Предел функции – определения, теоремы и свойства. Критерий Коши существования предела функции

Теория пределов - один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов. Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности. В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано. Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается "не знаю! Не умею! Нас не учили!"

Вычисление пределов методом подстановки

Пример 1. Найти предел функции
Lim((x^2-3*x)/(2*x+5),x=3).

Решение: Такого сорта примеры по теории вычисляют обычной подстановкой

Предел равен 18/11.
Ничего сложного и мудрого в таких пределах нет - подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию. Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные.

Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности

Пример 2. Найти предел функции
Lim((x^2+2x)/(4x^2+3x-4),x=infinity).
Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности

Простая подстановка значения к которому следует переменная найти пределов не поможет, получаем неопределенность вида бесконечность разделить на бесконечность.
Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени "икс" в числителе или знаменателе. Далее на него упрощают числитель и знаменатель и находят предел функции

Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей

Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях. Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю.
Формулами предел можно записать так

Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности

Следующий тип пределов касается поведения функций возле нуля.

Пример 3. Найти предел функции
Lim((x^2+3x-5)/(x^2+x+2), x=0).
Решение: Здесь уже выносить старший множитель полинома не требуется. С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел

Значение x^2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим

что предел равен 2,5.

Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции .

Предел с неопределенностью типа 0/0 и методы его вычислений

Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции.
Рассмотрим для наглядности несколько примеров.

Пример 4. Найти предел функции
Lim((3x^2+10x+7)/(x+1), x=-1).

Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность вида 0/0.
Бороться с такой неопределенностью просто: нужно разложить полином на множители, а точнее выделить множитель, который превращает функцию в ноль.

После разложения предел функции можно записать в виде

Вот и вся методика вычисления предела функции. Так же поступаем если есть предел вида многочлен разделить на многочлен.

Пример 5. Найти предел функции
Lim((2x^2-7x+6)/(3x^2-x-10), x=2).

Решение: Прямая подстановка показывает
2*4-7*2+6=0;
3*4-2-10=0

что имеем неопределенность типа 0/0 .
Разделим полиномы на множитель которій вносит особенность


Есть преподаватели которые учат, что полиномы 2 порядка то есть вида "квадратные уравнения" следует решать через дискриминант. Но реальная практика показывает что это дольше и запутаннее, поэтому избавляйтесь особенности в пределах по указанному алгоритму. Таким образом записываем функцию в виде простых множителей и вічисляем в предел

Как видите, ничего сложного в исчислении таких пределов нет. Делить многочлены Вы на момент изучения пределов умеете, по крайней мере согласно программе должны уже пройти.
Среди задач на неопределенность типа 0/0 встречаются такие в которых нужно применять формулы сокращенного умножения. Но если Вы их не знаете, то делением многочлена на одночлен можно получить нужную формулу.

Пример 6. Найти предел функции
Lim((x^2-9)/(x-3), x=3).
Решение: Имеем неопределенность типа 0/0 . В числителе применяем формулу сокращенного умножения

и вычисляем нужній предел

Метод раскрытия неопределенности умножением на сопряженное

Метод применяют к пределам в которіхнеопределенность порождают иррациональные функции. Числитель или знаменатель превращается в точке вычисления в ноль и неизвестно как найти границу.

Пример 7. Найти предел функции
Lim((sqrt(x+2)-sqrt(7x-10))/(3x-6), x=2).
Решение:
Представим переменную в формулу предела

При подстановки получим неопределенность типа 0/0.
Согласно теории пределов схема обхода данной особенности заключается в умножении иррационального выражения на сопряженное. Чтобы выражение не изменилось знаменатель нужно разделить на такое же значение

По правилу разности квадратов упрощаем числитель и вычисляем предел функции

Упрощаем слагаемые, создающие особенность в пределе и выполняем подстановку

Пример 8. Найти предел функции
Lim((sqrt(x-2)-sqrt(2x-5))/(3-x), x=3).
Решение: Прямая подстановка показывает что предел имеет особенность вида 0/0.

Для раскрытия умножаем и делим на сопряженное к числителю

Записываем разницу квадратов

Упрощаем слагаемые которые вносят особенность и находим предел функции

Пример 9. Найти предел функции
Lim((x^2+x-6)/(sqrt(3x-2)-2), x=2).
Решение: Подставим двойку в формулу

Получим неопределенность 0/0 .
Знаменатель нужно умножить на сопряженный выражение, а в числителе решить квадратное уравнение или разложить на множители, учитывая особенность. Поскольку известно, что 2 является корнем, то второй корень находим по теореме Виета

Таким образом числитель запишем в виде

и подставим в предел

Сведя разницу квадратов избавляемся особенности в числителе и знаменателе

Приведенным образом можно избавиться особенности во многих примерах, а применение надо замечать везде где заданная разница корней превращается в ноль при подстановке. Другие типы пределов касаются показательных функций, бесконечно малых функций, логарифмов, особых пределов и других методик. Но об этом Вы сможете прочитать в перечисленных ниже статьях о пределах.

В этой главе изучается операция предельного перехода - основная операция математического анализа. Сначала рассмотрим предел функции натурального аргумента, поскольку все основные результаты теории пределов отчетливо видны в этой простой ситуации. Затем рассмотрим предел в точке функции действительной переменной.

2.1 Предел последовательности

2.1.1 Определение и примеры

Определение 2.1. Функцияf: N → X , областью определения которой является множество натуральных чисел, называется последовательностью.

Значения f(n), n N, называются членами последовательности. Их принято обозначать символом элемента того множества, в которое происходит отображение, снабжая символ соответствующим индексом (аргументом функции f): xn = f(n). Элемент xn называется n-м членом последовательности. В связи с этим последовательность часто обозначают символом {xn } или {xn }+ n=1 ∞ , а также записывают в виде x1 , x2 , . . . , xn , . . . .

В дальнейшем в этой главе будем рассматривать только последовательность f: N → R действительных чисел.

Определение 2.2. Интервал, содержащий точкуa R, называют окрестностью этой точки. Интервал(a − δ, a + δ) ,δ > 0 , называют δ -окрестностью точкиa и обозначаютU a (δ) илиV a (δ) (часто пишут короче:U a илиV a ).

Определение 2.3. Числоa R называют пределом числовой последовательности{x n } , если для любой окрестности точкиa существует номерN N такой, что все элементыx n последовательности, номера которых большеN, содержатся вU a . При этом пишут

n lim→∞ xn = aили lim xn = aили xn → aпри n → ∞.

В логической символике определение 2.3 имеет вид:

a R. a = lim xn Ua N = N(Ua ) N: n > N xn Ua .

Поскольку Ua (ε) = (a − ε, a + ε) = {x R: |x − a| < ε}, то часто употребляют следующую равносильную формулировку определения2.3

Определение 2.4. Числоa называют пределом числовой последовательности{x n } , если для любого положительного числаε найдется номерN = N(ε) такой, что все члены последовательности с номерамиn > N удовлетворяют неравенству|x n − a| < ε .

Соответственно, в логической символике это определение имеет вид: a R, a = lim xn ε > 0 N = N(ε) N: n > N |xn − a| < ε

Замечание. Первые члены последовательности не влияют на существование и величину предела в случае его существования.

Иногда полезна следующая геометрическая интерпретация определения 2.3 предела последовательности:

Число a называется пределом последовательности{x n } , если вне любой окрестности точкиa находится не более конечного числа членов последовательности{x n } .

Ясно, что если вне некоторой окрестности точки a находится бесконечное число членов {xn }, то a не является пределом {xn }.

Рассмотрим несколько примеров.

Пример 2.1. Если {xn } : xn = c, то lim xn = c, так как все члены последовательности, начиная с первого, принадлежат любой окрестности

Пример 2.2. Покажем, что последовательность {xn } : xn =

имеет предел и lim xn = 0.

Зафиксируем ε > 0. Так как

≤ n

< ε для n >

То, полагая N = max{1, }, получим:

|xn | ≤

Следовательно, ε > 0 N = max{1, } N: n > N |xn | < ε.

Замечание. Одновременно мы доказали, что lim

Пример 2.3. Покажем, что lim

0, если q > 1.

Поскольку q > 1, то q = 1 + α, где α > 0. Поэтому n > 1 по формуле бинома Ньютона

qn = 1 + nα +n(n − 1) α2 + · · · + αn > nα.

Отсюда следует, что

N > 1. Зафиксируем ε > 0, положим

N = max{1, } и получим, что

Итак, ε > 0 N = max{1, } N: n > N |1/qn | < ε.

Пример 2.4. Покажем, что последовательность {xn } : xn = (−1)n , не имеет предела.

Для любого числа a укажем такую окрестность, вне которой расположено бесконечное множество членов данной последовательности. Для этого зафиксируем точку a R и рассмотрим ee единичную окрестность Ua (1) = (a − 1, a + 1). Поскольку x2k = 1, x2k+1 = −1, k N, и хотя бы одно из чисел +1 или −1 не принадлежит Ua (1), то вне Ua (1) находится бесконечное множество членов последовательности {xn }. Следовательно, число a не является её пределом. В силу произвольности числа a заключаем, что @ lim xn .

Определение 2.5. Числовая последовательность, имеющая пределом число, называется сходящейся. Все остальные последовательности называются расходящимися.

В логической символике определение 2.5 имеет вид: {xn } сходится a R: lim xn = a.

дящимися, а последовательность {(−1)n } - расходящейся.

2.1.2 Свойства сходящихся последовательностей

Теорема 2.1. Последовательность не может иметь двух различных пределов.

Пусть числовая последовательность {xn } имеет два различных предела a и b. Для определенности будем считать, что a < b. Положим

ε = b − 2 a . По определению2.4 предела последовательности найдем N1 и

n −

такие, что

n > N , то есть

| n −

Тогда n > N = max{N1 , N2 }

< xn <

Чего быть не может.

Определение 2.6. Числовая последовательность {x n } называется ограниченной сверху (соответственно, снизу или ограниченной), если множество X = {x n | n N} является ограниченным сверху (снизу или ограниченным). Если X - неограниченное множество, то {x n } называется неограниченной последовательностью.

C учетом определений 2.1 и2.2 имеем:

{xn } ограничена сверху M R: n N xn ≤ M, {xn } ограничена снизу M R: n N xn ≥ M, {xn } ограничена M > 0: n N |xn | ≤ M,

{xn } не ограничена M > 0 n N: |xn | > M.

Теорема 2.2. Сходящаяся последовательность ограничена.

Пусть последовательность {xn } сходится и lim xn = d. Полагая в определении2.4 ε = 1, найдем номер N такой, что |xn − d| < 1, n > N, то есть d − 1 < xn < d + 1, n > N. Введем обозначения:

a = min{x1 , x2 , . . . , xN , d − 1}, b = max{x1 , x2 , . . . , xN , d + 1}.

Тогда a ≤ xn ≤ b, n N.

Замечание. Ограниченность последовательности - необходимое, но недостаточное условие сходимости (см.пример 4) .

Теорема 2.3. Если числовая последовательность {x n } сходится и lim x n = a , то последовательность {|x n |} сходится и lim |x n | = |a|.

Так как a = lim xn , то ε > 0 N = N(ε) N: n > N |xn − a| < ε.

Отсюда следует, что n > N ||xn | − |a|| ≤ |xn − a| < ε.

Замечание 1. Из теоремы2.3 и примера3 следует, что при |q| > 1

lim q n = 0.

Замечание 2. Обратное утверждение к теореме2.3 не имеет места.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.

    курсовая работа , добавлен 28.02.2010

    Члены последовательности и их изображение на числовой оси. Виды последовательностей (ограниченная, возрастающая, убывающая, сходящаяся, расходящаяся), их практические примеры. Определение и геометрический смысл предела числовой последовательности.

    презентация , добавлен 21.09.2013

    Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.

    контрольная работа , добавлен 17.12.2010

    Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.

    презентация , добавлен 14.11.2014

    Понятие и история формирования категории "последовательность", ее значение в современной математике. Свойства и аналитическое задание последовательности, роль в развитии других областей знания. Решение задач на вычисление пределов последовательностей.

    презентация , добавлен 17.03.2017

    Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.

    презентация , добавлен 25.01.2013

    Предел числовой последовательности. Сравнение бесконечно малых величин. Второй замечательный предел. Теорема Коши о сходимости числовой последовательности. Использование бинома Ньютона. Замена сомножителей на эквивалентные им более простые величины.

    контрольная работа , добавлен 11.08.2009

    Понятие возрастающей числовой последовательности. Формула бинома Ньютона. Число положительных слагаемых. Определение ограниченности последовательности чисел. Предел монотонной и ограниченной последовательностей. Показательный рост или убывание.

    Астрономы могут похвастаться очередной значительной находкой. На этот раз они напали на след двух звёздных скоплений, в каждом из которых есть массивные звёзды. Открытие в мгновение перечеркнуло ранее принятый теоретический предел массы космических гигантов. Масса одной из найденных звёзд при рождении превышала массу Солнца в 150 масс и составляла около 300 масс.

    Астрономы могут похвастаться очередной существенной находкой. На этот раз они напали на след 2-х звёздных скоплений, в каждом из которых есть массивные звезды. Открытие в мгновение перечеркнуло раньше принятый гипотетический предел многих космических гигантов. Масса одной из найденных кинозвезд при рождении превышала массу Солнца в 150 масс и составляла около 300 масс. Благодаря открытию скопления космических монстров, исследователи смогут вычислить предел многих кинозвезд.
    Кинозвезды-великаны были обнаружены в молодых скоплениях NGC 3603 и RMC 136. Исследованиями занимались исследователи из Университета Шеффилда. Группа под руководством проф. астрофизики Пола Кроутера (Paul Crowther) наблюдала за объектами с помощью инфракрасного аппарата 8-метрового телескопа VLT ESO. За исключением этого в наблюдениях были использованы архивные данные телескопа Хаббл.
    В звёздном скоплении NGC 3603 случается непрерывный процесс рождения новых кинозвезд. Они образовываются в протяженных газово-пылевых облаках. В отличие от RMC 136 скопление NGC 3603 располагается в системе Млечный путь, на расстоянии от Солнца всего в 22 000 световых лет. II-е звёздное скопление, тоже небезызвестное как R136 располагается на ещё более значительном расстоянии от Солнца-165 000 световых лет (туманность Тарантул, галактика Большое Магелланово Облако). И, соответственно, выходит за пределы нашей Галактики. Объекты там отличаются возрастом, гигантской массой и весьма высокой температурой.
    Проводимые раньше исследования указывали, что в скоплениях весьма вероятно присутствие кинозвезд-гигантов. Однако лишь теперь астрономам удалось отыскать объекты в десятки раз ярче и массивнее Солнца. Температура поверхности кинозвезд превышает температуру поверхности Солнца в 7раз (около 40 000 градусов). Модельные расчёты указывают на то, что гипергиганты сформировались и имели первоначальную массу более 150 солнечных масс. Самой огромной оказалась R136a1. Теперь масса светила может достигать 265 солнечных масс. Если её сравнить со Звездой Эта Киля (90-100 масс Солнца), то превосходство R136a1 понятно. Это по праву наиболее большая кинозвезда из всех раньше открытых.
    Тоже в звёздном скоплении R136 были обнаружены ещё 3 гигантских светила. Их многих составляют 135 и 194 масс Солнца. Есть вероятность, что 1 из них в скором времени увеличится в два раза. Наподобие того, как в скоплении NGC 3603 увеличились многих 2-х кинозвезд. Великаны входили в двойную систему, при формировании их масса составляла примерно 150 солнечных.
    От многих светила зависит сила звёздного ветра. Чем массивнее она, тем сильнее порывы ветра с её поверхности. Это к тому же оказывает влияние на продолжительность существования кинозвезды: из-за постоянного ветра, кинозвезда теряет собственную массу. Так около млн. лет тому назад, при собственном рождении, кинозвезда R136a1 обладала массой около 320 солнечных. Каждые 20 тыс. лет она теряла около 1 массу Солнца. Вот и получается, что с того момента она утратила 1/5 собственной первоначальной многих. Суперзвезда R136a1 уже близка к тому моменту, когда она станет сверхновой. До взрыва гиганту остался примерно 1 миллион лет, а это ещё 1/2 отмеренного срока.
    Если сопоставить яркость Солнца и кинозвезды R136a1, то получится следующее. В первую очередь, соотношение яркости возможно сравнить с полной Луной. Во столько раз R136a1 будет ярче Солнца. Если кинозвезды поменять местами, то перемены в Солнечной системе произойдут незамедлительно. Масса гиганта повлияет на продолжительность г. на Земле: он сократится до 3-х недель. Сильное ультрафиолетовое облучение испепелит поверхность Земли и, соответственно, жизнь на нашей планете окажется невозможной.
    Сверхмассивные кинозвезды- редкое явление. Они рождаются только в плотных звёздных скоплениях, что замедляет процесс исследований. Вся сложность заключается в том, что обнаружить их посреди крупного числа кинозвезд может лишь инфракрасная камера. Её разрешающая способность обязана быть весьма высокой.
    Группа ученых из Университета Шеффилда постаралась оценить максимальную массу кинозвезд в скоплениях NGC 3603 и RMC 136. Тоже они старались подсчитать наиболее крупные кинозвезды. Дело в том, что массу одиночной кинозвезды вычислить почти нереально. Требуется, хотя бы, выяснить её температуру и скорость утраты многих. Нижний предел кинозвезд составляет не менее 80 масс Юпитера. Всё, что менее этого размера- бурые лилипуты. Но еще и верхняя планка звездных масс также есть. В виду последних открытий, учёным пришлось серьезно увеличить массовый предел. Сейчас цифра достигает 300 солнечных масс, а это почти вдвое более прошлого массового значения.
    Стало известно, что в звёздном скоплении R136 массу более 150 масс Солнца (на миг рождения) имеют лишь 4 кинозвезды. 1 из них, а именно R136a1, создаёт ветер мощностью в 50 раз более, который, к примеру, исходит от туманности Орион. Это максимально близкая к нашей планете область образования кинозвезд. 4 гиганта серьезно влияют на общую картину скопления. Их излучения- уже 1/2 вклада в сильный звёздный ветер скопления R136. II-ая 1/2 принадлежит остальным 100 000 кинозвезд.
    Процесс образования гигантских кинозвезд пока не понятен. Узнать это довольно непросто, ведь исследованиям мешают 2 фактора: недолгий срок существования крупных кинозвезд и мощный ветер, который беспрерывно привносит большое число изменений в массу кинозвезд. Потому учёным трудно до окончания разобраться с такими непростыми объектами как R136a1. Непонятен даже путь их образования. Версия о слиянии кинозвезд в одну к тому же остаётся возможной.
    Кинозвезды, имеющие от 8 до 150 масс Солнца, живут недолго и взрываются как сверхновые. После себя они оставляют не только лишь нейронные кинозвезды, но еще и вороные дырки. Находка исследователей из Университета Шеффилда лишь увеличивает шанс на существовании теории о экстремально ярких сверхновых. Кинозвезды массой от 150 до 300 солнечных масс появляются из-за неустойчивости, которую вызывают пары частица-античастица. Кинозвезды-великаны взрываются ещё до коллапса в их ядрах. Особенным считается то, что после взрыва подобных мощных кинозвезд не остаётся ничего. При этом они выбрасывают в космос вещество в виде железа с массой до 10 солнечных масс. Существование кинозвезд-гигантов разрешает проблему максимального значения многих светил. За последнее время взрывоопасные объекты уже были обнаружены. Использованы материалы сайта Гомел-сат.

    Посвящены одному из основных понятий математического анализа - пределу. И в случае числовой последовательности и в случае действительной функции действительного переменного исследовано неограниченное приближение к некоторому постоянному значению переменной величины, зависящей от другой переменной при определенном ее изменении. В этой главе попытаемся обобщить понятие предела для отображений произвольных метрических пространству причем обобщение коснется и способа стремления независимого переменного к заданному значению. 8.1. Понятие предела отображения Пусть X и У - метрические пространства с заданными на них метриками р и d соответственно, X - некоторое подмножество в X с той же метрикой />, имеющее а 6 X своей предельной точкой. Подчеркнем, что в силу определения 5.9 эта предельная для А точка может как принадлежать, так и не принадлежать подмножеству А. Будем рассматривать ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения проколотую окрестность U(a) = U(a) \ {а} данной точки. Пусть область определения отображения /: А У включат ет множество А. Отметим, что для точки а это отображение может и не быть определено. Определение 8.1. Точку 6 € У называют пределом отображения /: A -f У в точке а по множеству А и записывают b = lim f(x) или f(x) -> b при х-^а, если, како- ва бы ни была окрестность V(6) точки 6, существует такая проколотая окрестность U(a) точки а в X, что ее образ для любой точки ж€Ща)ПЛ принадлежит У(6),т.е. При выполнении (8.1) говорят также, что функция f(x) стремится к Ь при стремлении х по множеству А к точке а. Определение 8.1 является достаточно общим. В зависимости от того, какими множествами являются X, У, АСХ и какова точка а € X, можно получить различные конкретизации этого определения. Напомним (см. 5.2), что любая окрестность точки включает е-окрестность этой точки и всякая ^-окрестность является окрестностью. Поэтому, заменяя в (8.1) произвольную окрестность V (6) точки b б Y на ее ^-окрестность а проколотую окрестность точки а € X - на ее проколотую -окрестность приходим к следующей символической записи определения предела отображения, эквивалентного определению 8.1: При Y С R из (8.1) следует символическая запись определения предела отображения /: (предела действительной функции): . Бели в (8.5) 6 = 0) то функцию f(x) называют бесконечно малой при стремлении х по множеству А к точке а € X и записывают При У С R можно говорить о бесконечных пределах отображения, если точка 6 является одной из бесконечных точек (+оо или -оо) расширенной числовой прямой R или их объединением (оо). В этом случае окрестность каждой из перечисленных точек при выборе произвольного М > О примет вид Тогда из (8.1) следуют три довольно похожих между собой за-писи в символической форме определений бесконечных пределов функции: . Пример 8.1. Покажем, что lim f(x) = с, если отображение / в точках множества А принимает одно и то же значение с. В самом деле, какой бы ни была окрестность ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения V(c) точки с} Vx в U (а) П A /(х) = с, так как хе А. Поэтому /(U (а) П А) = с € V(c), что соответствует определению 8.1. Убедимся, что lim /(х) = а, если отображение / тождественно, т.е. /(я) = х Vx 6 А. В этом случае для любой окрестности V(a) при выборе U(a) = = V(a) \ {а} для тождественного отображения получим что отвечает (8.1). В частности, когда А = R и а соответствует бесконечной точке +оо расширенной числовой прямой, имеем: /(х) -f оо при х +оо. Действительно, при произвольном М > 0 в качестве проколотой окрестности бесконечной точки +оо достаточно выбрать множество U (+оо) = = {s € R: х > М}, чтобы получить /(х) > М и удовлетворить условию (8.7). # Если в определении 8.1 X = У = R и подмножество А = = {а: € R: х > а}, то приходим к понятию правостороннего предела действительной функции действительного переменного в точке а, обозначенного в 7.2 lim fix). Если же X = У = R Отметим, что множество А может совпадать со всем множеством X. При X = Y = R этот случай в определении 8.1 соответствует понятию двустороннего предела действительной функции действительного переменного, причем (если нет угрозы путаницы) вместо lim /(х) пишут просто lim /(х). Конечно, говоря о lim /(х), можно рассматривать всевоз-можные мыслимые подмножества А, но не всегда это приводит к содержательным нетривиальным результатам. Так, если функцию Дирихле рассматривать на подмножестве Q С R рациональных чисел, то получим просто постоянную функцию, предел которой установлен в примере 8.1. При определение 8.1 приведет к понятию предела последовательности точек произвольного метрического пространства У. В связи с этим дадим следующее определение. Определение 8.2. Точку 6 € У называют пределом последовательности {уп} точек уп метрического пространства У, если, какова бы ни была окрестность V(6) С У точки 6, существует натуральное число N , такое, что начиная с номера N +1 все точки данной последовательности попадают в эту окрестность, т.е. ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения При выполнении (8.10) говорят также, что {уп} стремится к точке 6. Использовав в (8.10) вместо произвольной окрестности точки 6 ее произвольную ^-окрестность, будем иметь Сравнивая (8.11) с (6.28) и определением 6.5, заключаем, что последовательность {уп} точек уп метрического пространства стремится к точке 6, если числовая последовательность {d(yn> 6)} расстояний d(yni b) € R бесконечно малая, т.е. Иначе говоря, исследование поведения последовательностей точек произвольного метрического пространства опирается на исследование сходимости числовых последовательностей. Более того, и предел отображения произвольных метрических пространств тесно связан с пределом последовательностей. Эту связь устанавливает следующая теорема. Теорема 8.1. Отображение /:У имеет точку 6 € У своим пределом при стремлении х по множеству А к точке а тогда и только тогда, когда при отображении / образ любой стремящейся к а последовательности точек из А является последовательностью точек из У, стремящейся к 6, т.е. Предположим, что точка 6 б У удовлетворяет определению 8.1 предела отображения и {х„} - произвольная последовательность точек хп из А, стремящаяся к точке a € X. Тогда, согласно (8.1), какова бы ни была окрестность V(b) С У точки 6, существует проколотая окрестность U(a) С X точ- ки а, такая, что /(и(а)ПА) С V(6). По определению 8.2, в U(a)nA должны лежать начиная с некоторого номера W + 1 все точки стремящейся к а последовательности {хп}» т.е. в силу (8.10) Тогда начиная с того же номера все точки f(xn) Е У последовательности {f(xn)} лежат в V(6), что, согласно определению 8.2, означает, что эта последовательность стремится к 6. Чтобы доказать достаточность условия теоремы, предположим, что для любой стремящейся к а последовательности {хп} точек хп из А последовательность {/(х„)} точек f(xn) из У стремится к 6. Если бы lim f(x) ф 6, то это означало бы существование такого числа е > 0, что при любом выборе 8 > 0 имеется точка х € А, удовлетворяющая условиям р(х, а) и d(f(x)y 6) > е. При сколь угодно малом S > О можно указать натуральное число N) такое, что 1 /N . Тогда для каждого номера п > N найдется хотя бы одна точка из А, которую обозначим хп, такая, что р(хп, ^ Таким образом, последовательность {хп}, составленная из таких точек хп 6 Ау в силу (8.11) стремится к а, тогда как {/(хп)} не стремится к 6, а это противоречит исходному предположению. Полученное противоречие доказывает достаточность условия теоремы. Эта теорема позволяет сформулировать определение, эквивалентное определению 8.1. Определение 8.3. Точку б€ У называют пределом отображения /: А -> У в точке а по множеству А, если при отображении / образ любой стремящейся к а последоваг тельности точек из А является последовательностью точек из У, стремящейся к Ь. Символические формы записи этого определения и теоремы 8.1 совпадают. Пример 8.2. Пусть X = R, А = R, а = +оо и в отображении /: R R f(x) = cos2 Vx 6 R. Покажем, что lim f(x) = lim cos a; не существует. Возьмем последовательность {a:n} = {2птг}, которая стремится к +оо. Тогда cosin = соз2птг = 1, и в силу (6.9) lim {cos xn} = 1. Если же взять последовательность {хп} = {(2п + 1)тг/2}, также стремящуюся к +оо, то ее образ сходится к нулю. Это противоречит определению 8.3 предела отображения, т.е. указанный выше предел не существует. Рассмотрение стремящихся к оо последовательностей {2п(-1)п7г} и {(2п+ 1)(-1)птг/2} приводит к тому же выводу. Отметим, что если обозначить то правомерна запись lim cosx = 1 и limcoex = 0. # Сопоставлением определений 8.1 и 5.13 может быть доказана следующая теорема. Теорема 8.2. Отображение /: X -+Y будет непрерывным в точке а € X в том и только том случае, когда предел отображения при стремлении х по множеству X к точке а совпадает со значением /(а), т.е. когда Л Пусть отображение / непрерывно в точке а в X. Тогда, по определению 5.13 непрерывного отображения, какова бы ни была окрестность V(6) точки 6 = /(а) € У, существует такая окрестность U(a) точки а € А} что /(U(a)) С V(6), а ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения стало быть, существует и проколотая окрестность U (а) точки а, такая, что /(U(a)) С V(b). Согласно определению 8.1 это означает, что справедливо (8.12). Обратно, пусть выполнено (8.12). Тогда в силу определения 8.1 для любой окрестности V (Ь) точки b = /(a) су- ществует проколотая окрестность U(a) точки а, такая, что /(U(a)) С V(6). Рассмотрим окрестность U(a) = U(a) U {a}. Поскольку /(a) G V(6), согласно свойствам отображения множеств (см. 2.1), имеем 4 т.е. отображение / по определению 5.13 непрерывно в точке аеХ. С учетом теоремы 8.2 можно сформулировать определение, эквивалентное определению 5.13. Определение 8.4. Отображение /: называют непрерывным в точке а 6 Ху если справедливо (8.12). Учитывая теоремы 8.1 и 8.2, получаем следующее утверждение. Утверждение 8.1. Для непрерывности отображения /: X -У Y в предельной точке абХ необходимо и достаточно, чтобы образ при отображении / любой стремящейся к а последовательности точек из X был последовательностью точек из У, сходящейся к точке /(а). 8.2. Некоторые свойства предела отображения Пусть X и У, так же как и в 8.1, - метрические пространства, AC X и а € X - предельная точка множества А. Теорема 8.3. Бели при стремлении х по множеству А к точке а отображение /: X У имеет предел, то он единственный. Предположим, что при х-^а отображение / имеет два предела 6i и 62, причем 61 ф 62. Тогда при выборе непересекающихся окрестностей этих точек (V(61)flV(62) = 0), по определению 8.1, у точки а существует проколотая окрестность U(a), такая, что и, а это невозможно в силу определения 2.1 отображения. Теорема 8.4 (о пределе композиции). Бели существуют пределы отображений /: AC X и д: У Z, причем {(х)фЬ при г-^a, где Ху У и Z - метрические пространства предельные точки соответственно для А С X и f(A) С У, то существует при х-^а и предел композиции (сложной функции) Выберем произвольную окрестность W (с) точки с. Тогда в силу определения 8.1 предела отображения всегда можно найти такую проколотую окрестность V(6) точки 6, что д(V(6) П f}