Принцип работы жесткого диска. Как работает жесткий диск

Как устроен жесткий диск? Какие бывают жесткие диски? Какую роль они выполняют в компьютере? Как взаимодействуют с другими компонентами? Какие параметры учитывать при выборе и покупке жесткого диска, вы узнаете из этой статьи.

НЖМД - сокращенное название от "Накопитель на Жестких Магнитных Дисках ". Так же вы встретите английское HDD - и сленговое Винчестер или сокращенно Винт .

В компьютере жесткий диск отвечает за хранение данных. Операционная система Windows, программы, фильмы, фотографии, документы, вся информация, которую вы загружаете в компьютер, сохраняется на жестком диске. А информация в компьютере это самое ценное! Если вышел из строя процессор или видеокарта, их можно купить и заменить. А вот потерянные семейные фотографии из отпуска прошлым летом или данные бухгалтерии небольшого предприятия за год не так-то просто восстановить. Поэтому надежности хранения данных уделяется особое внимание.

Почему же прямоугольная металлическая коробка называется диском? Для ответа на этот вопрос нам нужно заглянуть внутрь и узнать как жесткий диск устроен. На картинке ниже вы можете посмотреть из каких деталей жесткий диск состоит и какие функции выполняет каждая деталь Нажмите для увеличения. (Взято с сайта itc.ua)

Предлагаю так же посмотреть отрывок из передачи канала Discovery о том как устроен и работает жесткий диск.

Еще три факта которые вам надо знать о жестких дисках.

  1. Жесткий диск самая медленная деталь компьютера. Когда компьютер "завис", обратите внимание на индикатор работы жесткого диска. Если он часто мигает или горит непрерывно, значит жесткий диск выполняет команды одной из программ а все остальные простаивают, ожидая своей очереди. Если операционной системе не хватает быстродействующей оперативной памяти для запуска программы, она использует место на жестком диске, что очень сильно тормозит весь компьютер. Поэтому один из способов увеличить скорость работы компьютера - увеличить размер оперативной памяти.
  2. Жесткий диск так же является самой хрупкой деталью компьютера. Как вы узнали из видео, двигатель раскручивает диск до нескольких тысяч оборотов в минуту. При этом магнитные головки "парят" над диском в воздушном потоке, созданном вращающимся диском. Расстояние между диском и головками в современных устройствах составляет около 10 нм. Если в этот момент подвергнуть диск удару или тряске, головка может коснуться диска и повредить поверхность с хранящимися на ней данными. В результате появляются так называемые "badblocks " - нечитаемые области, из-за которых компьютер не может считать какой-нибудь файл или загрузить систему. В выключенном состоянии головки "паркуются" за пределами рабочей области и перегрузки от удара не так страшны жесткому диску. Делайте, пожалуйста, резервные копии важных данных!
  3. Объем жесткого диска зачастую немного меньше того, который указывает продавец или производитель. Причина в том, что изготовители указывают объем диска, исходя из того, что в одном гигабайте 1 000 000 000 байт, в то время как их там 1 073 741 824.

Покупаем жесткий диск

Если вы решили увеличить объем для хранения информации в компьютере подключив дополнительный жесткий диск или заменив старый более вместительным, что вам потребуется знать при покупке?

Во-первых, загляните под крышку системного блока вашего компьютера. Вам необходимо выяснить какой интерфейс подключения жесткого диска поддерживает материнская плата. На сегодняшний день наиболее распространены стандарты SATA и отживающий свой век IDE . Их легко отличить по внешнему виду. На картинке слева показан фрагмент материнской платы, которая оснащена разъёмами обоих видов, но на вашей, скорее всего окажется один из них.

Существует три версии интерфейса SATA . Они отличаются скоростью передачи данных. SATA , SATA II и SATA III со скоростью 1.5, 3 и 6 гигабайт в секунду соответственно. Все версии интерфейсов SATA выглядят одинаково и совместимы между собой. Вы можете подключить их в любой комбинации, в результате скорость передачи данных будет ограничена более медленной версией. При этом скорость работы жесткого диска еще меньше. Поэтому потенциал быстрых интерфейсов сможет раскрыться лишь с появлением новых быстродествующих накопителей.

Если вы решили приобретать дополнительный жесткий диск SATA, проверьте есть ли у вас интерфейсный кабель как на картинке. В комплекте с диском он не продается. (Обычно они комплектуются к материнской плате.) Так же среди разъемов блока питания должен быть хотя один свободный для подключения жесткого диска или вам может понадобится переходник со старого стандарта на новый.

Теперь о самом жестком диске: Главным параметром является, конечно, емкость. Как я упоминал выше, учтите, что она окажется немного меньше заявленной. Для операционной системы и программ требуется 100 - 200 Гигабайт, что по современным меркам совсем немного. Сколько вам может понадобиться дополнительного пространства вы можете определить опытным путем. Большие объемы могут потребоваться,например, для записи видео высокого качества. Современные фильмы в формате HD достигают нескольких десятков Гигабайт.

Кроме этого среди основных параметров указывают:

  1. Форм-фактор - размер диска. Диски размером 1.8 и 2.5 дюйма используются в . Для стационарного компьютера следует приобретать диск 3.5 дюйма. Разъемы SATA у них одинаковые и диск для ноутбука может работать в стационарном компьютере. Но диски маленьких размеров сделаны с упором на компактность и низкое энергопотребление, а по быстродействию уступают более крупным моделям. И стоят при этом дороже.
  2. RPM - скорость вращения диска. Измеряется в количестве оборотов в минуту (RPM - сокращение от revolutions per minute ). Чем больше скорость вращения, тем быстрее диск записывает и считывает информацию. Но при этом потребляет больше энергии. На сегодняшний день наиболее распространены диски с 5400 RPM и 7200 RPM . Более низкие обороты чаще встречаются в дисках для ноутбуков, дисках большой емкости (более двух терабайт) и так называемых "зеленых" дисках, названных так из-за пониженного энергопотребления. Так же существуют жесткие диски со скоростью вращения 10000 RPM и 15000 RPM . Они рассчитаны для работы в высоконагруженных серверах и имеют повышенный ресурс надежности, но и стоят намного дороже обычных.
  3. Производитель . На данный момент на рынке накопителей несколько крупных производителей. Среди них идет довольно жесткая конкуренция, поэтому качеством они ничем не уступают друг другу. Поэтому можете выбирать любое из известных имен: Hitachi, HP, Seagate, Silicon Power, Toshiba Transcend, Western Digital.

Каждый из нас ежедневно сталкивается с различными компьютерными терминами, знания о которых являются поверхностными, а некоторые термины нам вообще незнакомы. Да и зачем что-то знать о том, что нас не касается или не беспокоит. Не так ли? Известная истина: пока какое-нибудь оборудование (в т.ч. и жесткий диск) нормально и беспроблемно функционирует, то никто и никогда не будет забивать свою голову тонкостями его работы, да это и ни к чему.

Но, в моменты, когда в процессе работы любого устройства системного блока начинаются сбои, или просто внезапно понадобилась помощь с компьютером, очень многие пользователи тут же берут отвертку и книгу «азы компьютерной грамотности, или как реанимировать компьютер в домашних условиях». И пытаются самостоятельно решить проблему, не прибегая при этом к помощи специалиста. И чаще всего это заканчивается очень плачевно для их компьютера.

  • Понятия "жесткий диск" или "винчестер" и их возникновение

Определение и возникновение понятия "винчестер"

Итак, темой нашей очередной статьи на этот раз будет такая запчасть системного блока как жесткий диск. Мы с вами подробно рассмотрим само значение этого понятия, кратко вспомним историю его развития, и более подробно остановимся на внутреннем строении, разберем основные его типы, интерфейсы и подробности его подключения. Кроме этого немного заглянем в будущее, а может даже уже почти и в настоящее, и расскажем, что постепенно приходит на смену старым добрым винтам. Забегая вперед, скажем, что это твердотельные накопители, работающие по принципу USB-флешек - SSD-устройства.

Самый первый в мире жесткий диск, такого типа, как мы привыкли видеть его сейчас и каким привыкли пользоваться, изобрел сотрудник IBM Кеннет Хотон в 1973 году. Эта модель называлась загадочным сочетанием цифр: 30-30, точно так же, как калибр у всем известной винтовки Winchester, Не трудно догадаться, что отсюда и пошло одно из названий - винчестер, которое популярно в среде айтишников до сих пор. А, возможно, кто-то его сейчас прочитал вообще в первый раз.

Перейдем к определению: жесткий диск (а, если вам удобно, то хард, винчестер, HDD или винт) – это запоминающее устройство компьютера (или ноутбука), на которое при помощи специальных головок чтения/записи информация записывается, хранится и удаляется по мере необходимости.

"А чем же это все отличается от простых дискет или CD-DVD?" - просите вы. А все дело в том, что в отличие от гибких или оптических носителей, здесь данные записываются на жесткие (отсюда и название, хотя кто-то может уже и догадался сам) алюминиевые или стеклянные пластины, на которые нанесен тонкий слой ферромагнитного материала, чаще всего для этих целей используется хром диоксид.

Вся поверхность таких вращающихся магнитных пластин разделена на дорожки и секторы по 512 байт каждый. В некоторых накопителях есть всего один такой диск. Другие же содержат одиннадцать и более пластин, причем информация записывается на обе стороны каждой из них.

Внутреннее строение

Сама конструкция жесткого диска состоит не только из непосредственных накопителей информации, но и механизма, считывающего все эти данные. Все вместе это и есть главное отличие хардов от дискет и оптических накопителей. А в отличие от оперативной памяти (ОЗУ), которой необходимо постоянное питание, винчестер является энергонезависимым устройством. Его можно смело отключать от питания и брать с собой куда угодно. Данные на нем сохраняются. Это становится особенно важно, когда нужно восстановить информацию .

Теперь немного расскажем непосредственно о внутреннем строении жесткого диска. Сам винчестер состоит из герметичного блока, заполненного обычным обеспыленным воздухом под атмосферным давлением. Вскрывать его в домашних условиях мы не рекомендуем, т.к. это может привести к поломке самого устройства. Каким бы чистюлей вы не были, но пыль в комнате найдется всегда и она может попасть внутрь корпуса. В профессиональных сервисах, которые специализируются на восстановлении данных, есть специально оборудованная «чистая комната», внутри которой и производится вскрытие винчестера.

Также в состав устройства входит плата с электронной схемой управления. Внутри блока находятся механические части накопителя. На шпинделе двигателя привода вращения дисков закреплены один или несколько магнитных пластин.

В корпусе также расположен предусилитель-коммутатор магнитных головок. Сама же магнитная головка производит чтение или запись информации с поверхности одной из сторон магнитного диска. Скорость вращения которого достигает 15 тыс. оборотов в минуту - это что касается современных моделей.

При включении питания, процессор жесткого диска начинает с того, что тестирует электронику. Если всё в порядке, включается шпиндельный двигатель. После того, как достигнута определенная критическая скорость вращения, плотность прослойки воздуха, набегающей между поверхностью диска и головкой, становится достаточной, чтобы преодолеть силу прижима головки к поверхности.

В результате, головка чтения/записи «зависает» над пластиной на крошечном расстоянии всего в 5-10 нм. Работа головки чтения/записи схожа с принципом действия иголки в граммофоне, только лишь с одним отличием – у неё не происходит физического контакта с пластиной, в то время, как в граммофоне головка иголки соприкасается с пластинкой.

В моменты, когда питание компьютера выключается и диски останавливаются, головка опускается на нерабочую зону поверхности пластины, так называемую зону парковки. Поэтому не рекомендуется завершать работу компьютера аварийно - просто нажимая на кнопку выключения или выдергивая кабель питания из розетки. Это может привести к выходу из строя всего HDD. Ранние модели имели специальное программное обеспечение, которое инициировало операцию парковки головок.

В современных же HDD вывод головки в зону парковки происходит автоматически, когда снижается скорость вращения ниже номинальной или когда подается команда на отключение питания. Обратно в рабочую зону головки выводятся лишь тогда, когда будет достигнута номинальная скорость вращения двигателя.

Наверняка в вашем пытливом уме уже созрел вопрос – насколько герметичен сам блок дисков и какова вероятность того, что туда может просочиться пыль или другие мелкие частицы? Как мы уже писали выше, они могут привести к сбою в работе харда или вообще к его поломке и потере важной информации.

Но не стоит волноваться. Производители всё давным давно предусмотрели. Блок дисков с двигателем и головки находятся в специальном герметичном корпусе – гермоблоке (камере). Однако его содержимое не полностью изолировано от окружающей среды, обязательно необходимо перемещение воздуха из камеры наружу и наоборот.

Это нужно, чтобы выровнять давление внутри блока с внешним, чтобы предотвратить деформацию корпуса. Это равновесие достигается при помощи специального устройства, которое называется барометрический фильтр. Он размещен внутри гермоблока.

Фильтр умеет улавливать мельчайшие частицы, величина которых превышает расстояние между головкой чтения/записи и ферромагнитной поверхностью диска. Кроме выше упомянутого фильтра есть еще один – фильтр рециркуляции. Он улавливает частицы, которые присутствуют в воздушном потоке внутри самого блока. Они могут там появляться от осыпания магнитного опыления дисков (наверняка вы слышали когда-нибудь фразу, что «хард посыпался»). Кроме того, этот фильтр улавливает те частицы, которые «пропустил» его барометрический «коллега».

Интерфейсы подключения HDD

На сегодняшний день, чтобы подключить жесткий диск к компьютеру вы можете использовать один из трех интерфейсов: IDE, SCSI и SATA.

Первоначально в 1986 году интерфейс IDE разрабатывался только для подключения HDD. Затем его модифицировали в расширенный интерфейс ATA. В результате к нему можно подключать не только винчестеры, но и CD/DVD-приводы.

Интерфейс SATA – более быстрый, современный и производительный, нежели ATA.

В свою очередь, SCSI – высокопроизводительный интерфейс, который способен подключать различного рода устройства. Сюда входят не только накопители информации, но и различная периферия. Например, более быстрые SCSI-сканеры. Однако когда появилась USB-шина, необходимость подключения периферии посредством SCSI отпала. Так, что если вам посчастливится его где-то увидеть, то считайте, что вам повезло.

Сейчас давайте немного расскажем о подключении к IDE интерфейсу. В системе может быть два контроллера (первичный и вторичный), к каждому из которых можно подключить два устройства. Соответственно получаем максимум 4: первичный мастер, первичный подчиненный и вторичный мастер, вторичный подчиненный.

После того, как подключили устройство к контроллеру, следует выбрать режим его работы. Он выбирается при помощи установки специальной перемычки (она называется джампер) в определенное место в разъеме (рядом с разъемом для подключения шлейфа IDE).

При этом следует помнить, что более быстрое оборудование к контроллеру подключается первым и называется master. Второе называется slave (подчиненное). Последней манипуляцией будет подключить питание, для этого нам нужно выбрать один из кабелей блока питания. Данная информация вам пригодится, если у вас очень-очень старый компьютер. Так как в современных необходимость в подобных манипуляциях отпала.

Через SATA подключить гораздо проще. Кабель для него имеет одинаковые разъемы на обоих концах. SATA-диск не имеет перемычек, поэтому у вас нет необходимости выбирать режим работы устройств - справится даже ребенок. Питание подключается при помощи специального кабеля (3,3 В). Однако существует возможность подключиться через переходник к обычному кабелю питания.

Дадим один полезный совет: если к вам часто приходят друзья со своими винчестерами переписать новых фильмов или музыки (да-да, друзья у вас настолько суровые, что носят с собой не внешний HDD, а обычный внутренний), и вы уже устали все время раскручивать системный блок, рекомендуем приобрести специальный карман для жесткого диска (он называется Mobile Rack). Они есть и с IDE, и с SATA-интерфейсами. Чтобы подключить к вашему компьютеру еще один дополнительный хард, просто вставляем его в такой карман и готово.

SSD диски - новый этап в развитии

Уже сегодня (а может быть уже и вчера) начался следующий этап в развитии устройств-накопителей информации. На смену жестким дискам приходит новый тип - SSD. Далее расскажем о нем поподробней.

Итак, SSD (Solid State Disk) – твердотельный накопитель, который работает по принципу флеш-памяти USB. Одна из самых важных его отличительных черт от обычных винчестеров и оптических накопителей – в его устройство не входит никаких подвижных деталей и механических компонентов.

Накопители данного типа, как это часто бывает, изначально разрабатывались исключительно для военных целей, а также для высокоскоростных серверов, так как старые добрые харды для таких нужд уже являлись недостаточно быстрыми и надежными.

Перечислим наиболее важные преимущества SSD:

  • Во-первых, запись информации на SSD и чтение с него происходит намного быстрее (десятки раз), чем с HDD. Работу обычного винчестера очень сильно тормозит движение головки чтения/записи. А т.к. в SSD её нет, то и проблемы нет.
  • Во-вторых, благодаря одновременному использованию всех модулей памяти, установленных в SSD-накопитель, скорость передачи данных значительно выше.
  • В-третьих, не так восприимчивы к ударам. В то время как жесткие накопители могут потерять при ударе часть данных или же вообще выйти из строя, что и случается чаще всего - будьте осторожны!
  • В-четвертых, потребляют меньше энергии, что делает их удобными в использовании в устройствах, работающих от аккумуляторов - ноутбуках, нетбуках, ультрабуках.
  • В-пятых, данный тип накопителей при работе практически не производит никакого шума, тогда как при работе хардов мы слышим вращение дисков и движение головки. А, когда они выходят из строя, так и вообще сильный треск или стук головок.

Но не будем скрывать: пожалуй, есть два недостатка SSD – 1) за его определенную емкость вы заплатите значительно дороже, нежели за жесткий диск идентичного объема памяти (разница будет в несколько раз, хотя с каждым годом становится всё меньше и меньше); 2) SSD имеют относительно небольшое ограниченное количество циклов чтения/записи (т.е. изначально ограниченный срок службы).

Итак, мы с вами познакомились с понятием «жесткий диск», рассмотрели его строение, принцип работы и особенности различных интерфейсов подключения. Надеемся, предложенная информация оказалось несложной для восприятия, а главное, полезной.

Если у вас возникли трудности с выбором, если не можете определить, какой тип жестких дисков поддерживает ваша материнская плата, какой интерфейс подходит или какой объем HDD будет больше соответствовать вашим нуждам, то вы всегда можете обратиться за помощью в компьютерный сервис Комполайф на всей территории нашего обслуживания.

Наши специалисты помогут вам с выбором и заменой жесткого диска. Кроме этого, у нас вы можете заказать установку нового устройства в ваш системный блок или ноутбук.

Вызвать мастера

Цель этой статьи - описать устройство современного жёсткого диска, рассказать о его главных компонентах, показать, как они выглядят и называются. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологиями, описывающими компоненты жестких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.

Зелёный текстолит с медными дорожками, разъемами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она служит для управления работой жесткого диска. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA), специалисты также называют его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату и изучим размещённые на ней компоненты.

Первым в глаза бросается большой чип, расположенный посередине – микроконтроллер, или процессор (Micro Controller Unit, MCU). На современных жёстких дисках микроконтроллер состоит из двух частей – собственно центрального процессора (Central Processor Unit, CPU), который производит все вычисления, и канала чтения/записи (read/write channel) - особого устройства, преобразующего поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объем памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки. Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько нам известно, только Hitachi/IBM указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, об объёме кэша остаётся только гадать.

Следующий чип – контроллер управления двигателем и блоком головок, или «крутилка» (Voice Coil Motor controller, VCM controller). Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Ядро VCM-контроллера может работать даже при температуре в 100° C.

Часть прошивки диска хранится во флэш-памяти. При подаче питания на диск микроконтроллер загружает содержимое флэш-чипа в память и приступает к исполнению кода. Без корректно загруженного кода, диск даже не пожелает раскручиваться. Если на плате отстутствует флэш-чип, значит, он встроен в микроконтроллер.

Датчик вибрации (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшую вибрацию. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено как минимум два датчика вибрации.

На плате имеется ещё одно защитное устройство - ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Теперь рассмотрим гермоблок.

Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится ваккум. На самом деле это не так. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.

Сама крышка не представляет собой ничего интересного. Это просто кусок металла с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.

Драгоценная информация хранится на металлических дисках, называемых также блинами или пластинами (platters). На фотографии вы видите верхний блин. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между блинами, а также над верхним из них, мы видим специальные пластины, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны.

Вид блинов и сепараторов сбоку.

Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Парковочная зона - это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, парковочная зона расположена ближе к шпинделю, что видно на фотографии.

На некоторых накопителях, парковка производится на специальных пластиковых парковочных площадках, расположенных за пределами пластин.

Жёсткий диск - механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин.

Теперь снимем верхний магнит и посмотрим, что скрывается под ним.

В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом - удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача - ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жестких дисках. На нашем накопителе, второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.

Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок, образуют позиционер (actuator) - устройство, которое перемещает головки. Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Это защитный механизм, освобождающий БМГ после того как шпиндельный двигатель наберёт определённое число оборотов. Происходит это за счёт давления воздушного потока. Фиксатор защищает головки от нежелательных движений в парковочном положении.

Теперь снимем блок магнитных головок.

Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.

Подшипник.

На следующей фотографии изображены контакты БМГ.

Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для улучшения проводимости.

Это классическая конструкция коромысла.

Маленькие чёрные детали на концах пружинных подвесов, называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки - это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью блинов. На современных жёстких дисках, головки двигаются на расстоянии 5-10 нанометров от поверхности блинов. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Сами считывающие и записывающие элементы находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп.

Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.

Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель - это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.

Предусилитель располагают прямо в БМГ по очень простой причине - сигнал, идущий с головок очень слаб. На современных дисках он имеет частоту около 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск. У этого жёсткого диска к каждой головке ведёт шесть дорожек. Зачем так много? Одна дорожка - земля, ещё две - для элементов чтения и записи. Следующие две дорожки - для управления мини-приводами, особыми пьезоэлектрическими или магнитными устройствами, способными двигать или поворачивать слайдер. Это помогает точнее задать положение головок над треком. Последняя дорожка ведёт к нагревателю. Нагреватель служит для регулирования высоты полёта головок. Нагреватель передаёт тепло подвесу, соединяющему слайдер и коромысло. Подвес изготавливается из двух сплавов, имеющих разные характеристики теплового расширения. При нагреве подвес изгибается к поверхности блина, таким образом, уменьшая высоту полёта головки. При охлаждении подвес выпрямляется.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.

На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.

Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).

Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).

Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.

Теперь понятно, за счёт чего создается пространство для головок - между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо - высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.

Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.

Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха.

Уточнение связи между русскоязычной и англоязычной терминологией выполнено Леонидом Воржевым.

Статья скопирована с

Многие пользователи ПК знают для чего нужен винчестер, но не многие знают, . Из статье вы узнаете, почему ЖД называют винчестером, как устроен, важные характеристики, а также принцип работы винчестера.

НЕМНОГО ИСТОРИИ:
Согласно легенде 1973 года, жесткий диск получил свое неофициальное «прозвище», когда появился первый HDD. Его объем составлял 30Мб + 30Мб в другом отсеке. Разработкой HDD занималась команда инженеров, за объем памяти ему дали кодовое название «30-30», такое название было очень похоже на популярное в то время оружие, калибр патрона которого был 30-30 Winchester.
Интересно, что в начале 90-х годов в странах США данное название вышло из лексикона; в России актуально по настоящее время, кроме этого используется сокращение «винт».

ВАЖНЫЕ ХАРАКТЕРИСТИКИ:
Поскольку современный рынок переполняют различные HDD, SSD и т. д., то данные характеристики и параметры помогут вам лучше разобраться в этом вопросе при покупке жесткого диска.

  1. Подключение: в основном жесткие диски подключаются к материнской плате по средствам интерфейса SATA. Но бывают и исключения, например интерфейс eSATA, это не одно и тоже. Кроме этого, большую популярность набирают Fire-Wire, IDE.
  2. Емкостью характеризуется величина, показатель того, какой объем информации поместится на ЖД. В современных компьютерах стоят винчестеры на500Гб или 1Тб.
  3. Физический размер: габариты также важны, по ним можно определить для какого ПК он предназначен. К примеру, ЖД для ноутбука составит 2,5 дюйма, для стационарного компьютера требуется 3,5 дюйма.
  4. Обороты: скорость вращения также немаловажный параметр. Чем выше числовое значения показателя, тем выше будет скорость работы винта. Средний показатель на рынке составляет 5400 — 7200 оборотов/мин.
  5. Промежуточная память: по-другому она называется – буфер. Скорость чтения и записи на ЖД разная, чтобы как-то сгладить это, инженеры придумали промежуточную память, она словно сглаживает разницу величин.

УСТРОЙСТВО ВИНЧЕСТЕРА:
Внутри жесткого диска находится:
— плата электроники;
— двигатель;
— магнитные головки;
— магнитный диск;
1. Плата электроники – интегральные схемы для работы ЖД. Отвечает за принятие и обработку команд с ПК. Схема также состоит из: ПЗУ, ОЗУ, микросхем и главного процессора.
2. Двигатель или электромотор предназначен для управления контроллером и оборотами.
3. Магнитные головки отвечают за запись и считывание информации на диске.
4. Магнитный диск является самым главным, именно от его работы зависит работа всего винчестера. В современных типах ЖД установлено несколько таких магнитных диска.

ПРИНЦИП РАБОТЫ ВИНЧЕСТЕРА:
При подключении компьютера к сети, питание приводит в работу жесткий диск, но что же происходит дальше, как все работает? После того, как ЖД включается, начинает работать главный контроллер, затем происходит вращение двигателя. После того, как скорость достигла нужного параметра, в работу подключаются считывающие сигнал головки. При запуске считываются данные о состоянии диска, после подключается сохраненная пользователем информация. Теперь вы знаете, как работает жесткий диск компьютера , чем может отличатся, какие характеристики имеет.

    Внутренняя память ПК……………………………………. Стр. 3

    Основные факторы влияющие на производительность ПК

.………………………………………………..……………. Стр. 3

    Сканеры, виды, характеристики…………………………... Стр.4

    Внутреннее устройство лазерного принтера ……….......... Стр. 6

    Список используемой литературы ……………………….. Стр. 8

Жёсткий диск – это магнитное устройство хранения информации, установленное в специальные отсеки в системном блоке. И это место, где хранится вся ваша информация и программы. Если жёсткий диск перестанет работать, то вы можете потерять все ваши данные. Правда, важно знать, что в случае ЧП возможно восстановление данных. Жесткий диск иногда также называют винчестером или HDD (Hard Disk Drive).

Назначение жесткого диска:

Для считывания и записи информации к каждому диску в этой стопке подводится магнитная головка. Вращение дисков и перемещение магнитных головок обеспечивается электродвигателями и управляющими электронными схемами.

Основные функции жесткого диска : Хранение данных, установка программного обеспечения и самая главная наша программа (набор программ) - операционная система. Без операционной системы компьютер - груда дорогого железа

Внутренняя память ПК:

Оперативная память, кеш память, постоянное запоминающее устройство, CMOS RAM, Видеопамять.

Основные факторы влияющие на производительность ПК.

Основные узлы, материнская плата, процессор, видеокарта, оперативная память.

Сканер – это аналого-цифровые преобразователи. Они превращают аналоговые объекты – документы, страницы книг и журналов, фотографии – в цифровые изображения, которые сохраняются в компьютере в виде графических файлов. Специальные программы для оптического распознавания символов (например, Fine Reader) преобразуют графическое изображение страницы текста в текстовый формат. Картинка становится текстом и его можно редактировать обычным образом в текстовом редакторе.

Виды:Ручной вид сканеров, Планшетный и Протяжной.

Характеристики сканера

Сканер способен осуществлять два типа операций:

    Сканировать изображения;

    Сканировать текст для дальнейшего распознавания.

Распознавание текста – перевод изображений букв и цифр в цифровой вид для последующей обработки в текстовом редакторе.

Перед покупкой стоит определиться с основными характеристиками сканера и требований к нему.

Главный параметр – разрешающая способность, которая измеряется в точках на дюйм (dpi). Подразделяется на два вида:

    Программное разрешение.

    Оптическое (реальное) разрешение.

Оптическим разрешением является показатель первичного сканирования. Однако программные средства в большинстве случаев позволяют повысить качество изобра­жения, а также его разрешение. Оптическое разреше­ние сканера - 600x600 dpi – это качество среднего скане­ра для домашнего использования. Программное разрешение может указываться даже 4800x4800 dpi, но только показатель оптического разрешения указывает на качество получаемого изображения.

Типичное разрешение сканера состоит из 2х показателей: по гори­зонтали и по вертикали.

Выявим нужный для домашнего использования показатель разрешения:

    Простая цветная печать на обычном принтере потребует от 300 dpi.

    Фотопечать потребует от 600 до 1200 dpi. Все зависит от типа принтера.

    Хранение изображений, их просмотр на ПК: от 85 ppi (pixel per inch) до 200 dpi.

    Распознавание текста: от 300 до 600 dpi. Зависит от качества исходного документа.

Внутреннее устройство лазерного принтера.

Печатающий механизм

    Драм-юнит (drum-unit)

    Фотобарабан (Фотовал, фоторецептор) - алюминиевый цилиндр, покрытый светочувствительным материалом, способным менять своё электрическое сопротивление при освещении. В некоторых системах вместо фотоцилиндра использовался фоторемень - эластичная закольцованная полоса с фотослоем.

    Магнитный вал - вал в картридже, используемый для переноса тонера из бункера на фотобарабан. (Либо ролик проявки в аппаратах Xerox/Samsung, где используется немагнитный тонер.)

    Ракельный нож

    Бункер отработки

    Блок лазера (laser beam unit) (либо светодиодная линейка, в светодиодных принтерах)

    Коротрон (коронатор, ролик заряда, Corona Wire)

    Лента переноса (transfer belt) - лента в цветных лазерных принтерах, на которую наносится промежуточное изображение с барабанов 4 цветных картриджей, которое затем переносится на конечный носитель- бумагу.

    Блок проявки (developing unit) служит для переноса тонера на электростатическое изображение, образованное на поверхности фотопроводящего барабана

Расходные материалы

Тонер - порошок для нанесения изображения.

Носитель (анг. Carrier) - ферромагнитный порошок (по структуре представляет собой мелкие частицы), используемый в двухкомпонентных машинах для удержания тонера на поверхности магнитного вала за счет электростатических сил (при перемешивании с тонером заряжает его положительным статическим потенциалом при взаимном трении), а оттуда, под воздействием разряда на коротроне - на поверхность фотобарабана; причем сам девелопер, в силу своих магнитных свойств, остается на магнитном валу и почти не расходуется (однако теряет со временем свои свойства и тоже требует замены).

Девелопер (анг. Developer) (изредка называется стартером) - смесь материалов, подаваемая к фотобарабану. В двухкомпонентных машинах это смесь тонера и носителя, а в однокомпонентных машинах - только тонер. Термин аналогичен применяемому в фотографии термину проявитель, но обычно в русскоязычной литературе не переводится.

Список используемой литературы:

    Информатика в понятиях и терминах: Кн. для учащихся ст. классов сред. шк./ Г.А. Бордовский, В.А. Извозчиков, Ю.В. Исаев, В.В. Морозов; Под ред. В.А. Извозчикова. - М.: Просвещение, 1991. - 208 с.

    Радченко Н.П., Козлов О.А. Школьная информатика: экзаменационные вопросы и ответы. - М.: Финансы и статистика, 1998. - 160 с.

    Семакин И., Залогова Л., Русаков С., Шестакова Л. Информатика. Учебник по базовому курсу (7-9 классы). М.: Лаборатория Базовых Знаний, 1998. - 464 с.

    Кушниренко А.Г. и др. Основы информатики и вычислительной техники: Проб. учеб. для сред. учеб. заведений/ А.Г.Кушниренко, Г.В.Лебедев, Р.А.Сворень. - М.: Просвещение, 1990. - 224 с.

    Гук М. Аппаратные средства IBM PC. Энциклопедия. СПб.: Издательство "Питер", 2000. - 816 c.