства уже подключаются к доку. USB Type-C позволяет заряжать ваши устройства до 100 Вт, которых достаточно для зарядки большинства ноутбуков. Это значит, что вы можете использовать один кабель с разъемом USB Type-C для передачи данных в тот момент, когда вы заряжаете его.

На USB Type-C перешла и компания Apple, оставив только такие порты на своих MacBook. Кстати, MacBook 2016 года как раз целиком выполнен на Kaby Lake. Помимо ноутбков MacBook Pro, многие ноутбуки ведущих брендов поддерживают Thunderbolt 3: ASUS Transformer 3 и Transformer 3 Pro, Alienware 13, Dell XPS 13, HP Elite X2 и Folio, HP Spectre и Spectre x360, Razer Blade Stealth, Lenovo ThinkPad Y900, а также ещё несколько десятков других с портами Thunderbolt 3.

Однако нужно понимать, что не все USB Type-C порты поддерживают Thunderbolt 3 – это могут быть и обычные контроллеры USB 3.1. Электрически они совместимы, но функции Thunderbolt контроллера работать не будут. Это означает, что Thunderbolt устройство можно подключить в обычный порт USB-C и наоборот, работать они будут только как обычный USB порт для передачи данных.

Thunderbolt 3 также поддерживает функции безопасности портов, защищая от подключения неавторизованных устройств. Эти функции заложены в прошивке BIOS, однако их можно отключить. Можно настроить различные политики безопасности портов – блокировать порты, спрашивать пользователя при подключении нового устройства, или же подключать без лишних вопросов.

Подводя итоги тому, что мы сейчас имеем на рынке – это весьма удачные с точки зрения графического ядра и тепловыделения процессоры Kaby Lake, можно сказать, идеальные для ноутбуков различного класса, но не сильно отличающиеся по производительности от предшественников. В целом, для тех, кому все перечисленные выше фишки не нужны, и кто пользуется внешней видеокартой, данная покупка в плане апгрейда не имеет смысла.

8 поколение – Озеро Кофе

Текущий 2017 год получился очень насыщенным в процессорном мире. AMD выпустила очень удачные процессоры Ryzen и Threadripper , которые наконец пришлись ко двору, так сказать, в нужное время и за нужную цену, отчего они стали так популярны среди простых покупателей. Intel же, выпустила Core X с 14, 16 и даже 18 ядрами так сказать, с прицелом на будущее. Но мы ждем чуда – реализации продолжения закона Мура, то есть перехода на 10 нанометровый техпроцесс. И это опять не произошло.

Хорошо это или плохо? Наверное, с маркетинговой точки зрения, это грамотный шаг, оставить новый техпроцесс про запас, на вырост. Но что-то же надо выпустить. И Intel выстрелила – наконец, впервые, последовав идеологии AMD, пошли на увеличение числа ядер. И теперь у Core i7 6 ядер/12 потоков, у Core i5 их также 6, а у i3 теперь 4 полноценных ядра, теперь он вообще как целый i5 раньше!

Итак, новый топовый Intel Core i7-8700 имеет в два раза больше ядер на одном кристалле, что стало возможным за счет очередной оптимизации компоновки ядра, более равномерного расположения транзисторов по кристаллу. Площадь кристалла увеличилась на 16% до 150 мм 2 . Чуть-чуть вырос кэш L1, кэш L2 стал 1,5 Мбайт, а L3 – 12 Мбайт. Эти изменения логичны для обслуживания вычислительной работы ядер. Однако, это все меньше, чем у Ryzen, у которых 4 и 16 Мбайт кэши второго и третьего уровня соответственно при значительно меньшей цене. Хотя это ни о чем напрямую не говорит, ведь эффективность работы с кэшем зависит от длины конвейера и точности попадания при ветвлениях. Но потенциально это проигрыш.

Новый процессор теперь поддерживает только память DDR4, а встроенный контроллер памяти увеличил частот до 2666 МГц, что является рекордом работы с памятью. Уровень TDP увеличился с 91 до 95 Вт в режиме без разгона и до 145 Вт в турборежиме, что потребует очень хорошей системы охлаждения. Частота поднята за счет высокого множителя – максимальный множительный частоты шины – 43x.

Несмотря на то, что количество потоков увеличилось до 12 за счет Hyper-Threading, количество инструкций выполняемых за такт (IPC) осталось таким же, как и у Skylake и Kaby Lake. А это означает, что архитектура вычислительного устройства (ALU), конвейера и блока предвыборки инструкций не изменилась. Иначе говоря, это та же архитектура с тем же набором инструкций.

Графическое ядро не изменилось — Intel UHD Graphics 630 , однако слегка увеличена частота GPU. Структурно там все также 24 вычислительных блока. Графика занимает примерно треть всего кристалла.

Что стало неприятной, но ожидаемой новостью – это то, что новые процессоры не смогут работать со старыми чипсетами. И дело даже не разъеме – будет использоваться прежний LGA1151 . Дело в том, что из-за новой компоновки ядра, изменится и обвязка питания кристалла, что приводит к иной распиновке выводов. Появилось большее число выводов Vcc (питание) и Vss (заземление). Как результат, Intel следом представила и 300-е семейство чипсетов, топовая модель которого – Z370 . На удивление, Z370 ничем не отличается от предшественника Z270, даже имея USB 3.1 первого поколения. Все это в купе создает не слишком приятное впечатление о новинке.

Пожалуй, самая лучшая новость заключается в том, что некогда младшенький Core i3 стал, наконец, полноценным четырехядерным процессором. Вероятнее всего, он и получит наибольшую популярность в своем сегменте.

Говоря о производительности, можно констатировать, что отличия по сравнению с предыдущим поколением по большей части будут заметны только при работе с видео (особенно 4К до 30%), графикой (в Adobe Photoshop до 60%) и играх (до 25%). Средневзвешенная производительность увеличится не более чем на 15%.

ВведениеЭтим летом компания Intel совершила странное: она умудрилась сменить целых два поколения процессоров, ориентированных на общеупотребительные персональные компьютеры. Сначала на смену Haswell пришли процессоры с микроархитектурой Broadwell, но затем в течение буквально пары месяцев они утратили свой статус новинки и уступили место процессорам Skylake, которые будут оставаться наиболее прогрессивными CPU как минимум ещё года полтора. Такая чехарда со сменой поколений произошла главным образом в связи с проблемами Intel, возникшими при внедрении нового 14-нм техпроцесса, который применяется при производстве и Broadwell, и Skylake. Производительные носители микроархитектуры Broadwell по пути в настольные системы сильно задержались, а их последователи вышли по заранее намеченному графику, что привело к скомканности анонса процессоров Core пятого поколения и серьёзному сокращению их жизненного цикла. В результате всех этих пертурбаций, в десктопном сегменте Broadwell заняли совсем узкую нишу экономичных процессоров с мощным графическим ядром и довольствуются теперь лишь небольшим уровнем продаж, свойственным узкоспециализированным продуктам. Внимание же передовой части пользователей переключилось на последователей Broadwell – процессоры Skylake.

Надо заметить, что в последние несколько лет компания Intel совсем не радует своих поклонников ростом производительности предлагаемых продуктов. Каждое новое поколение процессоров прибавляет в удельном быстродействии лишь по несколько процентов, что в конечном итоге приводит к отсутствию у пользователей явных стимулов к модернизации старых систем. Но выход Skylake – поколения CPU, по пути к которому Intel, фактически, перепрыгнула через ступеньку – внушал определённые надежды на то, что мы получим действительно стоящее обновление самой распространённой вычислительной платформы. Однако, ничего подобного так и не случилось: Intel выступила в своём привычном репертуаре. Broadwell был представлен общественности в качестве некого ответвления от основной линии процессоров для настольных систем, а Skylake оказались быстрее Haswell в большинстве приложений совсем незначительно .

Поэтому несмотря на все ожидания, появление Skylake в продаже вызвало у многих скептическое отношение. Ознакомившись с результатами реальных тестов, многие покупатели попросту не увидели реального смысла в переходе на процессоры Core шестого поколения. И действительно, главным козырем свежих CPU выступает прежде всего новая платформа с ускоренными внутренними интерфейсами, но не новая процессорная микроархитектура. И это значит, что реальных стимулов к обновлению основанных систем прошлых поколений Skylake предлагает немного.

Впрочем, мы бы всё-таки не стали отговаривать от перехода Skylake всех без исключения пользователей. Дело в том, что пусть Intel и наращивает производительность своих процессоров очень сдержанными темпами, с момента появления Sandy Bridge, которые всё ещё трудятся во многих системах, сменилось уже четыре поколения микроархитектуры. Каждый шаг по пути прогресса вносил свой вклад в увеличение производительности, и к сегодняшнему дню Skylake способен предложить достаточно существенный прирост в производительности по сравнению со своими более ранними предшественниками. Только чтобы увидеть это, сравнивать его надо не с Haswell, а с более ранними представителями семейства Core, появившимися до него.

Собственно, именно таким сравнением мы сегодня и займёмся. Учитывая всё сказанное, мы решили посмотреть, насколько выросла производительность процессоров Core i7 с 2011 года, и собрали в едином тесте старшие Core i7, относящиеся к поколениям Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake. Получив же результаты такого тестирования, мы постараемся понять, обладателям каких процессоров целесообразно затевать модернизацию старых систем, а кто из них может повременить до появления последующих поколений CPU. Попутно мы посмотрим и на уровень производительности новых процессоров Core i7-5775C и Core i7-6700K поколений Broadwell и Skylake, которые до настоящего момента в нашей лаборатории ещё не тестировались.

Сравнительные характеристики протестированных CPU

От Sandy Bridge до Skylake: сравнение удельной производительности

Для того, чтобы вспомнить, как же менялась удельная производительность интеловских процессоров в течение последней пятилетки, мы решили начать с простого теста, в котором сопоставили скорость работы Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake, приведённых к одной и той же частоте 4,0 ГГц. В этом сравнении нами были использованы процессоры линейки Core i7, то есть, четырёхъядерники, обладающие технологией Hyper-Threading.

В качестве основного тестового инструмента был взят комплексный тест SYSmark 2014 1.5, который хорош тем, что воспроизводит типичную пользовательскую активность в общеупотребительных приложениях офисного характера, при создании и обработке мультимедийного контента и при решении вычислительных задач. На следующих графиках отображены полученные результаты. Для удобства восприятия они нормированы, за 100 процентов принята производительность Sandy Bridge.



Интегральный показатель SYSmark 2014 1.5 позволяет сделать следующие наблюдения. Переход от Sandy Bridge к Ivy Bridge увеличил удельную производительность совсем незначительно – примерно на 3-4 процента. Дальнейший шаг к Haswell оказался гораздо более результативным, он вылился в 12-процентное улучшение производительности. И это – максимальный прирост, который можно наблюдать на приведённом графике. Ведь дальше Broadwell обгоняет Haswell всего лишь на 7 процентов, а переход от Broadwell к Skylake и вовсе наращивает удельную производительность лишь на 1-2 процента. Весь же прогресс от Sandy Bridge до Skylake выливается в 26-процентное увеличение производительности при постоянстве тактовых частот.

Более подробную расшифровку полученных показателей SYSmark 2014 1.5 можно посмотреть на трёх следующих графиках, где интегральный индекс производительности разложен по составляющим по типу приложений.









Обратите внимание, наиболее заметно с вводом новых версий микроархитектур прибавляют в скорости исполнения мультимедийные приложения. В них микроархитектура Skylake превосходит Sandy Bridge на целых 33 процента. А вот в счётных задачах, напротив, прогресс проявляется меньше всего. И более того, при такой нагрузке шаг от Broadwell к Skylake даже оборачивается небольшим снижением удельной производительности.

Теперь, когда мы представляем себе, что же происходило с удельной производительностью процессоров Intel в течение последних нескольких лет, давайте попробуем разобраться, чем наблюдаемые изменения были обусловлены.

От Sandy Bridge до Skylake: что изменилось в процессорах Intel

Сделать точкой отсчёта в сравнении разных Core i7 представителя поколения Sandy Bridge мы решили не просто так. Именно данный дизайн подвёл крепкий фундамент под всё дальнейшее совершенствование производительных интеловских процессоров вплоть до сегодняшних Skylake. Так, представители семейства Sandy Bridge стали первыми высокоинтегрированными CPU, в которых в одном полупроводниковом кристалле были собраны и вычислительные, и графическое ядра, а также северный мост с L3-кешем и контроллером памяти. Кроме того, в них впервые стала использоваться внутренняя кольцевая шина, посредством которой была решена задача высокоэффективного взаимодействия всех структурных единиц, составляющих столь сложный процессор. Этим заложенным в микроархитектуре Sandy Bridge универсальным принципам построения продолжают следовать все последующие поколения CPU без каких бы то ни было серьёзных корректив.

Немалые изменения в Sandy Bridge претерпела внутренняя микроархитектура вычислительных ядер. В ней не только была реализована поддержка новых наборов команд AES-NI и AVX, но и нашли применение многочисленные крупные улучшения в недрах исполнительного конвейера. Именно в Sandy Bridge был добавлен отдельный кеш нулевого уровня для декодированных инструкций; появился абсолютно новый блок переупорядочивания команд, основанный на использовании физического регистрового файла; были заметно улучшены алгоритмы предсказания ветвлений; а кроме того, два из трёх исполнительных порта для работы с данными стали унифицированными. Такие разнородные реформы, проведённые сразу на всех этапах конвейера, позволили серьёзно увеличить удельную производительность Sandy Bridge, которая по сравнению с процессорами предыдущего поколения Nehalem сразу выросла почти на 15 процентов. К этому добавился 15-процентный рост номинальных тактовых частот и отличный разгонный потенциал, в результате чего в сумме получилось семейство процессоров, которое до сих пор ставится в пример Intel, как образцовое воплощение фазы «так» в принятой в компании маятниковой концепции разработки.

И правда, подобных по массовости и действенности улучшений в микроархитектуре после Sandy Bridge мы уже не видели. Все последующие поколения процессорных дизайнов проводят куда менее масштабные усовершенствования в вычислительных ядрах. Возможно, это является отражением отсутствия реальной конкуренции на процессорном рынке, возможно причина замедления прогресса кроется в желании Intel сосредоточить усилия на совершенствовании графических ядер, а может быть Sandy Bridge просто оказался настолько удачным проектом, что его дальнейшее развитие требует слишком больших трудозатрат.

Отлично иллюстрирует произошедший спад интенсивности инноваций переход от Sandy Bridge к Ivy Bridge. Несмотря на то, что следующее за Sandy Bridge поколение процессоров и было переведено на новую производственную технологию с 22-нм нормами, его тактовые частоты совсем не выросли. Сделанные же улучшения в дизайне в основном коснулись ставшего более гибким контроллера памяти и контроллера шины PCI Express, который получил совместимость с третьей версией данного стандарта. Что же касается непосредственно микроархитектуры вычислительных ядер, то отдельные косметические переделки позволили добиться ускорения выполнения операций деления и небольшого увеличения эффективности технологии Hyper-Threading, да и только. В результате, рост удельной производительности составил не более 5 процентов.

Вместе с тем, внедрение Ivy Bridge принесло и то, о чём теперь горько жалеет миллионная армия оверклокеров. Начиная с процессоров этого поколения, Intel отказалась от сопряжения полупроводникового кристалла CPU и закрывающей его крышки посредством бесфлюсовой пайки и перешла на заполнение пространства между ними полимерным термоинтерфейсным материалом с очень сомнительными теплопроводящими свойствами. Это искусственно ухудшило частотный потенциал и сделало процессоры Ivy Bridge, как и всех их последователей, заметно менее разгоняемыми по сравнению с очень бодрыми в этом плане «старичками» Sandy Bridge.

Впрочем, Ivy Bridge – это всего лишь «тик», а потому особых прорывов в этих процессорах никто и не обещал. Однако никакого воодушевляющего роста производительности не принесло и следующее поколение, Haswell, которое, в отличие от Ivy Bridge, относится уже к фазе «так». И это на самом деле немного странно, поскольку различных улучшений в микроархитектуре Haswell сделано немало, причём они рассредоточены по разным частям исполнительного конвейера, что в сумме вполне могло бы увеличить общий темп исполнения команд.

Например, во входной части конвейера была улучшена результативность предсказания переходов, а очередь декодированных инструкций стала делиться между параллельными потоками, сосуществующими в рамках технологии Hyper-Threading, динамически. Попутно произошло увеличение окна внеочередного исполнения команд, что в сумме должно было поднять долю параллельно выполняемого процессором кода. Непосредственно в исполнительном блоке были добавлены два дополнительных функциональных порта, нацеленных на обработку целочисленных команд, обслуживание ветвлений и сохранение данных. Благодаря этому Haswell стал способен обрабатывать до восьми микроопераций за такт – на треть больше предшественников. Более того, новая микроархитектура удвоила и пропускную способность кеш-памяти первого и второго уровней.

Таким образом, улучшения в микроархитектуре Haswell не затронули лишь скорость работы декодера, который, похоже, на данный момент стал самым узким местом в современных процессорах Core. Ведь несмотря на внушительный список улучшений, прирост удельной производительности у Haswell по сравнению с Ivy Bridge составил лишь около 5-10 процентов. Но справедливости ради нужно оговориться, что на векторных операциях ускорение заметно гораздо сильнее. А наибольший выигрыш можно увидеть в приложениях, использующих новые AVX2 и FMA-команды, поддержка которых также появилась в этой микроархитектуре.

Процессоры Haswell, как и Ivy Bridge, сперва тоже не особенно понравились энтузиастам. Особенно если учесть тот факт, что в первоначальной версии никакого увеличения тактовых частот они не предложили. Однако спустя год после своего дебюта Haswell стали казаться заметно привлекательнее. Во-первых, увеличилось количество приложений, обращающихся к наиболее сильным сторонам этой архитектуры и использующих векторные инструкции. Во-вторых, Intel смогла исправить ситуацию с частотами. Более поздние модификации Haswell, получившие собственное кодовое наименование Devil’s Canyon, смогли нарастить преимущество над предшественниками благодаря увеличению тактовой частоты, которая, наконец, пробила 4-гигагерцовый потолок. Кроме того, идя на поводу у оверклокеров, Intel улучшила полимерный термоинтерфейс под процессорной крышкой, что сделало Devil’s Canyon более подходящими объектами для разгона. Конечно, не такими податливыми, как Sandy Bridge, но тем не менее.

И вот с таким багажом Intel подошла к Broadwell. Поскольку основной ключевой особенностью этих процессоров должна была стать новая технология производства с 14-нм нормами, никаких значительных нововведений в их микроархитектуре не планировалось – это должен был быть почти самый банальный «тик». Всё необходимое для успеха новинок вполне мог бы обеспечить один только тонкий техпроцесс с FinFET-транзисторами второго поколения, в теории позволяющий уменьшить энергопотребление и поднять частоты. Однако практическое внедрение новой технологии обернулось чередой неудач, в результате которых Broadwell досталась лишь экономичность, но не высокие частоты. В итоге те процессоры этого поколения, которые Intel представила для настольных систем, вышли больше похожими на мобильные CPU, чем на продолжателей дела Devil’s Canyon. Тем более, что кроме урезанных тепловых пакетов и откатившихся частот они отличаются от предшественников и уменьшившимся в объёме L3-кешем, что, правда, несколько компенсируется появлением расположенного на отдельном кристалле кэша четвёртого уровня.

На одинаковой с Haswell частоте процессоры Broadwell демонстрируют примерно 7-процентное преимущество, обеспечиваемое как добавлением дополнительного уровня кеширования данных, так и очередным улучшением алгоритма предсказания ветвлений вместе с увеличением основных внутренних буферов. Кроме того, в Broadwell реализованы новые и более быстрые схемы выполнения инструкций умножения и деления. Однако все эти небольшие улучшения перечёркиваются фиаско с тактовыми частотами, относящими нас в эпоху до Sandy Bridge. Так, например, старший оверклокерский Core i7-5775C поколения Broadwell уступает по частоте Core i7-4790K целых 700 МГц. Понятно, что ожидать какого-то роста производительности на этом фоне бессмысленно, лишь бы обошлось без её серьёзного падения.

Во многом именно из-за этого Broadwell и оказался непривлекательным для основной массы пользователей. Да, процессоры этого семейства отличаются высокой экономичностью и даже вписываются в тепловой пакет с 65-ваттными рамками, но кого это, по большому счёту, волнует? Разгонный же потенциал первого поколения 14-нм CPU оказался достаточно сдержанным. Ни о какой работе на частотах, приближающихся к 5-гигагерцовой планке речь не идёт. Максимум, которого можно добиться от Broadwell при использовании воздушного охлаждения пролегает в окрестности величины 4,2 ГГц. Иными словами, пятое поколение Core вышло у Intel, как минимум, странноватым. О чём, кстати, микропроцессорный гигант в итоге и пожалел: представители Intel отмечают, что поздний выход Broadwell для настольных компьютеров, его сокращённый жизненный цикл и нетипичные характеристики отрицательно сказались на уровне продаж, и больше компания на подобные эксперименты пускаться не планирует.

Новейший же Skylake на этом фоне представляется не столько как дальнейшее развитие интеловской микроархитектуры, сколько своего рода работа над ошибками. Несмотря на то, что при производстве этого поколения CPU используется тот же 14-нм техпроцесс, что и в случае Broadwell, никаких проблем с работой на высоких частотах у Skylake нет. Номинальные частоты процессоров Core шестого поколения вернулись к тем показателям, которые были свойственны их 22-нм предшественникам, а разгонный потенциал даже немного увеличился. На руку оверклокерам здесь сыграл тот факт, что в Skylake конвертер питания процессора вновь перекочевал на материнскую плату и снизил тем самым суммарное тепловыделение CPU при разгоне. Жаль только, что Intel так и не вернулась к использованию эффективного термоинтерфейса между кристаллом и процессорной крышкой.

Но вот что касается базовой микроархитектуры вычислительных ядер, то несмотря на то, что Skylake, как и Haswell, представляет собой воплощение фазы «так», нововведений в ней совсем немного. Причём большинство из них направлено на расширение входной части исполнительного конвейера, остальные же части конвейера остались без каких-либо существенных изменений. Перемены касаются улучшения результативности предсказания ветвлений и повышения эффективности блока предварительной выборки, да и только. При этом часть оптимизаций служит не столько для улучшения производительности, сколько направлена на очередное повышение энергоэффективности. Поэтому удивляться тому, что Skylake по своей удельной производительности почти не отличается от Broadwell, не следует.

Впрочем, существуют и исключения: в отдельных случаях Skylake могут превосходить предшественников в производительности и более заметно. Дело в том, что в этой микроархитектуре была усовершенствована подсистема памяти. Внутрипроцессорная кольцевая шина стала быстрее, и это в конечном итоге расширило полосу пропускания L3-кэша. Плюс к этому контроллер памяти получил поддержку работающей на высоких частотах памяти стандарта DDR4 SDRAM.

Но в итоге тем не менее получается, что бы там не говорила Intel о прогрессивности Skylake, с точки зрения обычных пользователей это – достаточно слабое обновление. Основные улучшения в Skylake сделаны в графическом ядре и в энергоэффективности, что открывает перед такими CPU путь в безвентиляторные системы планшетного форм-фактора. Десктопные же представители этого поколения отличаются от тех же Haswell не слишком заметно. Даже если закрыть глаза на существование промежуточного поколения Broadwell, и сопоставлять Skylake напрямую с Haswell, то наблюдаемый рост удельной производительности составит порядка 7-8 процентов, что вряд ли можно назвать впечатляющим проявлением технического прогресса.

Попутно стоит отметить, что не оправдывает ожиданий и совершенствование технологических производственных процессов. На пути от Sandy Bridge дo Skylake компания Intel сменила две полупроводниковых технологии и уменьшила толщину транзисторных затворов более чем вдвое. Однако современный 14-нм техпроцесс по сравнению с 32-нм технологией пятилетней давности так и не позволил нарастить рабочие частоты процессоров. Все процессоры Core последних пяти поколений имеют очень похожие тактовые частоты, которые если и превышают 4-гигагерцовую отметку, то совсем незначительно.

Для наглядной иллюстрации этого факта можно посмотреть на следующий график, на котором отображена тактовая частота старших оверклокерских процессоров Core i7 разных поколений.



Более того, пик тактовой частоты приходится даже не на Skylake. Максимальной частотой могут похвастать процессоры Haswell, относящиеся к подгруппе Devil’s Canyon. Их номинальная частота составляет 4,0 ГГц, но благодаря турбо-режиму в реальных условиях они способны разгоняться до 4,4 ГГц. Для современных же Skylake максимум частоты – всего лишь 4,2 ГГц.

Всё это, естественно, сказывается на итоговой производительности реальных представителей различных семейств CPU. И далее мы предлагаем посмотреть, как всё это отражается на быстродействии платформ, построенных на базе флагманских процессоров каждого из семейств Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake.

Как мы тестировали

В сравнении приняли участие пять процессоров Core i7 разных поколений: Core i7-2700K, Core i7-3770K, Core i7-4790K, Core i7-5775C и Core i7-6700K. Поэтому список комплектующих, задействованных в тестировании, получился достаточно обширным:

Процессоры:

Intel Core i7-2600K (Sandy Bridge, 4 ядра + HT, 3,4-3,8 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3,5-3,9 ГГц, 8 Мбайт L3);
Intel Core i7-4790K (Haswell Refresh, 4 ядра + HT, 4,0-4,4 ГГц, 8 Мбайт L3);
Intel Core i7-5775C (Broadwell, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, 128 Мбайт L4).
Intel Core i7-6700K (Skylake, 4 ядра, 4,0-4,2 ГГц, 8 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнские платы:

ASUS Z170 Pro Gaming (LGA 1151, Intel Z170);
ASUS Z97-Pro (LGA 1150, Intel Z97);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77).

Память:

2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
2x8 Гбайт DDR4-2666 SDRAM, 15-15-15-35 (Corsair Vengeance LPX CMK16GX4M2A2666C16R).

Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10240 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.1.1.8;
Intel Management Engine Interface Driver 11.0.0.1157;
NVIDIA GeForce 358.50 Driver.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. После выхода операционной системы Windows 10 этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014 1.5.



При сравнении Core i7 разных поколений, когда они работают в своих номинальных режимах, результаты получаются совсем не такие, как при сопоставлении на единой тактовой частоте. Всё-таки реальная частота и особенности работы турбо-режима оказывает достаточно существенное влияние на производительность. Например, согласно полученным данным, Core i7-6700K быстрее Core i7-5775C на целых 11 процентов, но при этом его преимущество над Core i7-4790K совсем незначительно – оно составляет всего лишь порядка 3 процентов. При этом нельзя обойти вниманием и то, что новейший Skylake оказывается существенно быстрее процессоров поколений Sandy Bridge и Ivy Bridge. Его преимущество над Core i7-2700K и Core i7-3770K достигает 33 и 28 процентов соответственно.

Более глубокое понимание результатов SYSmark 2014 1.5 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.



Результаты, полученные нами при различных сценариях нагрузки, качественно повторяют общие показатели SYSmark 2014 1.5. Обращает на себя внимание лишь тот факт, что процессор Core i7-4790K совсем не выглядит устаревшим. Он заметно проигрывает новейшему Core i7-6700K только в расчётном сценарии Data/Financial Analysis, а в остальных случаях либо уступает своему последователю на совсем малозаметную величину, либо вообще оказывается быстрее. Например, представитель семейства Haswell опережает новый Skylake в офисных приложениях. Но процессоры более старых годов выпуска, Core i7-2700K и Core i7-3770K, выглядят уже несколько устаревшими предложениями. Они проигрывают новинке в разных типах задач от 25 до 40 процентов, и это, пожалуй, является вполне достаточным основанием, чтобы Core i7-6700K можно было рассматривать в качестве достойной им замены.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.

Впрочем, в этом тестировании мы собрали мощную графическую подсистему, основанную на флагманской видеокарте NVIDIA GeForce GTX 980 Ti. И в результате в части игр частота кадров продемонстрировала зависимость от процессорной производительности даже в FullHD-разрешении.

Результаты в FullHD-разрешении с максимальными настройками качества


















Обычно влияние процессоров на игровую производительность, особенно если речь идёт о мощных представителях серии Core i7, оказывается незначительным. Однако при сопоставлении пяти Core i7 разных поколений результаты получаются совсем не однородными. Даже при установке максимальных настроек качества графики Core i7-6700K и Core i7-5775C демонстрируют наивысшую игровую производительность, в то время как более старые Core i7 от них отстают. Так, частота кадров, которая получена в системе с Core i7-6700K превышает производительность системы на базе Core i7-4770K на малозаметный один процент, но процессоры Core i7-2700K и Core i7-3770K представляются уже ощутимо худшей основой геймерской системы. Переход с Core i7-2700K или Core i7-3770K на новейший Core i7-6700K даёт прибавку в числе fps величиной в 5-7 процентов, что способно оказать вполне заметное влияние на качество игрового процесса.

Увидеть всё это гораздо нагляднее можно в том случае, если на игровую производительность процессоров посмотреть при сниженном качестве изображения, когда частота кадров не упирается в мощность графической подсистемы.

Результаты при сниженном разрешении


















Новейшему процессору Core i7-6700K вновь удаётся показать наивысшую производительность среди всех Core i7 последних поколений. Его превосходство над Core i7-5775C составляет порядка 5 процентов, а над Core i7-4690K – около 10 процентов. В этом нет ничего странного: игры достаточно чутко реагируют на скорость подсистемы памяти, а именно по этому направлению в Skylake были сделаны серьёзные улучшения. Но гораздо заметнее превосходство Core i7-6700K над Core i7-2700K и Core i7-3770K. Старший Sandy Bridge отстаёт от новинки на 30-35 процентов, а Ivy Bridge проигрывает ей в районе 20-30 процентов. Иными словами, как бы ни ругали Intel за слишком медленное совершенствование собственных процессоров, компания смогла за прошедшие пять лет на треть повысить скорость работы своих CPU, а это – очень даже ощутимый результат.

Тестирование в реальных играх завершают результаты популярного синтетического бенчмарка Futuremark 3DMark.









Вторят игровым показателям и те результаты, которые выдаёт Futuremark 3DMark. При переводе микроархитектуры процессоров Core i7 c Sandy Bridge на Ivy Bridge показатели 3DMark выросли на величину от 2 до 7 процентов. Внедрение дизайна Haswell и выпуск процессоров Devil’s Canyon добавил к производительности старших Core i7 дополнительные 7-14 процентов. Однако потом появление Core i7-5775C, обладающего сравнительно невысокой тактовой частотой, несколько откатило быстродействие назад. И новейшему Core i7-6700K, фактически, пришлось отдуваться сразу за два поколения микроархитектуры. Прирост в итоговом рейтинге 3DMark у нового процессора семейства Skylake по сравнению с Core i7-4790K составил до 7 процентов. И на самом деле это не так много: всё-таки самое заметное улучшение производительности за последние пять лет смогли привнести процессоры Haswell. Последние же поколения десктопных процессоров, действительно, несколько разочаровывают.

Тесты в приложениях

В Autodesk 3ds max 2016 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Hummer.



Ещё один тест финального рендеринга проводится нами с использованием популярного свободного пакета построения трёхмерной графики Blender 2.75a. В нём мы измеряем продолжительность построения финальной модели из Blender Cycles Benchmark rev4.



Для измерения скорости фотореалистичного трёхмерного рендеринга мы воспользовались тестом Cinebench R15. Maxon недавно обновила свой бенчмарк, и теперь он вновь позволяет оценить скорость работы различных платформ при рендеринге в актуальных версиях анимационного пакета Cinema 4D.



Производительность при работе веб-сайтов и интернет-приложений, построенных с использованием современных технологий, измеряется нами в новом браузере Microsoft Edge 20.10240.16384.0. Для этого применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.



Тестирование производительности при обработке графических изображений происходит в Adobe Photoshop CC 2015. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



По многочисленным просьбам фотолюбителей мы провели тестирование производительности в графической программе Adobe Photoshop Lightroom 6.1. Тестовый сценарий включает пост-обработку и экспорт в JPEG с разрешением 1920x1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.



В Adobe Premiere Pro CC 2015 тестируется производительность при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.3, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 используется тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2538, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Кроме того, мы добавили в список тестовых приложений и новый кодер x265, предназначенный для транскодирования видео в перспективный формат H.265/HEVC, который является логическим продолжением H.264 и характеризуется более эффективными алгоритмами сжатия. Для оценки производительности используется исходный 1080p@50FPS Y4M-видеофайл, который перекодируется в формат H.265 с профилем medium. В этом тестировании принял участие релиз кодера версии 1.7.



Преимущество Core i7-6700K над ранними предшественниками в различных приложениях не подлежит сомнению. Однако больше всего выиграли от произошедшей эволюции два типа задач. Во-первых, связанные с обработкой мультимедийного контента, будь то видео или изображения. Во-вторых, финальный рендеринг в пакетах трёхмерного моделирования и проектирования. В целом, в таких случаях Core i7-6700K превосходит Core i7-2700K не менее, чем на 40-50 процентов. А иногда можно наблюдать и гораздо более впечатляющее улучшение скорости. Так, при перекодировании видео кодеком x265 новейший Core i7-6700K выдаёт ровно вдвое более высокую производительность, чем старичок Core i7-2700K.

Если же говорить о том приросте в скорости выполнения ресурсоёмких задач, которую может обеспечить Core i7-6700K по сравнению с Core i7-4790K, то тут уже столь впечатляющих иллюстраций к результатам работы интеловских инженеров привести нельзя. Максимальное преимущество новинки наблюдается в Lightroom, здесь Skylake оказался лучше в полтора раза. Но это скорее – исключение из правила. В большинстве же мультимедийных задач Core i7-6700K по сравнению с Core i7-4790K предлагает лишь 10-процентное улучшение производительности. А при нагрузке иного характера разница в быстродействии и того меньше или же вообще отсутствует.

Отдельно нужно сказать пару слов и о результате, показанном Core i7-5775C. Из-за небольшой тактовой частоты этот процессор медленнее, чем Core i7-4790K и Core i7-6700K. Но не стоит забывать о том, что его ключевой характеристикой является экономичность. И он вполне способен стать одним из лучших вариантов с точки зрения удельной производительности на каждый ватт затраченной электроэнергии. В этом мы легко убедимся в следующем разделе.

Энергопотребление

Процессоры Skylake производятся по современному 14-нм технологическому процессу с трёхмерными транзисторами второго поколения, однако, несмотря на это, их тепловой пакет вырос до 91 Вт. Иными словами, новые CPU не только «горячее» 65-ваттных Broadwell, но и превосходят по расчётному тепловыделению Haswell, выпускаемые по 22-нм технологии и уживающиеся в рамках 88-ваттного теплового пакета. Причина, очевидно, состоит в том, что изначально архитектура Skylake оптимизировалась с прицелом не на высокие частоты, а на энергоэффективность и возможность использования в мобильных устройствах. Поэтому для того, чтобы десктопные Skylake получили приемлемые тактовые частоты, лежащие в окрестности 4-гигагерцевой отметки, пришлось задирать напряжение питания, что неминуемо отразилось на энергопотреблении и тепловыделении.

Впрочем, процессоры Broadwell низкими рабочими напряжениями тоже не отличались, поэтому существует надежда на то, что 91-ваттный тепловой пакет Skylake получили по каким-то формальным обстоятельствам и, на самом деле, они окажутся не прожорливее предшественников. Проверим!

Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для измерений. На следующем ниже графике приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся энергосберегающие технологии.



В состоянии простоя качественный скачок в экономичности настольных платформ произошёл с выходом Broadwell. Core i7-5775C и Core i7-6700K отличаются заметно более низким потреблением в простое.



Зато под нагрузкой в виде перекодирования видео самыми экономичными вариантами CPU оказываются Core i7-5775C и Core i7-3770K. Новейший же Core i7-6700K потребляет больше. Его энергетические аппетиты находятся на уровне старшего Sandy Bridge. Правда, в новинке, в отличие от Sandy Bridge, есть поддержка инструкций AVX2, которые требуют достаточно серьёзных энергетических затрат.

На следующей диаграмме приводится максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, которая базируется на пакете Linpack, отличающемся непомерными энергетическими аппетитами.



И вновь процессор поколения Broadwell показывает чудеса энергетической эффективности. Однако если смотреть на то, сколько электроэнергии потребляет Core i7-6700K, то становится понятно, что прогресс в микроархитектурах обошёл стороной энергетическую эффективность настольных CPU. Да, в мобильном сегменте с выходом Skylake появились новые предложения с чрезвычайно соблазнительным соотношением производительности и энергопотребления, однако новейшие процессоры для десктопов продолжают потреблять примерно столько же, сколько потребляли их предшественники за пять лет до сегодняшнего дня.

Выводы

Проведя тестирование новейшего Core i7-6700K и сравнив его с несколькими поколениями предшествующих CPU, мы вновь приходим к неутешительному выводу о том, что компания Intel продолжает следовать своим негласным принципам и не слишком стремится наращивать быстродействие десктопных процессоров, ориентированных на высокопроизводительные системы. И если по сравнению со старшим Broadwell новинка предлагает примерно 15-процентное улучшение производительности, обусловленное существенно лучшими тактовыми частотами, то в сравнении с более старым, но более быстрым Haswell она уже не кажется столь же прогрессивной. Разница в производительности Core i7-6700K и Core i7-4790K, несмотря на то, что эти процессоры разделяет два поколения микроархитектуры, не превышает 5-10 процентов. И это очень мало для того, чтобы старший десктопный Skylake можно было бы однозначно рекомендовать для обновления имеющихся LGA 1150-систем.

Впрочем, к столь незначительным шагам Intel в деле повышения скорости работы процессоров для настольных систем стоило бы давно привыкнуть. Прирост быстродействия новых решений, лежащий примерно в таких пределах, – давно сложившаяся традиция. Никаких революционных изменений в вычислительной производительности интеловских CPU, ориентированных на настольные ПК, не происходит уже очень давно. И причины этого вполне понятны: инженеры компании заняты оптимизацией разрабатываемых микроархитектур для мобильных применений и в первую очередь думают об энергоэффективности. Успехи Intel в адаптации собственных архитектур для использования в тонких и лёгких устройствах несомненны, но адептам классических десктопов при этом только и остаётся, что довольствоваться небольшими прибавками быстродействия, которые, к счастью, пока ещё не совсем сошли на нет.

Однако это совсем не значит, что Core i7-6700K можно рекомендовать лишь для новых систем. Задуматься о модернизации своих компьютеров вполне могут обладатели конфигураций, в основе которых лежит платформа LGA 1155 с процессорами поколений Sandy Bridge и Ivy Bridge. В сравнении с Core i7-2700K и Core i7-3770K новый Core i7-6700K выглядит очень неплохо – его средневзвешенное превосходство над такими предшественниками оценивается в 30-40 процентов. Кроме того, процессоры с микроархитектурой Skylake могут похвастать поддержкой набора инструкций AVX2, который к настоящему моменту нашел достаточно широкое применение в мультимедийных приложениях, и благодаря этому в некоторых случаях Core i7-6700K оказывается быстрее гораздо сильнее. Так, при перекодировании видео мы даже видели случаи, когда Core i7-6700K превосходил Core i7-2700K в скорости работы более чем в два раза!

Есть у процессоров Skylake и целый ряд других преимуществ, связанных с внедрением сопутствующей им новой платформы LGA 1151. И дело даже не столько в появившейся в ней поддержке DDR4-памяти, сколько в том, что новые наборы логики сотой серии наконец-то получили действительно скоростное соединение с процессором и поддержку большого количества линий PCI Express 3.0. В результате, передовые LGA 1151-системы могут похвастать наличием многочисленных быстрых интерфейсов для подключения накопителей и внешних устройств, которые лишены каких-либо искусственных ограничений по пропускной способности.

Плюс к тому, оценивая перспективы платформы LGA 1151 и процессоров Skylake, в виду нужно иметь и ещё один момент. Intel не будет спешить с выводом на рынок процессоров следующего поколения, известных как Kaby Lake. Если верить имеющейся информации, представители этой серии процессоров в вариантах для настольных компьютеров появятся на рынке только в 2017 году. Так что Skylake будет с нами ещё долго, и система, построенная на нём, сможет оставаться актуальной в течение очень продолжительного промежутка времени.


Немногим больше 8 лет назад Стив Джобс представил Macbook Air - устройство, которое открыло новый класс портативных ноутбуков - ультрабуков. С тех пор различных ультрабуков вышло множество, однако у всех была одна общая черта - низковольтные процессоры с тепловыделением (TDP) в 15-17 Ватт. Однако в 2015 году, с переходом на 14 нм техпроцесс, Intel решили пойти еще дальше, и представили линейку процессоров Core m, которые имеют TDP всего 4-5 Вт, однако должны быть сильно мощнее линейки Intel Atom с аналогичным TDP. Основная особенность новых процессоров - они могут охлаждаться пассивно, то есть из устройства можно убрать кулер. Но увы - убирание кулера принесло достаточно много новых проблем, о которых и поговорим ниже.

Сравнение с ближайшими конкурентами

И хотя уже вышли процессоры на Kaby Lake, их тестов пока еще нет, так что ограничимся предыдущей линейкой, Skylake - с технической точки зрения разница между ними невелика. Для сравнения возьмем три процессора - Intel Atom x7-Z8700, как один из самых мощных представителей линейки Atom, Intel Core m3-6Y30 - самый слабый Core m (в дальнейшем объясню, почему не стоит брать более мощные), и Intel Core i3-6100U - популярный представитель самой слабой линейки «полноценных» низковольтных процессоров:

Получается интересная картина - с физической точки зрения Core m3 и i3 абсолютно одинаковы, различаются лишь максимальные частоты графики и процессора, при этом теплопакет различается втрое, чего в общем-то быть не может. Atom имеет тот же TDP, что и Core m3, сравнимые частоты, но 4 физических ядра. При этом ядер хоть и больше, но они сильно урезаны по возможностям для уменьшения тепловыделения: к примеру, i5-6300HQ с 4 «полноценными» физическими ядрами с такими же частотами имеет TDP на порядок выше - 45 Вт. Поэтому будет интересно сравнить возможности урезанной и полноценной архитектур при одинаковом тепловыделении.

Тесты процессоров

Как уже выяснили выше, m3 является по сути i3, зажатым втрое меньший теплопакет. Казалось бы, разница в производительности должна быть как минимум двукратной, однако здесь есть несколько нюансов: во-первых, Intel позволяет Core m не обращать внимание на TDP, пока его температура не достигнет определенной отметки. Это очень хорошо видно при многократном прогоне бенчмарка Cinebench R15:

Как видно первые 4 прогона теста процессор набирал порядка 215 очков, а потом результаты стабилизировались на 185, то есть потеря производительности из-за такого «мухлежа» Intel составила порядка 15%. Поэтому брать более мощные Сore m5 и m7 не имеет никакого смысла - после 10 минут нагрузки они снизят производительность до уровня Core m3. А вот результат i3-6100U, рабочая частота которого всего на 100 мгц выше, чем у m3-6Y30, гораздо лучше - 250 очков:

То есть при нагрузке только на процессор разница в производительности между m3 и i3 оказывается 35% - достаточно существенный результат. А вот Atom показал себя с лучшей стороны - хоть ядра и урезаны, но вдвое большее их количество дало возможность процессору набрать 140 очков. Да, результат все еще на 25% хуже, чем у Core m3, однако не забываем про восьмикратную разницу в цене между ними.

Второй нюанс - теплопакет рассчитан и на видеокарту, и на процессор одновременно, поэтому посмотрим на результаты теста 3Dmark 11 Performance: это тест, рассчитанный на ПК среднего уровня (которым и принадлежат наши системы), тестирующий одновременно и процессор, и видеокарту. И тут итоговая разница оказывается такой же, Core m3 оказывается на 30% хуже i3 (потому что Core i3 тоже перестает хватать теплопакета - для работы на максимальных частотах ему нужно порядка 20 ватт):
Intel Core m3-6Y30:


Intel Core i3-6100U:

А вот Intel Atom проваливается с треском - результат в 4-5 раз хуже, чем у m3 и i3:

И это, в принципе, ожидаемо - Cinebench тестирует голую математическую производительность процессора и хорошо подходит лишь для сравнения процессоров одной архитектуры, а вот 3Dmark дает разностороннюю нагрузку, гораздо более приближенную к реальной жизни. Однако все еще восьмикратная разница в цене позволяет Atom держаться на плаву.

Энергопотребление

Как видно из тестов выше, трехкратная разница в TDP дает прирост производительности около 35%. Однако это верно только под большой нагрузкой, которая для ультрабуков достаточно редка. Для удобства возьмем два макбука, 12" и 13" 2016 - macOS на разных устройствах оптимизирована одинаково хорошо, и это позволит узнать разницу в энергопотреблении устройств без привязки к операционной системе (да, ниже тестируется энергопотребление всей системы, однако существенный вклад в него дают только экраны и процессоры, и так как первые очень похожи, то весомый вклад в разницу энергопотребления дают только процессоры). И тут разница оказывается... всего полтора ватта в среднем, 7.2 и 8.9 Вт (причем в 13" Macbook стоит процессор мощнее i3-6100U):


Что это означает? Это означает то, что при обычной нагрузке оба процессора потребляют всего несколько ватт, и до ограничения по TDP у Core m дело не доходит. Intel Atom показывает сравнимое с Core m3 энергопотребление (для примера взят Microsoft Surface 3, который хорошо оптимизирован для работы с Windows):

Выводы

Что же получается в итоге? Intel Atom - хороший выбор для недорогого планшета или нетбука, на котором ничего тяжелее 1080р60 с YouTube никто запускать не будет. Процессор дешев, и за это ему можно простить разницу в производительности с линейками Core. Intel Core m - хороший выбор для производительного планшета или простого ультрабука. Из-за отсутствия кулера такое устройство будет абсолютно бесшумным, и в обычных задачах ничуть не медленнее более мощных собратьев на Core i. Однако брать его для обработки фото или видео, а уж тем более игр, явно не стоит - производительность быстро упирается в низкий TDP и достаточно сильно снижается даже в сравнении с простым i3. Ну а линейка Core i - хороший выбор для производительного ультрабука. При наличии в системе хотя бы простой дискретной графики такое устройство оказывается на уровне игровых ноутбуков 5летней давности, и позволяет без проблем заниматься как обработкой фото и нетяжелого видео, как и дает возможность поиграть в массовые игры даже не на самых минимальных настройках графики. Однако любая нагрузка выше средней будет приводить к ощутимому шуму небольшого высокооборотистого кулера, что может раздражать любителей работать ночью в тишине.

Компания Intel в скором будущем начнёт поставки нового семейства процессоров для ноутбуков. Процессоры под кодовым названием Kaby Lake 7-го поколение представляют особый интерес для тех, кто готовится в ближайшем будущем сменить платформу на более производительную. Любители видеокодирования заметят существенную разницу в выигрыше от нового процессора. Киноманы при просмотре видео с высоченным битрейтом по настоящему останутся довольны. Игроманы смогут наслаждаться видеоиграми прямо на ноутбуках. Всё это вполне достижимо с процессорами Intel 7-го поколения.

В этом месяце конференция Intel Developer Forum дала почувствовать вкус всех прелестей процессоров 7-го поколения. На форуме во время демонстрации ноутбук Dell XPS 13 был в состоянии выдерживать супер графику в тяжелых видеоиграх, используя стандартную интегрированную графику Intel на новой платформе. Это просто потрясающие достижение.

Таким образом прошедший 30 августа 2016 года анонсный дебют компании Intel наглядно продемонстрировал нам, насколько эти процессоры будут производительнее всего процессорного рынка, существующего сейчас.

Вот что стало известно после состоявшегося форума о многоядерных процессорах Intel 7-го поколения:

100 проектов до конца года

На своем форуме разработчиков Intel объявила о том, что вся линейка процессоров 7-го поколения уже доступны ведущим производителям компьютерной индустрии и партнерам Intel, что означает выпуск очень многообещающих ноутбуков на базе новых процессоров до конца года. Крис Уокер - генеральный менеджер компании Intel для мобильных клиентских платформ, поведал, что новые процессоры в диапазоне энергопотребления от 4,5 Ватт до 15 Ватт будут первыми, которые появятся в ноутбуках, а именно в ультратонких ноутбуках. Как уже сообщалось ранее, когда только появилась информация о процессорах 7-го поколения , уже ведется работа над 100 проектами с участием процессоров 7-го поколения, которые будут доступны в четвертом квартале 2016 года.

Новое семейство процессоров будет расширяться на другие рынки, но уже в следующем году. Так в частности в январе ожидается появление процессоров Intel 7-го поколения в рабочих станциях, игровых системах и виртуальной реальности.

Чипы имеют знакомую архитектуру

Intel построили 7-е поколение процессоров на той же архитектуре Skylake, что и процессоры 6-го поколения, представленные в прошлом году. Так что Intel не произвёл революцию, изобретая новую архитектуру.Skylake просто была немного доработана до идеала.

В частности, Intel сообщил, что улучшили напряжение транзисторов на процессорах. В результате получается, что микроархитектура стала более энергоэффективной и поэтому процессоры 7-го поколения могут предложить прирост производительности по сравнению с предыдущими поколениями процессоров Intel.

Ядра m5 и m7 уходят

Intel вносит изменения в обозначения маломощных чипов, устраняя 4,5 Ваттные процессоры Core m5 и m7 и превращая их в Core i5 и Core i7. Компания надеется, что это изменение поможет потребителям, многие из которых не понимают разницу между Core i5 и Core m5. Однако, 4,5-ваттные процессоры, также известные как чипы серии Kaby Lake , с буквой Y аналогичны по мощности. Если Вы видите Y в конце SKU, то это один из чипов ранее известных как ядра m5 или m7.

Что еще более интересно, что Intel не изменит марку ядра для его начального уровня процессоров Core m3, который является самым медленным и наименее дорогим из линейки m . Таким образом, в порядке производительности, чипы4,5-ватт называются Core m3, Core i5 Y серии и Core i7 серии Y.

Прирост производительности

Вам, вероятно, не стоит выбрасывать свой процессор 6-го поколения, если Вы сделали апгрейд в этом году или в прошлой зимой. Skylake однозначно не стоит менять в пользу одного из процессоров 7-го поколения аналогичной линейки. Замена оправдана только повышением индекса процессора. Но Intel говорит, что если Вы решитесь на замену, то получите ощутимый прирост производительности. Используя тестовый пакет SYSmark для измерения производительности, Intel представили компьютер с процессором 7-го поколения Core i7-7500U, который показал прирост производительности на 12 процентов больше, чем процессор 6-го поколения Core i7-6500U. Тестирование WebXPRT 2015 показало 19-процентное повышение производительности.


Не думаю, что даже 19-процентное преимущество подстегнёт покупателей менять свой не такой уж и старый и добрый Skylake на Kaby Lake. Очевидно, что увеличение производительности выглядит более существенным, когда в сравнение идут процессоры 5-го, 4-го поколений, на замену которых Intel и делает ставку по обновлению процессоров. Новый Core ​​i5-7200U в 1.7 раз производительнее своего пятилетнего собрата Core i5-2467M в SYSmark. На тесте 3DMark новый процессор в три раза оказался быстрее пятилетнего процессора.

Представители Intel сообщили, что 7-е поколение центральных процессоров сможет играть в требовательных играх на средних настройках в разрешении 720p со встроенной графикой или при 4К с совместимым графическим усилителем.

Эти чипы предназначены для видео

Intel приняла уведомление о все 4K и 360 градусов видео мы потребляющего. В ответ на это производитель чипов представил новый видео движок для своих 7-Gen процессоров ядро, которое стремится обрабатывать любые требования содержания вы можете бросить на нее.

Новые чипы поддерживают аппаратное декодирование HEVC 10-битного профиля цветности, которое позволить Вам играть на 4K и UltraHD видео без каких-либо тормозов. Intel также добавила возможность декодирования VP9 для ядер 7-го поколения, чтобы повысить эффективность работы, когда Вы смотрите 4K видео и в то же время выполняете другие задачи.

Ядра 7-го поколения также смогут производить операции видеоконвертации намного быстрее других процессоров. Например, по данным Intel Вы сможете перекодировать 1 час 4K видео всего за 12 минут.


Больше энергоэффективности

С точки зрения повышения энергоэффективности батареи для ноутбуков представители Intel сообщили, что ноутбук с процессором 7-го поколения может работать в течение 7 часов при потоковой передаче 4K или 4K 360 градусов YouTube видео. По сравнению с ядрами 6-го поколения преимущество в работе составит в среднем 4 часа в пользу седьмого поколения. Что касается 4K потокового видео Intel обещает работоспособность в течение всего дня, что составляет 9 с половиной часов.

7-е поколения предлагает ряд других функций

Процессоры 7-го поколения предлагают несколько других функций, направленных на то, чтобы Ваши ноутбуки работали более эффективно. Например, Intel технология Turbo Boost 2.0. Это функция, которая управляет производительностью процессора и его мощностью, вроде автоматического разгона процессора, когда тактовая частота ЦП превышает номинальные показатели производительности.

Технология Hyper-Threading помогает процессору выполнять задачи быстрее, обеспечивая два потока обработки для каждого из ядер.


7-е поколение процессоров также включают в себя технологию Speed ​​Shift , которая должна сделать более быстрыми выполняемые приложения. Эта технология позволяет процессору более реагировать на запросы приложений об увеличении или уменьшении частоты для обеспечения наилучших показателей, тем самым оптимизируя производительность и эффективность. Это особенно эффективно, когда приложениям требуются очень короткие всплески активности, такие как просмотр веб-страниц или ретуширование фотографий многочисленными мазками кисточек в графическом редакторе.