Таблица истины и лжи. Истина, ложь, заблуждение

Продолжительность урока: 45 мин

Тип урока: комбинированный:

  • проверка знаний – устная работа;
  • новый материал – лекция;
  • закрепление – практические упражнения;
  • проверка знаний – задания для самостоятельной работы.

Цели урока:

  • дать понятие таблицы истинности;
  • закрепление материала предыдущего урока “Алгебра высказываний”;
  • использование информационных технологий;
  • привитие навыка самостоятельного поиска нового материала;
  • развитие любознательности, инициативы;
  • воспитание информационной культуры.

План урока:

  1. Организационный момент (2 мин).
  2. Повторение материала предыдущего урока (устный опрос) (4 мин).
  3. Объяснение нового материала (12 мин).
  4. Закрепление
  • разбор примера (5 мин);
  • практические упражнения (10 мин);
  • задания для самостоятельной работы (10 мин).
  • Обобщение урока, домашнее задание (2 мин).
  • Оборудование и программный материал:

    • белая доска;
    • мультимедийный проектор;
    • компьютеры;
    • редактор презентаций MS PowerPoint 2003;
    • раздаточный справочный материал “Таблицы истинности”;
    • демонстрация презентации “Таблицы истинности”.

    Ход урока

    I. Организационный момент

    Мы продолжаем изучение темы “Основы логики”. На предыдущих уроках мы увидели, что логика достаточно крепко связана с нашей повседневной жизнью, а также увидели, что почти любое высказывание можно записать в виде формулы.

    II. Повторение материала предыдущего урока

    Давайте вспомним основные определения и понятия:

    Вопрос Ответ
    1. Какое предложение является высказыванием? Повествовательное предложение, в котором что-либо утверждается или отрицается
    2. На какие виды делятся высказывания по своей структуре? Простые и сложные
    3. Истинность каких высказываний является договорной? Простых
    4. Истинность каких высказываний вычисляется? Сложных
    5. Как обозначаются простые высказывания в алгебре высказываний? Логическими переменными
    6. Как обозначается истинность таких высказываний? 1 и 0
    7. Что связывает переменные в формулах алгебры высказываний? Логические операции
    8. Перечислите их. Инверсия (отрицание)

    Конъюнкция (умножение)

    Дизъюнкция (сложение)

    Импликация (следование)

    Эквиваленция (равносильность)

    9. Определите, соответствует ли формула сложному высказыванию. Назовите простые высказывания. Определите причину несоответствия. (Задание на экране) Нет, неправильно поставлен знак
    10. Определите, соответствует ли формула сложному высказыванию. Назовите простые высказывания. Определите причину несоответствия. (Задание на экране) Да

    III. Объяснение нового материала

    Последние два примера относятся к сложным высказываниям. Как же определить истинность сложных высказываний?

    Мы говорили, что она вычисляется. Для этого в логике существуют таблицы для вычисления истинности составных (сложных) высказываний. Они называются таблицами истинности.

    Итак, тема урока ТАБЛИЦЫ ИСТИННОСТИ.

    3.1) Определение. Таблица истинности – это таблица, показывающая истинность сложного высказывания при всех возможных значениях входящих переменных (Рисунок 1).

    3.2) Разберем подробнее каждую логическую операцию в соответствии с ее определением:

    1. Инверсия (отрицание) – это логическая операция, которая каждому простому высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание отрицается.

    Эта операция относится только к одной переменной, поэтому для нее отведено только две строки, т.к. одна переменная может иметь одно из двух значений: 0 или 1.

    2. Конъюнкция (умножение)– это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.

    Легко увидеть, что данная таблица действительно похожа на таблицу умножения.

    3. Дизъюнкция (сложение) – это логическая операция, которая каждым двум простым высказываниям ставит в соответствие составное высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.

    Можно убедиться, что таблица похожа на таблицу сложения кроме последнего действия. В двоичной системе счисления 1 + 1 = 10, в десятичной – 1 + 1 = 2. В логике значения переменной 2 невозможно, рассмотрим 10 с точки зрения логики: 1 – истинно, 0 – ложно, т.о. 10 – истинно и ложно одновременно, чего быть не может, поэтому последнее действие строго опирается на определение.

    4. Импликация (следование) – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся ложным тогда и только тогда, когда условие истинное, а следствие ложно.

    5. Эквиваленция (равносильность) – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или ложны.

    Последние две операции были разобраны нами на предыдущем уроке.

    3.3) Разберем алгоритм составления таблицы истинности для сложного высказывания:

    3.4) Рассмотрим пример составления таблицы истинности для сложного высказывания:

    Пример. Построить таблицу истинности для формулы: А U В -> ¬А U С.

    Решение (Рисунок 2)

    Из примера видно, что таблицей истинности является не все решение, а только последнее действие (столбец, выделенный красным цветом).

    IV. Закрепление.

    Для закрепления материала вам предлагается решить самостоятельно примеры под буквами а, б, в, дополнительно г–ж (Рисунок 3).

    V. Домашнее задание, обобщение материала.

    Домашнее задание дано вам также на экране монитора (Рисунок 4)

    Обобщение материала: сегодня на уроке мы научились определять истинность составных высказываний, но больше с математической точки зрения, так как вам были даны не сами высказывания, а формулы, отображающие их. На следующих уроках мы закрепим эти умения и постараемся их применить к решению логических задач.

    Урок информатики 9 классе

    Тема: Понятие, суждение, умозаключение. Понятия «истина» и «ложь».

    Тема: Понятия «истина» и «ложь»

    Цели:

      познакомить учащихся с понятиями «истинное и ложное высказывание»;

      учить определять, является ли высказывание истинным с точки зрения объективной действительности;

    Педагогические задачи урока:

      развивать логическое мышление, наблюдательность, речь;

      воспитывать умение работать в коллективе, с уважением относиться к мнению одноклассников.

    Требования к уровню освоения учебного материала после завершения урока:

      знать, как люди добывают «истину»;

      уметь оценивать истинность и исправлять его, если оно ложно;

      уметь приводить примеры, как истинное высказывание со временем может «стать» ложным.

    Ключевые понятия: понятия «истина», «ложь».

    Характеристика урока:

      форма организации : эвристическая беседа с опорой на знания и опыт учащихся, фронтальная работа;

      тип урока : комбинированный (формирование новых знаний на основе актуализации имеющегося житейского опыта и знаний);

      стратегия : анализ имеющихся знаний с выходом на новый уровень осмысления истинных и ложных высказываний.

    Материальное обеспечение урока : учебник, демонстрационный ПК.

    Примерный план урока:

      Организационный момент (1-2 мин).

      Изучение новой темы (10-12)

      Первичное закрепление (9-12мин).

      Физкультминутка (2-3 мин).

      Компьютерный практикум (10-12 мин).

      Обобщение и подведение итогов (3 мин).

      Комментарий учителя к домашнему заданию (2-3 мин).

    Ход урока

      Организация учащихся на работу.

    Девиз урока: «Считай несчастным тот день и тот час, в который ты не усвоил ничего нового, ничего не прибавил к своему образованию».

    Ребята, у нас с вами интересная тема, но я должна быть уверена, что вы готовы её изучать.

    II . Изучение новой темы.

      Подготовительная работа.

    Игра «Истина – ложь»

    Подберите синоним к слову «правда», а теперь к слову «неправда».

    Новые знания будет трудно добывать и осваивать без умения быстро и верно отвечать на поставленные вопросы, поэтому начнём урок с игры «Истина – ложь»

    Я буду высказывать некоторые мысли, если вы верите мне, то поднимите карточку «И», если нет, то карточку «Л».

    Все крокодилы летают.

    Компьютер – помощник человека при счёте.

    10 делится на 3 без остатка.

    Телефон служит средством связи.

    Наша школа находится в 29 микрорайоне.

    Сейчас у нас не урок информатики.

    Город Темрюе – столица Краснодарского края.

    В городе все школы четырёхэтажные.

    Вы учащиеся 4-ой школы и четвероклассники.

      Введение понятий «ложное, истинное высказывание»

    Назовите высказывания, которым вы поверили. Почему? (Потому что это соответствует действительности, это правда)

    Такие высказывания называются истинными , то есть правдивыми, соответствующими действительности.

    Как можно назвать высказывания, которые вы посчитали неверными?

    Такие высказывания являются ложными .

    Запомни! Истина – это то, что соответствует действительности.

    Ложь – то, что действительности не соответствует.

      Закрепление материала.

      Игра «Кто больше?»

    Чтобы проверить насколько вы поняли новы материал, я предлагаю вам игру-соревнование «Кто больше?»

    Правила игры следующие: класс делится на две команды «Истина» и «Ложь». Соответственно ребята из команды «Истина» приводят примеры истинных высказываний, а ребята из команды «Ложь» ложных высказываний.

    Молодцы! Вы великолепно справились с заданием. Как вы думаете, почему в нашем соревновании нет победителей и побеждённых?

    Нас окружает такое огромное количество объектов, а вы очень наблюдательны, внимательны и любопытны, что и помогло вам успешно справиться с заданием.

    2) Работа по учебнику.

    Чтение учебника стр. 82-85

    Фронтальный опрос.

    Всегда ли легко определить, когда то или иное высказывание истинное? (нет, иногда не хватает знаний и опыта)

    Какие действия должен произвести человек, чтобы добыть истину? (наблюдать, сравнивать, размышлять, вычислять, измерять, производить исследования)

    Что является результатом размышления? (устное высказывание или высказывание в виде текста, рисунка, числа, схемы, формулы)

    Приведите примеры из жизни, когда ложное высказывание становится истинным, когда люди узнают что-то новое или наоборот.

    Физминутка.

    Игра «Делай наоборот»

    Урок мы начали с подбора синонимов, а сейчас я предлагаю вам подобрать антонимы, причём устно.

    Я буду произносить высказывания-действия, а вы будете делать всё наоборот.

    Сидите.

    Не прыгайте.

    Не стойте.

    Не поднимайте руки.

    Плачьте.

    Не топайте.

    Молчите.

    Не приседайте.

    Не садитесь.

    Не слушайте.

      Работа в тетрадях.

    1. Вставь пропущенные слова:

    Понятия «истина» и « ложь » - это несовместимые понятия.

    Истина не всегда «лежит» на поверхности.

    Люди добывают истину , когда наблюдают, исследуют предметы и явления, думают , вычисляют, измеряют и так далее.

    Высказывание может быть истинным или ложным .

    Истина – это то, что соответствует действительности.

    Ложь – то, что действительности не соответствует.

    5. Обработай графическую и текстовую информацию и укажи истинные это суждения или ложные, выделив нужную букву.

    На рисунке древний человек

    Человек читает книгу

    Информация хранится на бумажном носителе

    На камне изображена сцена охоты

    Все фигуры имеют углы

    Все фигуры являются прямоугольниками

    Две фигуры – прямоугольники

    В верхнем левом углу изображен круг

    6. А) Рассмотри схему.

    «дерево»

    «клён»

    «ель»

    «сосна»

    «дуб»

    Придумай обозначения слов и заполни диаграмму

    Таблица истинности - это таблица, которая описывает логическую функцию. Логическая функция здесь - это функция, у которой значения переменных и значение самой функции выражают истинность. Например, они принимают значения «истина» либо «ложь» (true либо false, 1 либо 0).

    Таблицы истинности применяются для определения значения какого-либо высказывания для всех возможных случаев значений истинности высказываний, которые его составляют. Количество всех существующих комбинаций в таблице находится по формуле N=2*n; где N - общее количество возможных комбинаций, n - число входных переменных. Таблицы истинности нередко используются в цифровой технике и булевой алгебре, чтобы описать работу логических схем.

    Таблицы истинности для основных функций

    Примеры : конъюнкция - 1&0=0, импликация - 1→0=0.

    Порядок выполнения логических операций

    Инверсия; Конъюнкция; Дизъюнкция; Импликация; Эквиваленция; Штрих Шеффера; Стрелка Пирса.

    Последовательность построения (составления) таблицы истинности:

    1. Определить количество N используемых переменных в логическом выражении.
    2. Вычислить количество всевозможных наборов значений переменных M = 2 N , равное количеству строк в таблице.
    3. Подсчитать количество логических операций в логическом выражении и определить количество столбцов в таблице, которое равно количеству переменных плюс количество логических операций.
    4. Озаглавить столбцы таблицы названиями переменных и названиями логических операций.
    5. Заполнить столбцы логических переменных наборами значений, например, от 0000 до 1111 с шагом 0001 в случае для четырех переменных.
    6. Заполнить таблицу истинности по столбцам со значениями промежуточных операций слева направо.
    7. Заполнить окончательный столбец значений для функции F.

    Таким образом, можно составить (построить) таблицу истинности самостоятельно.

    Составить таблицу истинности онлайн

    Заполните поле ввода и нажмите OK. T - истина, F - ложь. Рекомендуем добавить страницу в закладки или сохранить в социальной сети.

    Обозначения

    1. Множества или выражения большими буквами латинского алфавита: A, B, C, D...
    2. A" - штрих - дополнения множеств
    3. && - конъюнкция ("и")
    4. || - дизъюнкция ("или")
    5. ! - отрицание (например, !A)
    6. \cap - пересечение множеств \cap
    7. \cup - объединение множеств (сложение) \cup
    8. A&!B - разность множеств A∖B=A-B
    9. A=>B - импликация "Если..., то"
    10. AB - эквивалентность

    Алгебра логики

    Алгебра логики

    Алгебра логики (англ. algebra of logic ) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.

    Основоположником алгебры логики является английский математик и логик Дж. Буль (1815-1864), положивший в основу своего логического учения аналогию между алгеброй и логикой. Любое высказывание он записывал с помощью символов разработанного им языка и получал «уравнения», истинность или ложность которых можно было доказать, исходя из определенных логических законов, таких как законы коммутативности, дистрибутивности, ассоциативности и др.

    Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.

    Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.

    Например, «3 умножить на 3 равно 9», «Архангельск севернее Вологды» — истинные высказывания, а «Пять меньше трех», «Марс — звезда» — ложные.

    Очевидно, что не всякое предложение может быть логическим высказыванием, т. к. не всегда есть смысл говорить о его ложности или истинности. Например, высказывание «Информатика — интересный предмет» неопределенно и требует дополнительных сведений, а высказывание «Для ученика 10-А класса Иванова А. А. информатика — интересный предмет» в зависимости от интересов Иванова А. А. может принимать значение «истина» или «ложь».

    Кроме двузначной алгебры высказываний , в которой принимаются только два значения — «истинно» и «ложно», существует многозначная алгебра высказываний. В такой алгебре, кроме значений «истинно» и «ложно», употребляются такие истинностные значения, как «вероятно», «возможно», «невозможно» и т. д.

    В алгебре логики различаются простые (элементарные) высказывания , обозначаемые латинскими буквами (A, B, C, D, …), и сложные (составные), составленные из нескольких простых с помощью логических связок, например таких, как «не», «и», «или», «тогда и только тогда», «если … то» . Истинность или ложность получаемых таким образом сложных высказываний определяется значением простых высказываний.

    Обозначим как А высказывание «Алгебра логики успешно применяется в теории электрических схем», а через В — «Алгебра логики применяется при синтезе релейно-контактных схем».

    Тогда составное высказывание «Алгебра логики успешно применяется в теории электрических цепей и при синтезе релейно-контактных схем» можно кратко записать как А и В ; здесь «и» — логическая связка. Очевидно, что поскольку элементарные высказывания А и В истинны, то истинно и составное высказывание А и В .

    Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

    Логических значений всего два: истина (TRUE) и ложь (FALSE) . Это соответствует цифровому представлению — 1 и 0 . Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.

    Основные операции алгебры логики

    1. Логическое отрицание, инверсия (лат. inversion — переворачивание) — логическая операция, в результате которой из данного высказывания (например, А) получается новое высказывание (не А ), которое называется отрицанием исходного высказывания , обозначается символически чертой сверху ($A↖{-}$) или такими условными обозначениями, как ¬, "not" , и читается: «не А», «А ложно», «неверно, что А», «отрицание А» . Например, «Марс — планета Солнечной системы» (высказывание А); «Марс — не планета Солнечной системы» ($A↖{-}$); высказывание «10 — простое число» (высказывание В) ложно; высказывание «10 — не простое число» (высказывание B) истинно.

    Операция, используемая относительно одной величины, называется унарной . Таблица значений данной операции имеет вид

    Высказывание $A↖{-}$ ложно, когда А истинно, и истинно, когда А ложно.

    Геометрически отрицание можно представить следующим образом: если А — это некоторое множество точек, то $A↖{-}$ — это дополнение множества А, т. е. все точки, которые не принадлежат множеству А.

    2. Конъюнкция (лат. conjunctio — соединение) — логическое умножение, операция, требующая как минимум двух логических величин (операндов) и соединяющая два или более высказываний при помощи связки «и» (например, «А и В» ), которая символически обозначается с помощью знака ∧ (А ∧ В) и читается: «А и В». Для обозначения конъюнкции применяются также следующие знаки: А ∙ В; А & В, А and В , а иногда между высказываниями не ставится никакого знака: АВ. Пример логического умножения: «Этот треугольник равнобедренный и прямоугольный». Данное высказывание может быть истинным только в том случае, если выполняются оба условия, в противном случае высказывание ложно.

    A B A ∧ B
    1 0 0
    0 1 0
    0 0 0
    1 1 1

    Высказывание А В истинно только тогда, когда оба высказывания — А и В истинны.

    Геометрически конъюнкцию можно представить следующим образом: если А, В А В есть пересечение множеств А и В .

    3. Дизъюнкция (лат. disjunction — разделение) — логическое сложение, операция, соединяющая два или более высказываний при помощи связки «или» (например, «А или В» ), которая символически обозначается с помощью знака ∨ В) и читается: «А или В» . Для обозначения дизъюнкции применяются также следующие знаки: А + В; А or В; А | B . Пример логического сложения: «Число x делится на 3 или на 5». Это высказывание будет истинным, если выполняются оба условия или хотя бы одно из условий.

    Таблица истинности операции имеет вид

    A B A B
    1 0 1
    0 1 1
    0 0 0
    1 1 1

    Высказывание А В ложно только тогда, когда оба высказывания — А и В ложны.

    Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то А В — это объединение множеств А и В , т. е. фигура, объединяющая и квадрат, и круг.

    4. Дизъюнкция строго-разделительная, сложение по модулю два — логическая операция, соединяющая два высказывания при помощи связки «или» , употребленной в исключающем смысле, которая символически обозначается с помощью знаков ∨ ∨ или ⊕ (А ∨ ∨ В, А В ) и читается: «либо А, либо В» . Пример сложения по модулю два — высказывание «Этот треугольник тупоугольный или остроугольный». Высказывание истинно, если выполняется какое-то одно из условий.

    Таблица истинности операции имеет вид

    А В А B
    1 0 1
    0 1 1
    0 0 0
    1 1 0

    Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.

    5. Импликация (лат. implisito — тесно связываю) — логическая операция, соединяющая два высказывания при помощи связки «если..., то» в сложное высказывание, которое символически обозначается с помощью знака → (А В ) и читается: «если А, то В», «А влечет В», «из А следует В», «А имплицирует В» . Для обозначения импликации применяется также знак ⊃ (A ⊃ B). Пример импликации: «Если полученный четырехугольник квадрат, то около него можно описать окружность». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием. Результат операции ложен только тогда, когда предпосылка есть истина, а следствие — ложь. Например, «Если 3 * 3 = 9 (А), то Солнце — планета (В)», результат импликации А → В — ложь.

    Таблица истинности операции имеет вид

    А В А В
    1 0 0
    0 1 1
    0 0 1
    1 1 1

    Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.

    6. Эквивалентность, двойная импликация, равнозначность (лат. aequalis — равный и valentis — имеющий силу) — логическая операция, позволяющая из двух высказываний А и В получить новое высказывание А ≡ В , которое читается: «А эквивалентно B» . Для обозначения эквивалентности применяются также следующие знаки: ⇔, ∼. Эта операция может быть выражена связками «тогда и только тогда», «необходимо и достаточно», «равносильно» . Примером эквивалентности является высказывание: «Треугольник будет прямоугольным тогда и только тогда, когда один из углов равен 90 градусам».

    Таблица истинности операции эквивалентности имеет вид

    А В А В
    1 0 0
    0 1 0
    0 0 1
    1 1 1

    Операция эквивалентности противоположна сложению по модулю два и имеет результат «истина» тогда и только тогда, когда значения переменных совпадают.

    Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.

    Приоритет выполнения логических операций следующий: отрицание («не» ) имеет самый высокий приоритет, затем выполняется конъюнкция («и» ), после конъюнкции — дизъюнкция («или» ).

    С помощью логических переменных и логических операций любое логическое высказывание можно формализовать, т. е. заменить логической формулой. При этом элементарные высказывания, образующие составное высказывание, могут быть абсолютно не связаны по смыслу, но это не мешает определять истинность или ложность составного высказывания. Например, высказывание «Если пять больше двух (А ), то вторник всегда наступает после понедельника (В )» — импликация А В , и результат операции в данном случае — «истина». В логических операциях смысл высказываний не учитывается, рассматривается только их истинность или ложность.

    Рассмотрим, например, построение составного высказывания из высказываний А и В , которое было бы ложно тогда и только тогда, когда оба высказывания истинны. В таблице истинности для операции сложения по модулю два находим: 1 ⊕ 1 = 0. А высказывание может быть, например, таким: «Этот мяч полностью красный или полностью синий». Следовательно, если утверждение А «Этот мяч полностью красный» — истина, и утверждение В «Этот мяч полностью синий» — истина, то составное утверждение — ложь, т. к. одновременно и красным, и синим мяч быть не может.

    Примеры решения задач

    Пример 1. Определить для указанных значений X значение логического высказывания ((X > 3) ∨ (X < 3)) → (X < 4) :

    1) X = 1; 2) X = 12; 3) X = 3.

    Решение. Последовательность выполнения операций следующая: сначала выполняются операции сравнения в скобках, затем дизъюнкция, и последней выполняется операция импликации. Операция дизъюнкции ∨ ложна тогда и только тогда, когда оба операнда ложны. Таблица истинности для импликации имеет вид

    A B A → B
    1 0 0
    0 1 1
    0 0 1
    1 1 1

    Отсюда получаем:

    1) для X = 1:

    ((1 > 3) ∨ (1 < 3)) → (1 < 4) = ложь ∨ истина → истина = истина → истина = истина;

    2) для X = 12:

    ((12 > 3) ∨ (12 < 3) → (12 < 4) = истина ∨ ложь → ложь = истина → ложь = ложь;

    3) для X = 3:

    ((3 > 3) ∨ (3 < 3)) → (3<4) = ложь ∨ ложь → истина = ложь → истина = истина.

    Пример 2. Указать множество целых значений X, для которых истинно выражение ¬((X > 2) → (X > 5)) .

    Решение. Операция отрицания применена ко всему выражению ((X > 2) → (X > 5)) , следовательно, когда выражение ¬((X > 2) → (X > 5)) истинно, выражение ((X > 2) →(X > 5)) ложно. Поэтому необходимо определить, для каких значений X выражение ((X > 2) → (X > 5)) ложно. Операция импликации принимает значение «ложь» только в одном случае: когда из истины следует ложь. А это выполняется только для X = 3; X = 4; X = 5.

    Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.

    Решение. Рассмотрим последовательно все предложенные слова:

    1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

    2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

    3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;

    4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;

    5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.

    Логические выражения и их преобразование

    Под логическим выражением следует понимать такую запись, которая может принимать логическое значение «истина» или «ложь». При таком определении среди логических выражений необходимо различать:

    • выражения, которые используют операции сравнения («больше», «меньше», «равно», «не равно» и т. п.) и принимают логические значения (например, выражение а > b , где а = 5 и b = 7, равно значению «ложь»);
    • непосредственные логические выражения, связанные с логическими величинами и логическими операциями (например, A ∨ В ∧ С, где А = истина, B = ложь и C = истина).

    Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:

    1. вычисление существующих функциональных зависимостей;
    2. выполнение алгебраических операций (вначале умножение и деление, затем вычитание и сложение);
    3. выполнение операций сравнения (в произвольном порядке);
    4. выполнение логических операций (вначале операции отрицания, затем операции логического умножения, логического сложения, последними выполняются операции импликации и эквивалентности).

    В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.

    Пример. Найти значение выражения:

    $1 ≤ a ∨ A ∨ sin(π/a - π/b) < 1 ∧ ¬B ∧ ¬(b^a + a^b > a + b ∨ A ∧ B)$ для а = 2, b = 3, A = истина, В = ложь.

    Решение. Порядок подсчета значений:

    1) b a + a b > a + b, после подстановки получим: 3 2 + 2 3 > 2 + 3, т. е. 17 > 2 + 3 = истина;

    2) A ∧ B = истина ∧ ложь = ложь.

    Следовательно, выражение в скобках равно (b a + a b > a + b ∨ A ∧ B) = истина ∨ ложь = истина;

    3) 1≤ a = 1 ≤ 2 = истина;

    4) sin(π/a - π/b) < 1 = sin(π/2 - π/3) < 1 = истина.

    После этих вычислений окончательно получим: истина ∨ А ∧ истина ∧ ¬В ∧ ¬истина.

    Теперь должны быть выполнены операции отрицания, затем логического умножения и сложения:

    5) ¬В = ¬ложь = истина; ¬истина = ложь;

    6) A ∧ истина ∧ истина ∧ ложь = истина ∧ истина ∧ истина ∧ ложь = ложь;

    7) истина ∨ ложь = истина.

    Таким образом, результат логического выражения при заданных значениях— «истина».

    Примечание. Учитывая, что исходное выражение есть, в конечном итоге, сумма двух слагаемых, и значение одного из них 1 ≤ a = 1 ≤ 2 = истина, без дальнейших вычислений можно сказать, что результат для всего выражения тоже «истина».

    Тождественные преобразования логических выражений

    В алгебре логики выполняются основные законы, позволяющие производить тождественные преобразования логических выражений.

    Закон Для ∨ Для ∧
    Переместительный A ∨ B = B ∨ A A ∧ B = B ∧ A
    Сочетательный A ∨ (B ∨ C) = (B ∨ A) ∨ C A ∧ (B ∧ C) = (A ∧ B) ∧ C
    Распределительный A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) A ∨ B ∧ C = (A ∨ B) ∧ (A ∨ C)
    Правила де Моргана ${A ∨ B}↖{-}$ = $A↖{-} ∧ B↖{-}$ ${A ∧ B}↖{-}$ = $A↖{-} ∨ B↖{-}$
    Идемпотенции A ∨ A = A A ∧ A = A
    Поглощения A ∨ A ∧ B = A A ∧ (A ∨ B) = A
    Склеивания (A ∧ B) ∨ (A↖{-} ∧ B) = B (A ∨ B) ∧ (A↖{-} ∨ B) = B
    Операция переменной с ее инверсией $A ∨ A↖{-}$ = 1 $A ∧ A↖{-}$ = 0
    Операция с константами A ∨ 0 = A
    A ∨ 1 = 1
    A ∧ 1 = A
    A ∧ 0 = 0
    Двойного отрицания $A↖{=}$ = A

    Доказательства этих утверждений производят на основании построения таблиц истинности для соответствующих записей.

    Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определенному виду путем использования основных законов алгебры логики. Под упрощением формулы , не содержащей операций импликации и эквивалентности, понимают равносильное преобразование, приводящее к формуле, которая содержит либо меньшее по сравнению с исходной число операций, либо меньшее число переменных.

    Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т. п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

    Рассмотрим на примерах некоторые приемы и способы, применяемые при упрощении логических формул:

    1) X1 ∧ X2 ∨ X1 ∧ X2 ∪ ¬X1 ∧ X2 = X1 ∧ X2 ∨ ¬X1 ∧ X2 = (X1 ∨ ¬X1) ∧ X2 = 1 ∧ X2 = X2 .

    Для преобразования здесь можно применить закон идемпотенции, распределительный закон; операцию переменной с инверсией и операцию с константой.

    2) X1 ∨ X1 ∧ X2 = X1 ∨ (1 ∨ 1 ∧ X2) = X1 ∨ (1 ∨ X2) = X1 .

    Здесь для упрощения применяется закон поглощения.

    3) ¬(X1 ∧ X2) ∨ X2 = (¬X1 ∨ ¬X2) ∨ X2 = ¬X1 ∨ ¬X2 ∨ X2 = ¬X1 ∨ 1 = 1 .

    При преобразовании применяются правило де Моргана, операция переменной с ее инверсией, операция с константой

    Примеры решения задач

    Пример 1. Найти логическое выражение, равносильное выражению A ∧ ¬(¬B ∨ C) .

    Решение. Применяем правило де Моргана для В и С: ¬(¬B ∨ C) = B ∧ ¬C .

    Получаем выражение, равносильное исходному: A ∧ ¬(¬B ∨ C) = A ∧ B ∧ ¬C .

    Ответ: A ∧ B ∧ ¬C.

    Пример 2. Указать значение логических переменных А, В, С, для которых значение логического выражения (A ∨ B) → (B ∨ ¬C ∨ B) ложно.

    Решение. Операция импликации ложна только в случае, когд а из истинной посылки следует ложь. Следовательно, для заданного выражения посылка A ∨ B должна принимать значение «истина», а следствие, т. е. выражение B ∨ ¬C ∨ B , — «ложь».

    1) A ∨ B — результат дизъюнкции — «истина», если хотя бы один из операндов — «истина»;

    2) B ∨ ¬C ∨ B — выражение ложно, если все слагаемые имеют значение «ложь», т. е. В — «ложь»; ¬C — «ложь», а следовательно, переменная С имеет значение «истина»;

    3) если рассмотреть посылку и учесть, что В — «ложь», то получим, что значение А — «истина».

    Ответ: А — истина, В — ложь, С — истина.

    Пример 3. Каково наибольшее целое число X, при котором истинно высказывание (35

    Решение. Запишем таблицу истинности для операции импликации:

    A B A → B
    1 0 0
    0 1 1
    0 0 1
    1 1 1

    Выражение X < (X - 3) ложно при любых положительных значениях X. Следовательно, для того чтобы результатом импликации была «истина», необходимо и достаточно, чтобы выражение 35 < X · X также было ложно. Максимальное целое значение X, для которого 35 < X · X ложно, равно 5.

    Ответ: X = 5.

    Использование логических выражений для описания геометрических областей

    Логические выражения могут быть использованы для описания геометрических областей. В этом случае задача формулируется так: записать для заданной геометрической области такое логическое выражение, которое принимает значение «истина» для значений x, y тогда и только тогда, когда любая точка с координатами (x; y) принадлежит геометрической области.

    Рассмотрим описание геометрической области с помощью логического выражения на примерах.

    Пример 1. Задано изображение геометрической области. Записать логическое выражение, описывающее множество точек, принадлежащих ей.

    1) .

    Решение. Заданную геометрическую область можно представить в виде набора следующих областей: первая область — D1 — полуплоскость ${x}/{-1} +{y}/{1} ≤ 1$, вторая — D2 — круг с центром в начале координат $x^2 + y^2 ≤ 1$. Их пересечение D1 $∩$ D2 представляет собой искомую область.

    Результат: логическое выражение ${x}/{-1}+{y}/{1} ≤ 1 ∧ x^2 + y^2 ≤ 1$.

    2)

    Эту область можно записать так: |x| ≤ 1 ∧ y ≤ 0 ∧ y ≥ -1 .

    Примечание. При построении логического выражения используются нестрогие неравенства, а это значит, что границы фигур также принадлежат заштрихованной области. Если использовать строгие неравенства, то границы учитываться не будут. Границы, не принадлежащие области, обычно изображаются пунктиром.

    Можно решить обратную задачу, а именно: нарисовать область для заданного логического выражнения.

    Пример 2. Нарисовать и заштриховать область, для точек которой выполняется логическое условие y ≥ x ∧ y + x ≥ 0 ∧ y < 2 .

    Решение. Искомая область представляет собой пересечение трех полуплоскостей. Строим на плоскости (x, y) прямые y = x; y = -x; y = 2. Это границы области, причем последняя граница y = 2 не принадлежит области, поэтому ее наносим пунктирной линией. Для выполнения неравенства y ≥ x нужно, чтобы точки находились слева от прямой y = x, а неравенство y = -x выполняется для точек, которые находятся справа от прямой y = -x. Условие y < 2 выполняется для точек, лежащих ниже прямой y = 2. В результате получим область, которая изображена на рис.:

    Использование логических функций для описания электрических схем

    Логические функции очень удобны для описания работы электрических схем. Так, для схемы, представленной на рис., где значение переменной X — это состояние выключателя (если он включен, значение X — «истина», а если выключен — «ложь»), это значение Y — это состояние лампочки (если она горит — значение «истина», а если нет — «ложь»), логическая функция запишется так: Y = X . Функцию Y называют функцией проводимости.

    Для схемы, представленной на рис., логическая функция Y имеет вид: Y = X1 ∪ X2, т. к. достаточно одного включенного выключателя, чтобы горела лампочка. В схеме на рис., для того чтобы горела лампочка, должны быть включены оба выключателя, следовательно, функция проводимости имеет вид: Y = X1 ∧ X2 .

    Для более сложной схемы функция проводимости будет иметь вид: Y = (X11 ∨ (X12 ∧ X13)) ∧ X2 ∧ (X31 ∨ X32).

    Схема также может содержать контакты на замыкание. В этом случае размыкаемый контакт как выключатель обеспечивает загорание лампочки, когда кнопка отпущена, а не нажата. Для таких схем размыкающий выключатель описывается отрицанием.

    Две схемы называются равносильными , если через одну из них ток проходит тогда, когда он проходит и через другую. Из двух равносильных схем более простой считается схема, функция проводимости которой содержит меньшее число элементов. Задача нахождения наиболее простых схем среди равносильных очень важна.

    Использование аппарата алгебры логики при проектировании логических схем

    Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера. Любая информация при обработке на компьютере представляется в двоичной форме, т. е. кодируется некоторой последовательностью 0 и 1. Обработку двоичных сигналов, соответствующих 0 и 1, выполняют в компьютере логические элементы. Логические элементы, которые выполняют основные логические операции И, ИЛИ, НЕ, представлены на рис.

    Условные обозначения логических элементов являются стандартными и используются при составлении логических схем компьютера. С помощью этих схем можно реализовать любую логическую функцию, описывающую работу компьютера.

    Технически компьютерный логический элемент реализуется в виде электрической схемы, которая представляет собой соединение различных деталей: диодов, транзисторов, резисторов, конденсаторов. На вход логического элемента, который называют также вентилем, поступают электрические сигналы высокого и низкого уровней напряжения, на выход выдается один выходной сигнал также либо высокого, либо низкого уровня. Эти уровни соответствуют одному из состояний двоичной системы: 1 — 0; ИСТИНА — ЛОЖЬ. Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем. Работу логических схем описывают с помощью таблиц истинности. Условное обозначение на схеме ИЛИ знак «1» — от устаревшего обозначения дизъюнкции как «>=1» (значение дизъюнкции равно 1, если сумма двух операндов больше или равна 1). Знак «&» на схеме И является сокращенной записью английского слова and.

    Из логических элементов составляются электронные логические схемы, выполняющие более сложные логические операции. Набор логических элементов, состоящий из элементов НЕ, ИЛИ, И, с помощью которых можно построить логическую структуру любой сложности, называется функционально полным .

    Построение таблиц истинности логических выражений

    Для логической формулы всегда можно записать таблицу истинности , т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).

    Удобной формой записи при нахождении значений функции является таблица, содержащая, кроме значений переменных и значений функции, также значения промежуточных вычислений. Рассмотрим пример построения таблицы истинности для формулы ${X1}↖{-} ∧ X2 ∨ {X1 ∨ X2}↖{-} ∨ X1$.

    X1 X2 ${X1}↖{-}$ ${X1}↖{-}$ \ X2 X1 ∧ X2 ${X1 ∨ X2}↖{-}$ ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ ∨ X1
    1 1 0 0 1 0 0 1
    1 0 0 0 1 0 0 1
    0 1 1 1 1 0 1 1
    0 0 1 0 0 1 1 1

    Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной ; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной ; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой . Приведенный выше пример является примером тождественно-истинной функции.

    Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.

    1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.

    Алгоритм построения ДНФ следующий:

    1. в таблице истинности функции выбирают наборы аргументов, для которых логические формы равны 1 («истина»);
    2. все выбранные логические наборы как логические произведения аргументов записывают, последовательно соединив их между собой операцией логической суммы (дизъюнкции);
    3. для аргументов, которые являются ложными, в построенной записи проставляют операцию отрицания.

    Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид

    X1 X2 F(X1, X2)
    1 1 1
    0 1 0
    1 0 0
    0 0 1

    Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).

    Записываем логические произведения аргументов этих наборов, объединив их логической суммой: X1 ∧ X2 ∨ X1 ∧ X2 .

    Записываем отрицание относительно аргументов выбранных наборов, имеющих ложное значение (четвертая строка таблицы; второй набор в формуле; первый и второй элементы): X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.

    Ответ: F(X1, X2) = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.

    2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.

    Алгоритм построения КНФ следующий:

    1. в таблице истинности выбирают наборы аргументов, для которых логические формы равны 0 («ложь»);
    2. все выбранные логические наборы как логические суммы аргументов записывают последовательно, соединив их между собой операцией логического произведения (конъюнкции);
    3. для аргументов, которые являются истинными, в построенной записи проставляют операцию отрицания.

    Примеры решения задач

    Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид

    X1 X2 F(X1, X2)
    1 1 1
    0 1 0
    1 0 0
    0 0 1

    Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).

    Записываем логические суммы аргументов этих наборов, объединив их логическим произведением: X1 ∨ X2 ∧ X1 ∨ X2 .

    Записываем отрицание относительно аргументов выбранных наборов, имеющих истинное значение (вторая строка таблицы, первый набор формулы, второй элемент; для третьей строки, а это второй набор формулы, первый элемент): X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.

    Таким образом, получена запись логической функции в КНФ.

    Ответ: X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.

    Полученные двумя методами значения функций являются эквивалентными. Для доказательства этого утверждения используем правила логики: F(X1, X2) = X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2 = X1 ∧ ${X1}↖{-}$ ∨ X1 ∧ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ ${X2}↖{-}$ ∧ X2 = 0 ∨ X1 ∨ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ 0 = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.

    Пример 2 . Построить логическую функцию для заданной таблицы истинности:

    Искомая формула: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 .

    Ее можно упростить: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 = X2 ∧ (X1 ∨ ${X1}↖{-}$) = X2 ∧ 1 = X2.

    Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.

    X1 X2 X3 F(X1, X2, X3)
    1 1 1 1 X1 ∧ X2 ∧ X3
    1 0 1 0
    0 1 1 1 ${X1}↖{-}$ ∧ X2 ∧ X3
    0 0 1 0
    1 1 0 1 X1 ∧ X2 ∧ ${X3}↖{-}$
    1 0 0 1 X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$
    0 1 0 0
    0 0 0 0

    Искомая формула: X1 ∧ X2 ∧ X ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∪ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$.

    Формула достаточно громоздка, и ее следует упростить:

    X1 ∧ X2 ∧ X3 ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∨ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$ = X2 ∧ X3 ∧ (X1 ∨ ${X1}↖{-}$) ∨ X1 ∧ ${X3}↖{-}$ ∧ (X2 ∨ ${X2}↖{-}$) = X2 ∧ X3 ∨ X1 ∧ ${X3}↖{-}$.

    Таблицы истинности для решения логических задач

    Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.

    Примеры решения задач

    Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.

    Решение. Очевидно, что результатом решения будет таблица, в которой искомая функция Y(X1, X2, X3) будет иметь значение «истина», если какие-либо две переменные имеют значение «истина».

    X1 X2 X3 Y(X1, X2, X3)
    1 1 1 0
    1 1 0 1
    1 0 1 1
    1 0 0 0
    0 1 1 1
    0 1 0 0
    0 0 1 0
    0 0 0 0

    Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?

    Решение. Задача легко решается, если составить соответствующую таблицу:

    1-й урок 2-й урок 3-й урок
    Информатика 1 1 0
    Математика 1 0 1
    Физика 0 1 1

    Из таблицы видно, что существуют два варианта искомого расписания:

    1. математика, информатика, физика;
    2. информатика, физика, математика.

    Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:

    1. Борис — самый старший;
    2. играющий в футбол младше играющего в хоккей;
    3. играющие в футбол и хоккей и Петр живут в одном доме;
    4. когда между лыжником и теннисистом возникает ссора, Борис мирит их;
    5. Петр не умеет играть ни в теннис, ни в бадминтон.

    Какими видами спорта увлекается каждый из мальчиков?

    Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

    Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.

    Из условия 4 следует, что Борис не увлекается ни лыжами, ни теннисом, а из условий 3 и 5, что Петр не умеет играть в футбол, хоккей, теннис и бадминтон. Следовательно, любимые виды спорта Петра — лыжи и плавание. Занесем это в таблицу, а оставшиеся клетки столбцов «Лыжи» и «Плавание» заполним нулями.

    Из таблицы видно, что в теннис может играть только Алексей.

    Из условий 1 и 2 следует, что Борис не футболист. Таким образом, в футбол играет Алексей. Продолжим заполнять таблицу. Внесем в пустые ячейки строки «Алексей» нули.

    Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:

    Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.

    Назначение сервиса . Онлайн-калькулятор предназначен для построения таблицы истинности для логического выражения .
    Таблица истинности – таблица содержащая все возможные комбинации входных переменных и соответствующее им значения на выходе.
    Таблица истинности содержит 2 n строк, где n – число входных переменных, и n+m – столбцы, где m – выходные переменные.

    Инструкция . При вводе с клавиатуры используйте следующие обозначения: Например, логическое выражение abc+ab~c+a~bc необходимо ввести так: a*b*c+a*b=c+a=b*c
    Для ввода данных в виде логической схемы используйте этот сервис .

    Правила ввода логической функции

    1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
    2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
    3. Максимальное количество переменных равно 10 .

    Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики - алгебры логики. В алгебре логики можно выделить три основные логические функции: "НЕ" (отрицание), "И" (конъюнкция), "ИЛИ" (дизъюнкция).
    Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
    Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
    Если определены не все значения, функция называется частично определённой.
    Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
    Для представления функции алгебры логики используется следующие способы:

    • словесное описание – это форма, которая используется на начальном этапе проектирования имеет условное представление.
    • описание функции алгебры логики в виде таблицы истинности.
    • описание функции алгебры логики в виде алгебраического выражения: используется две алгебраические формы ФАЛ:
      а) ДНФ – дизъюнктивная нормальная форма – это логическая сумма элементарных логических произведений. ДНФ получается из таблицы истинности по следующему алгоритму или правилу:
      1) в таблице выбираются те строки переменных для которых функция на выходе =1 .
      2) для каждой строки переменных записывается логическое произведение; причём переменные =0 записываются с инверсией.
      3) полученное произведение логически суммируется.
      Fднф= X 1 *Х 2 *Х 3 ∨ Х 1 x 2 Х 3 ∨ Х 1 Х 2 x 3 ∨ Х 1 Х 2 Х 3
      ДНФ называется совершенной, если все переменные имеют одинаковый ранг или порядок, т.е. в каждое произведение обязательно должны включаться все переменные в прямом или инверсном виде.
      б) КНФ – конъюнктивная нормальна форма – это логическое произведение элементарных логических сумм.
      КНФ может быть получена из таблицы истинности по следующему алгоритму:
      1) выбираем наборы переменных для которых функция на выходе =0
      2) для каждого набора переменных записываем элементарную логическую сумму, причём переменные =1 записываются с инверсией.
      3) логически перемножаются полученные суммы.
      Fскнф=(X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3)
      КНФ называется совершенной , если все переменные имеют одинаковый ранг.
    По алгебраической форме можно построить схему логического устройства , используя логические элементы.

    Рисунок1- Схема логического устройства

    Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможны х логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

    Операция НЕ - логическое отрицание (инверсия)

    Логическая операция НЕ применяется к одному аргументу, в качестве которого может быть и простое, и сложное логическое выражение. Результатом операции НЕ является следующее:
    • если исходное выражение истинно, то результат его отрицания будет ложным;
    • если исходное выражение ложно, то результат его отрицания будет истинным.
    Для операции отрицания НЕ приняты следующие условные обозначения:
    не А, Ā, not A, ¬А, !A
    Результат операции отрицания НЕ определяется следующей таблицей истинности:
    A не А
    0 1
    1 0

    Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

    Операция ИЛИ - логическое сложение (дизъюнкция, объединение)

    Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.
    Применяемые обозначения: А или В, А V В, A or B, A||B.
    Результат операции ИЛИ определяется следующей таблицей истинности:
    Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В - ложны.

    Операция И - логическое умножение (конъюнкция)

    Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.
    Применяемые обозначения: А и В, А Λ В, A & B, A and B.
    Результат операции И определяется следующей таблицей истинности:
    A B А и B
    0 0 0
    0 1 0
    1 0 0
    1 1 1

    Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

    Операция «ЕСЛИ-ТО» - логическое следование (импликация)

    Эта операция связывает два простых логических выражения, из которых первое является условием, а второе - следствием из этого условия.
    Применяемые обозначения:
    если А, то В; А влечет В; if A then В; А→ В.
    Таблица истинности:
    A B А → B
    0 0 1
    0 1 1
    1 0 0
    1 1 1

    Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

    Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

    Применяемое обозначение: А ↔ В, А ~ В.
    Таблица истинности:
    A B А↔B
    0 0 1
    0 1 0
    1 0 0
    1 1 1

    Операция «Сложение по модулю 2» (XOR, исключающее или, строгая дизъюнкция)

    Применяемое обозначение: А XOR В, А ⊕ В.
    Таблица истинности:
    A B А⊕B
    0 0 0
    0 1 1
    1 0 1
    1 1 0

    Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

    Приоритет логических операций

    • Действия в скобках
    • Инверсия
    • Конъюнкция (&)
    • Дизъюнкция (V), Исключающее ИЛИ (XOR), сумма по модулю 2
    • Импликация (→)
    • Эквивалентность (↔)

    Совершенная дизъюнктивная нормальная форма

    Совершенная дизъюнктивная нормальная форма формулы (СДНФ) это равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций, обладающая свойствами:
    1. Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
    2. Все логические слагаемые формулы различны.
    3. Ни одно логическое слагаемое не содержит переменную и её отрицание.
    4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.
    СДНФ можно получить или с помощью таблиц истинности или с помощью равносильных преобразований.
    Для каждой функции СДНФ и СКНФ определены единственным образом с точностью до перестановки.

    Совершенная конъюнктивная нормальная форма

    Совершенная конъюнктивная нормальная форма формулы (СКНФ) это равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций, удовлетворяющая свойствам:
    1. Все элементарные дизъюнкции содержат все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
    2. Все элементарные дизъюнкции различны.
    3. Каждая элементарная дизъюнкция содержит переменную один раз.
    4. Ни одна элементарная дизъюнкция не содержит переменную и её отрицание.