Перевод величин из децибелов в абсолютные значения и мощность. Что такое децибел

Очень часто новички сталкивается с таким понятием, как децибел . Многие из них интуитивно догадываются, что это такое, но у большинства до сих пор возникают вопросы.

Относительные логарифмические единицы Белы (децибелы) широко используются при количественных оценках параметров различных аудио, видео, измерительных устройств. Физическая природа сравниваемых мощностей может быть любой - электрической, электромагнитной, акустической, механической, - важно лишь, чтобы обе величины были выражены в одинаковых единицах - ваттах, милливаттах и т. п. Бел выражает отношение двух значений энергетической величины десятичным логарифмом этого отношения, причем под энергетическими величинами понимаются: мощность, энергия.

Кстати, эта единица получила свое название в честь Александра Белл (1847 — 1922) — американского ученого шотландского происхождения, основоположника телефонии, основателя всемирно известных компаний AT&T и «Bell Laboratories». Еще интересно напомнить, что во многих современных мобильных телефонах (смартфонах) обязательно есть выбираемый звук звонка (оповещения), так и называемый «bell». Впрочем, Бел относится к единицам, не входящим в Международную систему единиц (СИ), но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ. В основном применяется в электросвязи, акустике, радиотехнике.

Формулы для вычисления децибелов

Бел (Б) = lg (P2/P1)

где

На практике, оказалось, что удобнее пользоваться уменьшенным в 10 раз значением Бел, т.е. децибел, поэтому:

дециБел (дБ) = 10 * lg(P2/P1)

Усиление или ослабление мощности в децибелах выражается формулой:

где

P 1 — мощность до усиления, Вт

P 2 — мощность после усиления или ослабления, Вт

Значения Бел, децибел могут быть со знаком «плюс», если P2 > P1 (усиление сигнала) и со знаком «минус», если P2 < P1 (ослабление сигнала)

Во многих случаях, сравнение сигналов путем измерения мощностей может быть неудобным или невозможным — проще измерить напряжение или ток.
В этом случае, если мы сравниваем напряжения или токи, формула примет уже другой вид:


где

N дБ — усиление, либо ослабление мощности в децибелах

U 1 — это напряжение до усиления, В

I 1 — сила тока до усиления, А

I 2 — сила тока после усиления, А

Вот небольшая табличка, в которой приведены основные отношения напряжений и соответствующее число децибел:

Дело в том, что операции умножения и деления над числами в обычном базисе, заменяются операциями сложения и вычитания в логарифмическом базисе. Например, у нас есть два каскадно-включенных усилителя с коэффициентами усиления K1 = 963 и K2 = 48. Какой общий коэффициент усиления? Правильно — он равен произведению K = K1 * K2. Вы можете в уме быстро вычислить 963*48? Я — нет. Я могу прикинуть K = 1000*50 = 50 тыс., не более. А, если нам известно, что K1 = 59 дБ и K2 = 33 дБ, то К = 59+33 = 92 дБ — сложить было не трудно, надеюсь.

Впрочем, актуальность таких вычислений было велика в эпоху, когда ввели понятие Бел и когда не было не то, что айфонов, но и электронных калькуляторов. Сейчас же достаточно открыть калькулятор на ваших гаджетах и быстренько посчитать, что есть что. Ну и чтобы не париться каждый раз при переводе дБ в разы, удобнее всего найти в интернете онлайн-калькулятор. Да хотя бы вот .

Закон Вебера-Фехнера

Почему именно децибелы? Все исходит от закона Вебера-Фехнера, который говорит нам, что интенсивность ощущения человеческих чувств прямо-пропорциональна логарифму интенсивности какого-либо раздражителя.


Так светильник, в котором восемь лампочек, кажется нам настолько же ярче светильника из четырёх лампочек, насколько светильник из четырёх лампочек ярче светильника из двух лампочек. То есть количество лампочек должно увеличиваться каждый раз вдвое, чтобы нам казалось, что прирост яркости постоянен. То есть если добавить к нашим 32 лампочкам на графике еще одну лампочку, то мы даже и не заметим разницы. Для того, чтобы для нашего глаза была заметна разница, мы должны к 32 лампочкам добавить еще 32 лампочки, и т.д. Или иными словами, для того, чтобы нам казалось, что наш светильник плавно набирает яркость, нам надо зажигать вдвое больше лампочек каждый раз, чем было предыдущее значение.

Поэтому децибел действительно удобнее в некоторых случаях, так как сравнивать две величины намного проще в маленьких цифрах, чем в миллионах и миллиардах. А так как электроника — это чисто физическое явление, то и децибелы не обошли ее стороной.

Децибелы и АЧХ усилителя

Как вы помните в прошлом примере с ОУ, у нас неинвертирующий усиливал сигнал в 10 раз. Если посмотреть в нашу табличку, то это получается 20 дБ относительно входного сигнала. Ну да, так оно и есть:


Также в дБ на некоторых графиках АЧХ обозначают наклон характеристики АЧХ. Это может выглядеть примерно вот так:


На графике мы видим АЧХ полосового фильтра. Изменение сигнала +20 дБ на декаду (дБ/дек, dB/dec) говорит нам о том, что при каждом увеличении частоты в 10 раз, амплитуда сигнала возрастает на 20 дБ. То же самое можно сказать и про спад сигнала -20 дБ на декаду. При каждом увеличении частоты в 10 раз, у нас амплитуда сигнала будет уменьшаться на -20 дБ. Есть также похожая характеристика дБ на октаву (дБ/окт, dB/oct). Здесь почти все то же самое, только изменение сигнала происходит при каждом увеличении частоты в 2 раза.

Давайте рассмотрим пример. Имеем фильтр высоких частот (ФВЧ) первого порядка, собранного на RC-цепи.


Его АЧХ будет выглядеть следующим образом (кликните для полного открытия)


Нас сейчас интересует наклонная прямая линия АЧХ. Так как у нее наклон примерно одинаковый до частоты среза в -3дБ, то можно найти ее крутизну, то есть узнать, во сколько раз увеличивается сигнал при каждом увеличении частоты в 10 раз.

Итак возьмем первую точку на частоте в 10 Герц. На частоте в 10 Герц амплитуда сигнала уменьшилась на 44 дБ, это видно в правом нижнем углу (out:-44)


Умножаем частоту на 10 (декада) и получаем вторую точку в 100 Герц. На частоте в 100 Герц наш сигнал уменьшился приблизительно на 24 дБ


То есть получается за одну декаду у нас сигнал увеличился с -44 до -24 дБ на декаду. То есть наклон характеристики составил +20 дБ/декаду. Если +20 дБ/декаду перевести в дБ на октаву, то получится 6 дБ/октаву.

Достаточно часто, дискретные аттенюаторы (делители) выходного сигнала на измерительных приборах (особенно на генераторах) проградуированы в децибелах:
0, -3, -6, -10, -20, -30, -40 дБ. Это позволяет быстро ориентироваться в относительном уровне выходного сигнала.


Что еще измеряют в децибелах?

Также очень часто в дБ выражают (signal-to-noise ratio , сокр. SNR)


где

U c — это эффективное значение напряжения сигнала, В

U ш — эффективное значение напряжения шума, В

Чем выше значение сигнал/шум, тем более чистый звук обеспечивается аудиосистемой. Для музыкальной аппаратуры желательно, чтобы это отношение было не менее 75 дБ, а для Hi-Fi аппаратуры не менее 90 дБ. Не имеет значение физическая природа сигнала, важно, чтобы единицы были в одинаковых измерениях.

В качестве единицы логарифмического отношения двух одноимённых физических величин применяется также непер (Нп) - 1 Нп ~ 0,8686 Б. В основе лежит не десятичный (lg), а натуральный (ln) логарифм отношений. В настоящее время используется редко.

Во многих случаях, удобно сравнивать между собой не произвольные величины, а одну величину относительно другой, названной условно опорной (нулевой, базовой).
В электротехнике, в качестве такой опорной или нулевой величины выбрано значение мощности равное 1 мВт выделяемое на резисторе сопротивлением 600 Ом.
В этом случае, базовыми значениями при сравнении напряжений или токов станут величины 0.775 В или 1.29 мА.

Для звуковой мощности такой базовой величиной является 20 микроПаскаль (0 дБ), а порог +130 дБ считается болевым для человека:


Более подробно об этом написано в Википедии по этой ссылке.

Для случаев когда в качестве базовых значений используются те или иные конкретные величины, придуманы даже специальные обозначения единиц измерений:

dbW (дБВт) — здесь отсчет идет относительно 1 Ватта (Вт). Например, пусть уровень мощности составил +20 дБВт. Это значит что мощность увеличилась в 100 раз, то есть на 100 Вт.

dBm (дБм) — здесь у нас отсчет уже идет относительно 1 милливатта (мВт). Например, уровень мощности в +30дБм будет соответственно равен 1 Вт. Не забываем, что это у нас энергетические децибелы, поэтому для них будет справедлива формула

Следующие характеристики — это уже амплитудные децибелы. Для них будет справедлива формула

dBV (дБВ) — как вы догадались, опорное напряжение 1 Вольт. Например, +20дБВ даст — это 10 Вольт

От дБВ также вытекают другие виды децибелов с разными приставками:

dBmV (дБмВ) — опорный уровень 1 милливольт.

dBuV (дБмкВ) — опорное напряжение 1 микровольт.

Здесь я привел наиболее употребимые специальные виды децибелов в электронике.

Децибелы используются и в других отраслях, где они также показывают отношение каких-либо двух измеряемых величин в логарифмическом масштабе.

При участии Jeer

Довольно часто в популярной радиотехнической литературе , в описании электронных схем употребляется единица измерения – децибел (дБ или dB).

При изучении электроники начинающий радиолюбитель привык к таким абсолютным единицам измерения как Ампер (сила тока), Вольт (напряжение и ЭДС), Ом (электрическое сопротивление) и многим другим, с помощью которых обозначают количественно тот или иной электрический параметр (ёмкость , индуктивность, частоту).

Начинающему радиолюбителю, как правило, не составляет особого труда разобраться, что такое ампер или вольт. Тут всё понятно, есть электрический параметр или величина, которую нужно измерить . Есть начальный уровень отсчёта, который принимается по умолчанию в формулировке данной единицы измерения. Есть условное обозначение этого параметра или величины (A, V). И вправду, как только мы читаем надпись 12 V, то мы понимаем, что речь идёт о напряжении, аналогичном, например, напряжению автомобильной аккумуляторной батареи .

Но как только встречается надпись, к примеру: напряжение повысилось на 3 дБ или мощность сигнала составляет 10 дБм (10 dBm), то у многих возникает недоумение. Как это? Почему упоминается напряжение или мощность, а значение указывается в каких-то децибелах?

Практика показывает, что не многие начинающие радиолюбители понимают, что же такое децибел. Попытаемся развеять непроглядный туман над такой таинственной единицей измерения как децибел.

Единицу измерения под названием Бел стали впервые применять инженеры телефонной лаборатории Белла. Децибел является десятой частью Бела (1 децибел = 0,1 Бел). На практике широко используется как раз децибел.

Как уже говорилось, децибел, это особенная единица измерения. Стоит отметить, что децибел не является частью официальной системы единиц СИ. Но, несмотря на это, децибел получил признание и занял прочное место наряду с другими единицами измерения.

Вспомните, когда мы хотим объяснить какое-либо изменение, мы говорим, что, например, стало ярче в 2 раза. Или, например, напряжение упало в 10 раз. При этом мы устанавливаем определённый порог отсчёта, относительно которого и произошло изменение в 10 или 2 раза. С помощью децибел также измеряют эти “разы”, только в логарифмическом масштабе .


Например, изменение на 1 дБ, соответствует изменению энергетической величины в 1,26 раза. Изменение на 3 дБ соответствует изменению энергетической величины в 2 раза.

Но зачем так заморачиваться с децибелами, если отношения можно измерять в разах? На этот вопрос нет однозначного ответа. Но уж, поскольку, децибелы активно применяются, то наверняка это оправдано.

Причины для использования децибел всё-таки есть. Перечислим их.

Частично ответ на этот вопрос кроется в так называемом законе Вебера-Фехнера . Это эмпирический психофизиологический закон, т.е основан он на результатах реальных, а не теоретических экспериментов. Суть его заключается в том, что любые изменения каких-либо величин (яркости, громкости, веса) ощущаются нами при условии, если эти изменения носят логарифмический характер.


График зависимости ощущения громкости от силы (мощности) звука. Закон Вебера-Фехнера

Так, например, чувствительность человеческого уха уменьшается с ростом уровня громкости звукового сигнала. Именно поэтому, при выборе переменного резистора , который планируется применить в регуляторе громкости звукового усилителя стоит брать с показательной зависимостью сопротивления от угла поворота ручки регулятора. В этом случае, при повороте движка регулятора громкости звук в динамике будет нарастать плавно. Регулировка громкости будет линейной, так как показательная зависимость регулятора громкости компенсирует логарифмическую зависимость нашего слуха и в сумме станет линейной. При взгляде на рисунок это станет более понятно.


Зависимость сопротивления переменного резистора от угла поворота движка (А-линейная, Б-логарифмическая, В-показательная)

Здесь показаны графики зависимости сопротивления переменных резисторов разных типов: А – линейная, Б – логарифмическая, В – показательная. Как правило, на переменных резисторах отечественного производства указывается, какой зависимостью обладает переменный резистор. На тех же принципах основаны цифровые и электронные регуляторы громкости.

Также стоит отметить, что человеческое ухо воспринимает звуки, мощность которых различается на колоссальную величину в 10 000 000 000 000 раз! Таким образом, самый громкий звук отличается от самого тихого, который может уловить наш слух, на 130 дБ (10 000 000 000 000 раз).

Вторая причина широкого использования децибел является простота вычислений.

Согласитесь, что куда проще при вычислениях использовать небольшие числа вроде 10, 20, 60,80,100,130 (наиболее часто используемые числа при расчёте в децибелах) по сравнению с числами 100 (20 дБ), 1000 (30 дБ), 1000 000 (60 дБ),100 000 000 (80 дБ),10 000 000 000 (100 дБ), 10 000 000 000 000 (130 дБ). Ещё одним достоинством децибел является то, что их просто суммируют. Если проводить вычисления в разах, то числа необходимо умножать.

Например, 30 дБ + 30 дБ = 60 дБ (в разах: 1000 * 1000 = 1000 000). Думаю, с этим всё ясно.

Также децибелы очень удобны при графическом построении различных зависимостей. Все графики вроде диаграмм направленности антенн, амплитудно-частотных характеристик усилителей выполняют с применением децибел.

Децибел является безразмерной единицей измерения . Мы уже выяснили, что децибел на самом деле показывает, во сколько раз возросла, либо уменьшилась какая-либо величина (ток, напряжение, мощность). Отличие децибел от разов заключается лишь в том, что происходит измерение по логарифмическому масштабу. Чтобы это как-то обозначить и приписывают обозначение дБ . Так или иначе, при оценке приходится переходить от децибел к разам. Сравнивать с помощью децибел можно любые единицы измерения (не только ток, напряжение и проч.), так как децибел является относительной, безразмерной величиной.

Если указывается знак “-”, например, –1 дБ , то значение измеряемой величины, например, мощности, уменьшилось в 1,26 раз. Если перед децибелами не ставят никакого знака, то речь идёт об увеличении, росте величины. Это стоит учитывать. Иногда вместо знака “-” говорят о затуханиях, снижении коэффициента усиления.

Переход от децибел к разам.

На практике чаще всего приходится переходить от децибел к разам. Для этого есть простая формула:

Внимание! Данные формулы применяются для так называемых “энергетических” величин. Таких как энергия и мощность.

m = 10 (n / 10) ,где m – отношение в разах, n – отношение в децибелах.

Например, 1дБ равен 10 (1дБ / 10) = 1,258925…= 1,26 раза.

Аналогично,

    при 20 дБ: 10 (20дБ / 10) = 100 (увеличение величины в 100 раз)

    при 10 дБ: 10 (10дБ / 10) = 10 (увеличение в 10 раз)

Но, не всё так просто. Есть и подводные камни. Например, затухание сигнала составляет -10 дБ. Тогда:

    при -10 дБ: 10 (-10дБ / 10) = 0,1

    Если мощность с 5 Вт уменьшилась до 0,5 Вт, то снижение мощности равно -10 дБ (уменьшению в 10 раз).

    при -20 дБ: 10 (-20дБ / 10) = 0,01

    Здесь аналогично. При снижении мощности с 5 Вт до 0,05 Вт, в децибелах падение мощности составит -20 дБ (уменьшению в 100 раз).

Таким образом, при -10 дБ мощность сигнала уменьшилась в 10 раз! При этом если мы перемножим начальную величину сигнала на 0,1 ,то и получим значение мощности сигнала при затухании в -10 дБ. Именно поэтому значение 0,1 и указано без "разов", как в предыдущих примерах. Учитывайте эту особенность при подстановке в данные формулы значений децибел со знаком "-".

Переход от разов к децибелам можно осуществить по следующей формуле:

    n = 10 * log 10 (m) ,где n – значение в децибелах, m – отношение в разах.

    Например, рост мощности в 4 раза будет соответствовать значению в 6,021 дБ.

    10 * log 10 (4) = 6,021 дБ.

Внимание! Для пересчёта отношений таких величин как напряжение и сила тока существуют немного иные формулы:

(Сила тока и напряжение, это так называемые “силовые” величины. Поэтому и формулы отличаются.)

    Для перехода к децибелам: n = 20 * log 10 (m)

    Для перехода от децибел к разам: m = 10 (n / 20)

n – значение в децибелах, m – отношение в разах.

Если Вы успешно дошли до этих строк, то считайте, что сделали ещё один весомый шаг в освоении электроники!

Как это ни странно, звуки, лежащие за пределами слышимости человеческим ухом, играют огромную роль в различных областях знаний. Учёным, вооружённым методами современных компьютерных технологий и электроники, удалось не только расшифровать такие природные звуки, но и поставить их на службу человечеству.

Например, в странах, подвергающихся нашествию разрушительных цунами (Япония, Филиппины, Малайзия, Таиланд и Индонезия и других), развёрнута целая сеть станций раннего оповещения о таких событиях. Помимо береговых стационарных сейсмических станций, фиксирующих инфразвуки подводных землетрясений, развёрнута целая сеть автономных датчиков, находящихся в свободном плавании и связанных с центрами обработки информации через спутниковую связь. И есть надежда, что трагедиям, подобных трагедии 2004 года, когда от цунами пострадали сотни тысяч людей в Южной Азии, равно как и трагедии Фукусимы 2011 года, не суждено будет больше повториться. Пусть мы пока не в состоянии управлять подземными силами, и нам не избежать материальных потерь в ближайшем обозримом будущем, мы должны и сможем хотя бы свести к минимуму число человеческих жертв.

Инфразвуки с успехом применяются учёными-геофизиками при изучении свойств и характеристик Земли и отдельных её составляющих - коры, мантии и ядра. Высокоэкономичным методом в поиске полезных ископаемых, среди которых надо выделить особо ценные залежи нефти и природного газа, является сейсморазведка. Поскольку уже сейчас треть добываемой нефти приходится на добычу из моря, а морские неразведанные запасы превышают таковые запасы на суше, в последнее время всё больше внимания уделяется исследованиям морского дна. С помощью современных компьютерных технологий обработки отраженного и преломлённого инфразвукового сигнала можно получать 2D- и 3D-изображения залежей и оценивать перспективность их дальнейшей разработки.

Инфразвуковой контроль является неотъемлемой частью общего контроля за соблюдением выполнения Договора о всеобъемлющем запрещении ядерных испытаний, наравне с сейсмическим, химическим и радиологическим контролем. Инфразвуковой контроль удобен для обнаружения ядерных взрывов в связи с тем, что инфразвук способен проходить большие расстояния практически без рассеяния.

И пока пусть остаются библейским мифом разрушение стен Иерихона из-за звука труб (что с точки зрения современной науки вполне возможно, достаточно только достигнуть полного резонанса на инфразвуке), историческая наука не стоит на месте, вполне возможно, что мы сумеем отыскать материальные подтверждения знаний древних людей.

Историческая справка

Первое официальное наблюдение инфразвука было произведено во время мощного извержения вулкана Кракатау в Зондском проливе в 1883 году. Мощность взрыва вулкана была эквивалентна взрыву атомной бомбы в 200 мегатонн, что вчетверо превышает мощность испытания Советским Союзом водородной авиационной бомбы АН602 (русское название - изделие 202, англоязычное обозначение -RDS-202, никнейм «Big Ivan») мощностью более 50 мегатонн (русское расхожее название Царь-Бомба, по аналогии с Царь-пушкой и Царь-колоколом) 30 октября 1961 года на ядерном полигоне острова Новая Земля. Ударная волна от взрыва вулкана трижды обогнула земной шар, под ее воздействием в радиусе сотни километров разбивались стеклянные окна, звуки извержения были слышны в г. Перт (Западная Австралия, расстояние свыше 3000 километров) и на острове Родригес, что близ острова Маврикий (расстояние свыше 4800 километров).

Интерес к звукам, лежащим за пределами слышимости человеческим ухом, и связанных с ними физическими и психофизическими явлениями, начал проявляться по мере появления и развития таких наук, как радиотехника и электроника. Парадоксальным образом отсчет им положили работы физиков разных стран конца 19-го и начала 20-го века совершенно в другом диапазоне волн - радиодиапазоне. В их число заслуженно включаются такие выдающиеся учёные как Генрих Рудольф Герц, Александр Степанович Попов и Гульельмо Маркони.

Ключевым моментом в исследовании и генерации как аудиозвука, так и инфразвука и ультразвука явилось изобретение электронных усилителей. Вначале появились схемы на основе электронных ламп, разработкой которых мы обязаны целой плеяде замечательных изобретателей. Ещё в 1883 году Т. А. Эдисон первым обнаружил эффект проводимости в вакууме. Затем, в 1904 году, Д. А. Флеминг первым практически использовал эффект Эдисона для преобразования переменного тока в постоянный (выпрямление тока) с помощью двухэлектродной лампы (диода). В 1906 году Ли де Форест ввёл в лампу третий электрод - управляющую сетку, получив усилительный элемент триод. В 1912 году на её основе был создан первый автогенератор. Позднее на основе изобретения транзисторов, а потом интегральных схем были созданы более совершенные и экономичные схемы усиления и генерации электрических сигналов низкочастотного диапазона. Верхом этого процесса можно считать разработку цифровых методов анализа и синтеза звука любого мыслимого диапазона с помощью современных компьютерных технологий, которым поддаются даже методы визуализации звука.

Как всегда, впереди планеты всей по этой части стали военные инженеры. Они не только научились определять дислокацию вражеских артиллерийских батарей по инфразвукам от их выстрелов с закрытых позиций, но также научились обнаруживать скрытые под водой объекты в виде нового типа вооружений (подводных лодок), используя, помимо инфразвука, звук и ультразвук (гидроэхолокация). Специальность инженера-акустика стала неотъемлемым атрибутом и в морских, и в наземных войсках.

Инфразвук. определение и физика явлений

К инфразвуку относятся звуки с частотами ниже частот, воспринимаемых человеческим слухом, то есть с частотой ниже 20 Гц; нижняя граница инфразвука условно принимается равной 1 миллигерцу, однако на практике чаще рассматривают нижнюю границу 0,1 Гц.

При распространении в различных средах, инфразвук в общем подчиняется законам акустики, то есть способен затухать, отражаться и преломляться. Но имеются некоторые отличия:

  • для восприятия человеком через вибрации тела, инфразвук должен иметь более высокую амплитуду колебаний по сравнению со звуковыми волнами в диапазоне слышимости;
  • инфразвук гораздо дальше распространяется в воздухе, поскольку слабо поглощается атмосферой;
  • из-за большой длины волн, инфразвуку в большей степени, чем обычному звуку, свойственны дифракционные явления (огибание препятствий).

В природе инфразвук возникает при землетрясениях, ударах молний, извержениях вулканов, при сильном ветре, во время бурь и ураганов. На море усиление инфразвукового фона является верным признаком надвигающегося шторма; то же справедливо в отношении к сходу снежных лавин.

Восприятие инфразвуков животными

Совершенно естественно, что в живой природе наиболее чувствительными к действию инфразвуков являются животные крупных размеров: киты, слоны, бегемоты, носороги, жирафы, окапи, крокодилы, львы и тигры. Они не только воспринимают инфразвук, но и прекрасно его генерируют в силу размеров своих органов. Киты и слоны с успехом используют инфразвуковые сигналы для общения с себе подобными, причем дальность такой связи на суше может достигать при благоприятных условиях распространения инфразвука сотни километров. Хищники таким образом защищают свою охотничью территорию от посягательств на неё чужаков своего вида, хотя ареал обитания прайда не превышает радиуса 10 километров. В случае китов дальность связи может составлять даже несколько тысяч километров! Возможно, в открытом океане используется эффект дальнего прохождения за счёт образования своеобразного канала распространения инфразвука из-за разности температур, разности гидростатического давления и разности в солёности поверхностных и глубинных вод. Принцип действия этого канала аналогичен принципу передачи информации по волоконно-оптическому кабелю, в котором световые лучи распространяются также благодаря полному внутреннему отражению.

Техногенная генерация инфразвука

С момента возведения первых мегалитических сооружений (вспомните Стоунхендж!) человечество неосознанно стало техногенным генератором инфразвука, строя различные здания для хозяйственных, жилищных и религиозных нужд, камеры которых (комнаты, залы, печи и камины с дымоходами) служили своеобразными резонаторами инфразвука и пассивными генераторами под воздействием ветра. По мере освоения природных сил люди стали всё более активным генератором инфразвука. Первыми устройствами стали водяные и ветряные мельницы, хотя у них интенсивность инфразвука была не столь велика, тем не менее, производила некий мистический эффект. Недаром во всех преданиях различных народов профессия мельника, равно как и профессия кузнеца, вынужденного своими равномерными ударами молота вызывать инфразвук, окружена легендами с негативным подтекстом. Прямыми потомками этих устройств ныне являются напорные водоводы гидроэлектростанций, ветроэлектрогенераторы и механические молоты титанических размеров.

На производстве источником инфразвука также являются тяжёлые станки, где происходит возвратно-поступательное движение больших масс (например, поршневые компрессоры), вентиляторы и системы кондиционирования, турбины и виброплощадки и другое оборудование. Реактивные двигатели самолётов также излучают инфразвуковые волны. С освоением силы пара и массовым внедрением силовых установок на судах, мы стали генерировать инфразвуки не только на суше, но и на море.

Ныне основными источниками антропогенного шумового загрязнения океана являются суда, пневмопушки для сейсмической разведки полезных ископаемых на дне морей и океанов, морские буровые и эксплуатационные платформы для добычи нефти и газа, а также гидролокаторы, как военного, так и гражданского назначения. Источниками инфразвука также являются ядерные взрывы, причем инфразвук от них может распространяться по атмосферному волноводу на тысячи километров.

Биологи небезосновательно бьют тревогу, относя массовые выбросы китообразных на сушу за счёт антропогенных инфразвуков, звуков и ультразвуков, генерируемых нами. По их мнению, мы своим звуком просто сбиваем животных с курса, вызывая сбои их систем навигации. Сейчас шумовое загрязнение морей в полосе частот инфразвука достигает максимальной интенсивности, превышая акустическое загрязнение на остальных частотах в тысячи раз.

Воздействие инфразвука на человека

Человеческий организм и его психика подвержены влиянию инфразвука по той причине, что он стимулирует вестибулярный аппарат, а также в связи с тем, что почти все органы человека имеют резонансные частоты в пределах 8-20 Гц:

  • 20–30 Гц (резонанс головы);
  • 18 Гц и 40–100 Гц (резонанс глаз);
  • 0,5–13 Гц (резонанс вестибулярного аппарата);
  • 4–6 Гц (резонанс сердца);
  • 2–3 Гц (резонанс желудка);
  • 2–4 Гц (резонанс кишечника);
  • 6–8 Гц (резонанс почек);
  • 2–5 Гц (резонанс рук).

Разброс в значениях объясняется разбросом антропометрических данных среди представителей человечества.

Полагают, что инфразвуковые колебания даже небольшой интенсивности вызывают симптомы, схожие с сотрясением мозга (тошнота, шум в ушах, нарушения зрения). Колебания средней интенсивности могут стать причиной «непищевой» диареи и нарушений функций мозга с самыми неожиданными последствиями. Считается, что инфразвук высокой интенсивности, влекущий за собой резонанс, приводит к нарушению работы практически всех внутренних органов, возможен смертельный исход из-за остановки сердца или разрыва кровеносных сосудов.

Ещё более интересные эффекты производит инфразвук на психоэмоциональное состояние людей, подвергшихся его воздействию. В этом смысле показателен масштабный опыт, проведённый группой английских исследователей над аудиторией из 700 человек в лондонском концертом зале Перселл-Рум (Purcell Room), которым предлагалось прослушать музыкальный концерт в двух отделениях. Каждое из отделений состояло из четырёх произведений, в два из них в оригинальное исполнение подмешивался инфразвук частотой 17 Гц малой интенсивности, во втором отделении инфразвук подмешивался в два других произведения. Слушателям предлагалось описать свои ощущения и значительная часть респондентов (22%) отмечала необычные переживания: тревогу, беспокойство, крайнюю печаль, чувство отвращения и страха, озноб вдоль позвоночника и чувство давления в груди как раз в моменты подачи инфразвукового сигнала.

Крайне любопытным воздействием на человека инфразвука частотой 18,98 Гц стало обнаружение визуального эффекта английским инженером-исследователем Виком Тэнди в начале 80-х годов прошлого столетия. Засиживаясь допоздна в своей лаборатории, Тэнди неоднократно замечал периферическим зрением появление бесформенного серого пятна, которое исчезало при повороте головы в его сторону. Будучи заядлым фехтовальщиком, он также заметил, что при полировке рапиры, зажатой рукояткой в тиски, её кончик заметно дрожал. Предположив по вибрациям рапиры (лезвие рапиры играла роль приёмника-регистратора) наличие в помещении инфразвука, он исследовал помещение лаборатории и обнаружил, что инфразвук действительно присутствует - его источником был недавно установленный вытяжной вентилятор. Максимум инфразвукового сигнала отмечался как раз над рабочим столом Тэнди и его частота была близка к резонансной частоте глазного яблока 18 Гц, определённой НАСА. Работы в этом направлении были просуммированы В. Тэнди в статье «Призраки из машины», опубликованной 1998 году. В дальнейшем он по приглашению исследователей паранормальных явлений привлекался в рабочие группы по обследованию подвала туристического центра в Ковентри в 2001 году и Уорикского замка в 2004 году. В обоих случаях отмечался высокий уровень инфразвука. Так что появление призраков в английских замках имеет под собой вполне материальную основу!

«Фантомный» инфразвук

Еще более удивительным образом на человека влияет «фантомный» инфразвук. Дело в том, что из-за бинаурального эффекта слуха, присущего человеку и большинству высших животных, человеческий мозг оценивает источник звука по частоте, фазе и интенсивности сигнала, вычисляя направление на источник звука по этим признакам, в том числе и по разности фаз звуковых колебаний, поступающих в правое и левое ухо. В результате, при воздействии на правый и левый каналы слуха близких частот с разницей, лежащей в пределах восприятия звука, возникают «фантомные» ощущения восприятия звука «основного» тона при прослушивании более высоких частот (гармоник). При этом возникает «фантомное» восприятие основной частоты, хотя её в исходном сигнале вообще нет. Например, если одно ухо слышит сигнал с частотой 550 Гц, а другое с частотой 570 Гц, то мозг воспринимает (то есть, как будто, слышит) дополнительную частоту 20 Гц, которая является разностью этих двух частот. Следует отметить, что это не обычная сумма двух синусоидальных сигналов разных частот, в результате которой наблюдаются биения. Суммирование происходит в мозге, а не в воздухе! И звук формируется не в воздухе, а в мозге слушателя.

Иногда человек слышит низкочастотные звуки, которых в реальности нет. Это происходит из-за того, что мозг подвергает звук серьезной обработке, добавляя частоты, которых нет в звуках. Это явление широко используется в технике. Примером может служить телефонный канал, ограниченный полосой 300 -3000 Гц. Тем не менее, все мы уверенно определяем гендерную принадлежность голоса по телефону, хотя для представителей «сильного» пола характерная частота голоса составляет 150 Гц. Наш мозг, этот самый совершенный компьютер на текущий момент, обманывает нас!

Ещё хуже (а может быть и лучше) дело обстоит, когда два сигнала с небольшой разницей частот, которые лежат в диапазоне инфразвука, приходят в правое и левое ухо. Это, возможно, связано с тем обстоятельством, что электрическая активность человеческого мозга имеет несколько биоритмов, связанных с его состоянием. Некоторые из таких ритмов ЭЭГ рассмотрены ниже.

  • Бета-волны: самые быстрые, характерны для состояния бодрствования, сосредоточенности и познания. Их избыток сопровождается беспокойством, страхом и паникой. В зависимости от степени состояния может меняться в пределах 14–42 Гц. Слабый уровень бета-волн статистически коррелирует с депрессией, плохим избирательным вниманием и слабой памятью.
  • Альфа-волны: биоритмы мозга замедляются до частот в 8–13 Гц. Их доминанта соответствует состоянию умиротворённости, способности к восприятию новой информации. В этом состоянии мозг производит наибольшее количество эндорфинов и энкефалинов - «наркотиков» собственного производства.
  • Тета-волны: сигналы электроэнцефалограммы в диапазоне 4–8 Гц. В исследованиях на животных тета-волны записывают с помощью электродов, имплантированных в мозг. Для исследований людей электроды наклеивают на голову. Исследования на людях показывают, что тета-волны связаны с фазой быстрого сна и переходом от сна к пробуждению, а также со спокойным состоянием бодрствования.
  • Дельта-волны: переход в сонное или бессознательное состояние, электрическая активность мозга замедляется до частот ниже 4 Гц и имеет высокую амплитуду. Ассоциируется с глубоким сном.
  • Существуют также гамма-волны мозга, которые возникают при решении задач, требующих максимального внимания. Поскольку их типичная частота (40 Гц) лежит вне пределов рассматриваемого диапазона, ограничимся только упоминанием о них. Отметим только, что этот список далеко не исчерпывающий.

На этих эффектах основано горловое пение тибетских монахов и григорианское хоровое пение. За счёт практически неуловимых биений в исполнении, они провоцируют состояние восторженности вплоть до экстаза у благодарных слушателей. А ныне шарлатаны от медицины рекламируют их как панацею для снятия тревожных состояний психики, безо всякого медицинского контроля предлагая «успокоительную» музыку.

С точки зрения автора этой статьи - радиоинженера, компьютерщика, отъявленного атеиста и материалиста, человеческий мозг представляет собой высокоизбирательный приёмник со многими точками входа, к тому же подключённый к суперкомпьютеру со своими программами обработки входных сигналов, алгоритмы которых не совсем адекватно отражают объективную реальность.

Опыт по обнаружению инфразвука

Аппаратура

В нашем быту всегда присутствуют инфразвуки, основным генератором которых служат вентиляторы и воздуховоды систем кондиционирования. В принципе, для демонстрации инфразвуков достаточно вентилятора с малыми оборотами в качестве генератора инфразвука. В качестве приёмника инфразвука можно использовать динамик сабвуфера в инверсном режиме, подключённого к регистратору через предварительный усилитель с малым уровнем шумов и фильтром по срезу высших частот, поскольку все типичные акустические микрофоны слабо реагируют на инфразвук из-за малости их размеров. В качестве регистратора инфразвуков можно использовать цифровой или аналоговый осциллограф или устройство для записи звука. Результаты записи звука оконного кондиционера и напольного вентилятора показаны на графиках.

На этих двух графиках показан записанный звук напольного вентилятора. На нижнем графике показана спектрограмма (спектр частот - зависимость частоты от времени и зависимость амплитуды сигнала от частоты в конкретный момент времени). Справа от этого графика показано как цвет изменяется от черного к белому в зависимости от амплитуды сигнала. Амплитуда указана в децибелах относительно полной шкалы. 0 dBFS соответствует максимально возможному уровню сигнала для данной системы звукозаписи.

Единица измерения Бел выражает не саму величину, а отношение одной величины к другой. Бел - единица логарифмическая. Чаще эта единица употребляется с десятичной приставкой «деци- », т.е. «десятая часть». В децибелах удобно измерять коэффициенты затухания и усиления:

Зачем логарифмы? Так ведь и человеческое восприятие имеет логарифмический характер! Представь себе пакет с покупками массой 1 кг. Если к этой массе добавить ещё литр килограмм, то изменение массы будет очень даже ощутимо. Если этот же килограмм добавить к массе, скажем, 15 кг, то прирост массы будет заметен, но уже почти не будет ощущаться. А уж если этот килограмм добавить к целой тонне, то прирост будет и вовсе незаметен. Чтобы толкать автомобиль с литром сока и без оного, требуется приложить одинаковое усилие.

Кроме того, вспоминаем математику логарифмов, и видим, как упрощаются некоторые расчёты.

Это уже упрощает жизнь. Решим простенькую задачку:
Мощность сигнала затухает в линии в 6,3 раза, на приёмной стороне усилитель повышает мощностью в 25 раз. Во сколько раз мощность сигнала на выходе усилителя будет больше или меньше, чем на выходе генератора?

Только что мы посчитали, во сколько раз мощность сигнала на выходе тракта отличается от подаваемой в тракт. Наверняка хочется знать величину этой мощности. Можно ли выразить сами величины в децибелах? Конечно можно! Для этого надо величину поделить на единицу.

Теперь посчитать мощность сигнала на выходе тракта, выраженную в дБВт , не составляет труда. Например, если подводимая мощность была 0,25Вт (-6дБВт), то мощность сигнала на выходе тракта

Около 1 Вт, как нетрудно догадаться. Пересчитаем в ватты:

Теперь запомни несколько утверждений:

  • Изменение мощности в 2 раза - это 3 дБ
  • Изменение мощности в 3 раза - это 4.8 дБ
  • Изменение мощности в 10 раз - это 10 дБ
  • Изменение мощности в 100 раз - это 20 дБ
Правильность этих утверждений легко проверить. И именно отсюда следует, что рост сигнала на 6 дБ (2 раза по 3 дБ) - это увеличение мощности в 4 раза (дважды 2 раза). А увеличиение мощности в 20 раз (10×2) - это увеличение на 13 дБ (10 + 3)

...изменение мощности...

Я намеренно писал выше только о мощностях. Мощность имеет квадратичную зависимость от напряжения и от тока, а изменение на 3 децибелла - это всегда и во всех случаях изменение мощности в 2 раза . Как мы помним, мощность зависит от квадрата напряжения или от квадрата тока:

Помним, что логарифм степени есть произведение показателя степени и логарифма основания. Показатель степени - это двойка, и умножать надо не на 10, а на 20. Выразим 2 Вольта в децибел-вольтах, и 3 децибел-вольта в Вольтах:


Просто и нестрашно!

  • В расчётах энергетических величин (мощность) фигурирует число 10
  • В расчётах силовых величин (напряжение, ток) фигурирует число 20

Немного расчётов

Порешаем немного расчётных задач, чтобы совсем уверенно ориентироваться в децибелах.

1. Громкость звука

Громкость звука тоже измеряется в децибелах. Помня о том, что децибел - это мера отношения двух величин, мы обязательно всегда уточняем, по отношению к чему измерены эти децибелы, т.е. где начало отсчёта. А в данном случае - по отношению к порогу слышимости человека: 2×10 -5 Н/м 2 . Ньютон - это системная единица силы, т.е. явно силовая величина, поэтому в расчётах фигурирует число 20. А давайте посчитаем, какую силу оказывает звуковое давление на барабанную перепонку в нашем ухе, при взлёте реактивного самолёта и при тихом разговоре.

Что мы знаем:

  • Величины в децибелах выражены по отношению к 2×10 -5 Н/м 2
  • Площадь барабанной перепонки у человека около 55 мм 2 , или 5,5×10 -5 м 2
  • Табличная громкость реактивного самолёта - 120 дБ на расстоянии 5 м
  • Табличная громкость тихого разговора - 50 дБ на расстоянии 1 м

Энштейн, Ньютон и Паскаль играли в прятки. Водить выпало Эйнштейну. Паскаль убежал в кусты, замаскировался, вообще не видно мужика, а вот Ньютон просто стоит. Нарисовал вокруг себя квадрат и стоит. Эйнштейн досчитал до ста, поворачивается, видит Ньютона и кричит:
— Ура! Я нашел Ньютона!
Ньютон хитро улыбнувшись отвечает:
— Ошибся, умник! Это Ньютон на квадратный метр! ТЫ НАШЕЛ ПАСКАЛЯ!!!

Посчитаем величину звукового давления в Паскалях, или Ньютонах на квадратный метр:

Умножаем давление в Паскалях на площадь в квадратных метрах, и получим величину силы в Ньютонах:

Пересчитаем Ньютоны в более ощутимые грамм-силы:

  • Реактивный самолёт оказывает давление
    0,0011 Н × 102 гс/Н = 0,1122 гc
  • Звук негромкого разговора давит на барабанную перепонку с силоу
    0,0000003479 Н × 102 гс/Н = 0,000035 гс

Как говорится, почувствуйте разницу! И не забывайте, что механизм слуха более сложен, и звук мы воспринимаем не только барабанной перепонкой в глубине уха!

2. Перевод уровня напряжения в мощность сигнала

На работе мы часто измеряем уровни радиосигнала на антенном входе измерительного приёмника. А измерительный приёмник по своим метрологическим свойствам близок к селективному вольтметру, и измеренная величина исчисляется в децибел-микровольтах (дБмкВ ). В то же время, часто в радиоизмерениях оперируют мощностью сигнала в точке приёма, нередко выраженной в децибел-милливаттах (дБм ). Давайте пересчитаем одно в другое!

И для пущего счастья, сделал онлайн-калькулятор, пересчитывающий напряжение в децибел-микровольтах в мощность в децибел-милливаттах и обратно (знаю-знаю, в интернете их и без меня бесчисленное множество! :))

Онлайн-калькулятор децибел

Правила пользования просты до безобразия. Измени значение любой из величин, и все остальные значения будут пересчитаны автоматически.

Напряжение, мВ:
Напряжение, dBμV:
Мощность, dBm:
Мощность, мВт:

]Обычно, децибелами принято измерять громкость звука. Децибел – это десятичный логарифм. Это значит, что увеличение громкости на 10 децибел показывает, что звук стал в два раза громче, чем изначальный. Громкость звука в децибелах обычно описывается формулой 10Log 10 (I/10 -12) , где I - интенсивность звука в ваттах/метр квадратный.

Шаги

Сравнительная таблица уровней шума в децибелах

В приведенной ниже таблице описаны уровни децибел в порядке возрастания, и соответствующие им примеры источников звука. Также предоставлена информация о негативных последствиях для слуха напротив каждого уровня шума.

Уровни децибел для разных источников шума
Децибелы Пример источника Влияние на здоровье
0 Тишина Отсутствуют
10 Дыхание Отсутствуют
20 Шепот Отсутствуют
30 Тихий фоновый шум на природе Отсутствуют
40 Звуки в библиотеке, тихий фоновый шум в городе Отсутствуют
50 Спокойный разговор, обычный фоновый шум для пригорода Отсутствуют
60 Шум офиса или ресторана, громкий разговор Отсутствуют
70 Телевизор, шум шоссе с расстояния 15.2 метров (50 футов) Заметка; некоторым неприятен
80 Шум завода, кухонного комбайна, автомойки с расстояния 6.1 метра (20 футов) Возможны повреждения слуха при длительном воздействии
90 Газонокосилка, мотоцикл с расстояния 7.62 м (25 футов) Высока вероятность повреждения слуха при длительном воздействии
100 Лодочный мотор, отбойный молоток Высока вероятность серьезных повреждений слуха при длительном воздействии
110 Громкий рок-концерт, сталелитейный завод Может быть сразу больно; очень высока вероятность серьезных повреждений слуха при длительном воздействии
120 Цепная пила, гром Обычно наступает моментальная боль
130-150 Взлет истребителя с авианосца Возможна немедленная потеря слуха, или разрыв барабанной перепонки.

Измерение уровня звука с помощью приборов

    Используйте ваш компьютер. Со специальными программами и оборудованием, несложно измерить уровень шума в децибелах прямо на компьютере. Ниже перечислены только некоторые способы, как это можно сделать. Обратите внимание, что использование более качественного записывающего оборудования всегда даст лучший результат; другим словами, микрофона встроенного в ваш ноутбук может быть достаточно для некоторых задач, но высококачественный внешний микрофон даст более точный результат.

  1. Используйте мобильное приложение. Для измерения уровня звука в любом месте, мобильные приложения придутся как нельзя кстати. Микрофон на вашем мобильном устройстве скорее всего не даст такого качества, как внешний микрофон, подключенный к компьютеру, но он может быть на удивление точным. Например, точность считывания на мобильном телефоне вполне может отличаться на 5 децибел от профессионального оборудования. Ниже приведен список программ для считывания уровня звука в децибелах для разных мобильных платформ:

    • Для устройств Apple: Decibel 10th, Decibel Meter Pro, dB Meter, Sound Level Meter
    • Для устройств на Android: Sound Meter, Decibel Meter, Noise Meter, deciBel
    • Для телефонов на Windows: Decibel Meter Free, Cyberx Decibel Meter, Decibel Meter Pro
  2. Используйте профессиональный измеритель децибел. Обычно это недешево, но, возможно, это самый простой способ получить точные измерения уровня звука, который вас интересует. Также такое устройство называют "измеритель уровня звука", это специализированное устройство (можно купить в интернет-магазине или специализированных магазинах), которые использует чувствительный микрофон для измерения уровня шума вокруг и выдает точное значение в децибелах. Так как подобные устройства не пользуются большим спросом, они можно быть достаточно дорогими, зачастую цены на них начинаются с $200 даже за устройства начального класса.

    • Обратите внимание, что измеритель децибел/уровня звука может называть несколько иначе. Например, другое похожее устройство под названием "измеритель шума" делает то же самое, что и измеритель уровня звука.

    Математическое вычисление децибел

    1. Узнайте интенсивность звука в ваттах/метр квадратный. В повседневной жизни, децибелы применяются как простая мера громкости. Однако, все не так просто. В физике децибелы часто рассматривают как удобный способ выражения "интенсивности" звуковой волны. Чем больше амплитуда звуковой волны, тем больше энергии она передает, тем больше частиц воздуха колеблется на ее пути, и тем интенсивнее сам звук. Из-за прямой связи между интенсивностью звуковой волны и громкостью в децибелах, есть возможность найти значение децибел, зная только интенсивность уровня звука (которая обычно измеряется в ваттах/метр квадратный)

      • Заметьте, что для обычных звуков значение интенсивности очень мало. Например, звук с интенсивностью 5 ×10 -5 (или 0.00005) ватт/метр квадратный соответствует приблизительно 80 децибелам, что приблизительно соответствует громкости блендера или кухонного комбайна.
      • Для лучшего понимания отношения между интенсивностью и уровнем децибел, давайте решим одну задачу. Для примера возьмем такую: давайте считать, что мы – звукорежиссеры, и нам нужно опередить уровень фонового шума в студии звукозаписи, чтобы улучшить качество записываемого звука. После установки оборудования, мы зафиксировали фоновый шум интенсивностью 1 × 10 -11 (0.00000000001) ватт/метр квадратный . Далее используя эту информацию мы можем вычислить уровень фонового шума студии в децибелах.
    2. Поделите на 10 -12 . Если вы знаете интенсивность вашего звука, вы можете легко подставить ее в формулу 10Log 10 (I/10 -12) (где "I" – интенсивность в ваттах/метр квадратный) чтобы получить значение в децибелах. Для начала поделите 10 -12 (0.000000000001). 10 -12 отображает интенсивность звука с оценкой 0 на шкале децибел, сравнивая интенсивность вашего звука с этим числом, вы найдете его отношение к начальному значению.

      • В нашем примере мы разделили значение интенсивности 10 -11 на 10 -12 и получили 10 -11 /10 -12 = 10 .
    3. Вычислим Log 10 от этого числа и умножим его на 10. Чтобы закончить решение, вам осталось лишь взять логарифм по основанию 10 от получившегося числа и затем, наконец, умножить его на 10. Это подтверждает, что децибелы – это логарифмическое значение по основанию 10 – другими словами, увеличение уровня шума на 10 децибел говорит об удвоении громкости звука.

      • Наш пример легко решить. Log 10 (10) = 1. 1 ×10 = 10. Поэтому, значение фонового шума в нашей студии равняется 10 децибел . Это достаточно тихо, но все еще улавливаемо нашим высококачественным звукозаписывающим оборудованием, потому нам, вероятно, нужно устранить источник шума для достижения более высокого качества записи.
    4. Понимание логарифмической природы децибел. Как было сказано выше, децибелы – это логарифмические значения с основанием 10. Для любого данного значения децибел, шум на 10 децибел большой – громче изначального в два раза, а шум больший на 20 децибел – в четыре раза и так далее. Это дает возможность обозначить большой промежуток интенсивностей звука, которые могут быть восприняты человеческим ухом. Самый громкий звук, который человек может услышать, не испытывая боли – в миллиард раз более громкий, чем самый тихий звук, который человек может услышать. Используя децибелы, мы избегаем использования огромных чисел для описания обычных звуков - вместо этого нам достаточно трех цифр.

      • Подумайте, что проще использовать: 55 децибел или 3 × 10 -7 ватт/квадратный метр? Оба значения равны, но вместо использования научной формы записи (в виде очень малой доли числа), гораздо удобнее использовать децибелы, которые являются своего рода простым сокращением для легкого повседневного использования.