Волоконно-оптические линии связи - технологии будущего. PON-технология - пассивные оптические сети

Оптика открывает широкие возможности там, где требуются высокоскоростные коммуникации с высокой пропускной способностью. Это хорошо себя зарекомендовавшая, понятная и удобная технология. В АудиоВизуальной области она открывает новые перспективы и предоставляет решения, недоступные с помощью других методов. Оптика проникла во все ключевые направления — системы наблюдения, диспетчерские и ситуационные центры, на военные и медицинские объекты, в зоны с экстремальными условиями эксплуатации. ВОЛС обеспечивают высокую степень защиты конфиденциальной информации, позволяют передавать несжатые данные типа графики с высоким разрешением и видео с точностью до пикселя. Новые стандарты и технологии ВОЛС. Волокно — будущее СКС(структурированных кабельных систем)? Строим сеть предприятия.


Оптоволоконный (он же волоконно-оптический) кабель - это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.


Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля (рис. 1.). Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 - 10 мкм) стекловолокно, а вместо внутренней изоляции - стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как при этом нарушается целостность кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, то есть 1000 ГГц, что несравнимо выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет от 5 до 20 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, у него просто нет конкурентов.




Волоконно-оптические линии связи (ВОЛС) позволяют передавать аналоговые и цифровые сигналы на дальние расстояния, в некоторых случаях - на десятки километров. Они также используются на малых, более «управляемых» расстояниях, например, внутри зданий. Примеры решений по построению СКС (структурированных кабельных систем) для построения сети предприятия находятся здесь: Строим сеть предприятия: Схема построения СКС - Оптика по горизонтали. , Строим сеть предприятия: Схема построения СКС - Централизованная оптическая кабельная система. , Строим сеть предприятия: Схема построения СКС - Зоновая оптическая кабельная система.

Преимущества оптики хорошо известны: это иммунитет к шумам и помехам, малый диаметр кабелей при огромной пропускной способности, устойчивость к взлому и перехвату информации, отсутствие нужды в ретрансляторах и усилителях и т.д.
Когда-то были проблемы с оконечной заделкой оптических линий, но сегодня они в основном решены, так что работать с этой технологией стало гораздо проще. Есть, однако, ряд вопросов, которые надо рассматривать исключительно в контексте областей применения. Как и в случае с передачей по «меди» или радиоканалу, качество волоконно-оптической связи зависит от того, насколько хорошо согласованы выходной сигнал передатчика и входной каскад приемника. Некорректная спецификация мощности сигнала приводит к увеличению коэффициента битовых ошибок при передаче; мощность слишком большая — и усилитель приемника «перенасыщается», слишком малая — и возникает проблема с шумами, поскольку они начинают мешает полезному сигналу. Вот два наиболее критичных параметра ВОЛС: выходная мощность передатчика и потери при передаче — затухания в оптическом кабеле, который соединяет передатчик и приемник.

Существуют два различных типа оптоволоконного кабеля:

* многомодовый или мультимодовый кабель, более дешевый, но менее качественный;
* одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.

Тип кабеля определят количество режимов распространения или «путей», по которым свет проходит внутри кабеля.

Многомодовый кабель , наиболее часто используемый в небольших промышленных, бытовых и коммерческих проектах, имеет самый высокий коэффициент ослабления и работает только на коротких расстояниях. Более старый тип кабеля, 62,5/125 (эти цифры характеризуют внутренний/ внешний диаметры световода в мкм), часто называемый «OM1», имеет ограниченную пропускную способность и используется для передачи данных со скоростью до 200 Мбит/с.
Недавно стали применять кабели 50/125 «OM2» и «OM3», предлагающие скорости 1Гбит/с на расстояниях до 500 м и 10 Гбит/с на до 300 м.

Одномодовый кабель используется в высокоскоростных соединениях (выше 10 Гбит/с) или на длинных дистанциях (до 30 км). Для передачи аудио и видео наиболее целесообразным является применение кабелей «OM2».
Вице-президент европейского отделения компании Extron по маркетингу Райнер Штайль отмечает, что оптоволоконные линии стали более доступными, их чаще применяют для организации сети внутри зданий — это ведет к росту применения АВ-систем на основе оптических технологий. Штайль говорит: «В плане интеграции ВОЛС уже сегодня обладают несколькими ключевыми преимуществами.
По сравнению с аналогичной медно-кабельной инфраструктурой оптика позволяет использовать одновременно и аналоговые, и цифровые видеосигналы, обеспечивая единое системное решение для работы с существующими, а также с перспективными видеоформатами.
Кроме того, т.к. оптика предлагает очень высокую пропускную способность, тот же кабель будет работать с большими разрешениями и в будущем. ВОЛС легко адаптируется к новым стандартам и форматам, появляющимся в процессе развития АВ-технологий».

Другим признанным экспертом в этой области является Джим Хейз, президент Американской Волоконно-Оптической Ассоциации, созданной в 1995 году, способствующей росту профессионализма в области волоконной оптики и, между прочим, насчитывающей в своих рядах более 27000 квалифицированных специалистов по установке и внедрению оптических систем. Он говорит о росте популярности ВОЛС следующее: «Выгода - в быстроте инсталляции и дешевизне комплектующих. Растет применение оптики в сфере телекоммуникаций, особенно в системах Fiber-To-The-Home* (FTTH) с поддержкой беспроводного доступа , а также в сфере безопасности (камеры наблюдения).
Похоже, что сегмент FTTH растет быстрее других рынков во всех развитых странах. Здесь, в США, на оптике построены сети управления дорожным движением, муниципальных служб (администрация, пожарные, полиция), учебных заведений (школы, библиотеки).
Растет количество пользователей Интернет — и у нас быстро строятся новые центры обработки данных (ЦОД), для взаимосвязи которых используется оптоволокно. Ведь при передаче сигналов со скоростью 10 Гбит/с затраты аналогичны «медным» линиям, но оптика потребляет значительно меньше энергии. Долгие годы приверженцы волокна и меди «бились» друг с другом за приоритет в корпоративных сетях. Зря потраченное время!
Сегодня связь по WiFi стала настолько хорошей, что пользователи нетбуков, ноутбуков и iPhon’ов отдали предпочтение мобильности. И теперь в корпоративных локальных сетях оптику используют для коммутации с точками беспроводного доступа».
Действительно, областей применения оптики становится все больше, в основном, из-за указанных выше преимуществ перед медью.
Оптика проникла во все ключевые направления — системы наблюдения, диспетчерские и ситуационные центры, на военные и медицинские объекты, в зоны с экстремальными условиями эксплуатации. Снижение стоимости оборудования позволило использовать оптические технологии в традиционно «медных» областях - в конференц-залах и на стадионах, в розничной торговле и на транспортных узлах.
Райнер Штайль из Extron комментирует: «Волоконно-оптическое оборудование широко используется в медицинских учреждениях, например, для коммутации локальных видеосигналов в операционных. Оптические сигналы не имеют никакого отношения к электричеству, что идеально в плане обеспечения безопасности пациентов. ВОЛС прекрасно подходят и для медицинских учебных заведений, где необходимо распределять видеосигналы из нескольких операционных в несколько аудиторий, чтобы студенты могли наблюдать за ходом операции «вживую».
Волоконно-оптическим технологиям отдают предпочтение и военные, так как передаваемые данные трудно или даже невозможно «считать» извне.
ВОЛС обеспечивают высокую степень защиты конфиденциальной информации, позволяют передавать несжатые данные типа графики с высоким разрешением и видео с точностью до пикселя.
Возможность передачи на дальние расстояния делает оптику идеально подходящей для систем Digital Signage в крупных торговых центрах, где длина кабельных линий может достигать нескольких километров. Если для витой пары расстояние ограничено 450 метрами, то для оптики и 30 км не предел».
Что касается использования оптоволокна в АудиоВизуальной индустрии, то прогрессу здесь способствуют два основных фактора. Во-первых, это интенсивное развитие IP-основанных систем передачи аудио- и видео, которые опираются на сети с высокой пропускной способностью — для них ВОЛС подходят идеально.
Во-вторых, повсеместное требование передавать видео HD и компьютерные изображения HR на расстояния большие, чем 15 метров — а это предел для передачи HDMI по меди.
Есть случаи, когда видеосигнал просто невозможно «раздать» по медному кабелю и необходимо применить оптоволокно — такие ситуации стимулируют разработку новой продукции. Бьёнг Хо Пак, вице-президент по маркетингу компании Opticis, поясняет: «Для полосы данных UXGA, 60 Гц, и 24-битового цвета требуется общая скорость 5 Гбит/с, или 1,65 Гбит/с на каждый цветовой канал. HDTV имеет несколько меньшую пропускную способность. Производители «подталкивают» рынок, но и рынок одновременно «подталкивает» игроков использовать изображения более высокого качества. Есть отдельные области применения, где требуются дисплеи, способные отображать 3-5 млн пикселей или 30- 36-битовую глубину цвета. В свою очередь, для этого потребуется скорость передачи около 10 Гбит/с».
Сегодня многие производители коммутационного оборудования предлагают версии видео-удлинителей (экстендеров) для работы с оптическими линиями. ATEN International , TRENDnet , Rextron , Gefen и другие выпускают различные модели для целого ряда видео- и компьютерных форматов.
При этом служебные данные — HDCP** и EDID*** — могут передаваться с помощью дополнительной оптический линии, а в некоторых случаях — по отдельному медному кабелю, связывающему передатчик и приемник.
В результате того, что формат HD стал стандартом для рынка вещания, на других рынках — инсталляционном, например — тоже стали применять защиту от несанкционированного копирования контента в форматах DVI и HDMI, — говорит Джим Джачетта, старший вице-президент по разработкам компании Multidyne. — С помощью выпускаемого нашей компании устройства HDMI-ONE пользователи могут отправить видеосигнал с DVD- или Blu-Ray плеера на монитор или дисплей, расположенный на расстоянии до 1000 метров. Ранее ни одно устройство, работающее с многомодовыми линиями, не поддерживало систему защиты от копирования HDCP».

Те, кто работает с ВОЛС, не должны забывать и о специфических инсталляционных проблемах - концевой заделке кабелей. В этом плане многие производители выпускают как собственно разъемы, так и монтажные наборы, включающие в себя специализированный инструмент, а также химические препараты.
Между тем, любой элемент ВОЛС, будь то удлинитель, разъем или место состыковки кабелей, должен с помощью оптического измерителя быть проверен на предмет ослабления сигнала - это необходимо для оценки общего бюджета мощности (power budget, основной расчётный показатель ВОЛС). Естественно, собрать разъемы волоконных кабелей можно и вручную, «на коленке», но действительно высокое качество и надежность гарантируется только при использовании готовых, произведенных на заводе «разделанных» кабелей, подвергнутых тщательному многоступенчатому тестированию.
Несмотря на огромную пропускную способность ВОЛС, у многих всё еще остаётся желание «впихнуть» в один кабель побольше информации.
Здесь развитие идет в двух направлениях — спектрального уплотнения (optical WDM), когда в один световод направляется несколько световых лучей с разными длинами волн, а другое - сериализация / десериализация данных (англ. SerDes), когда параллельный код преобразуется в последовательный и обратно.
При этом оборудование для спектрального уплотнения стоит дорого из-за сложного проектирования и применения миниатюрных оптических компонентов, но не увеличивает скорость передачи. Применяемые в оборудовании SerDes высокоскоростные логические устройства также увеличивают расходную часть проекта.
Кроме того, сегодня выпускается оборудование, позволяющее мультиплексировать и демультиплексировать из общего светового потока управляющие данные - USB или RS232/485. При этом световые потоки можно отправлять по одному кабелю в противоположных направлениях, хотя цена выполняющих эти «трюки» приборов обычно превышает стоимость дополнительного световода для возврата данных.

Оптика открывает широкие возможности там, где требуются высокоскоростные коммуникации с высокой пропускной способностью. Это хорошо себя зарекомендовавшая, понятная и удобная технология. В АудиоВизуальной области она открывает новые перспективы и предоставляет решения, недоступные с помощью других методов. По крайней мере, без значительных рабочих усилий и денежных затрат.

В зависимости от основной области применения волоконно-оптические кабели подразделяются на два основных вида:

Кабель внутренней прокладки:
При монтаже ВОЛС в закрытых помещениях обычно применяется Волоконно-оптический кабель с плотным буфером (для защиты от грызунов). Используется для построения СКС в качестве магистрального или горизонтального кабеля. Поддерживает передачу данных на короткие и средние расстояния. Идеально подходит для горизонтального каблирования.

Кабель внешней прокладки:

Волоконно-оптический кабель с плотным буфером, бронированный стальной лентой, влагостойкий. Применяется для внешней прокладки при создании подсистемы внешних магистралей и связывают между собой отдельные здания. Может прокладываться в кабельные каналы. Подходит для непосредственной укладки в грунт.

Внешний самонесущий оптоволоконный кабель:
Волоконно-оптический кабель самонесущий, со стальным тросиком. Применяется для внешннй прокладки на большие расстояния в рамках телефонных сетей. Поддерживает передачу сигналов кабельного телевидения, а также передачу данных. Подходит для прокладки в кабельной канализации и воздушной прокладки.

Преимущества ВОЛС:

  • Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.
  • Широкая полоса пропускания - обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания - это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.
  • Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.
  • Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.
  • Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.
  • Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно “одеть” в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.
  • Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить “взламываемый” канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.
  • Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических “земельных” петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.
  • Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.
  • Экономичность ВОЛС. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.
  • Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.
  • Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

Однако оптоволоконный кабель имеет и некоторые недостатки:

  • Самый главный из них - высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Следует помнить, что некачественная установка разъема резко снижает допустимую длину кабеля, определяемую затуханием.
  • Также надо помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.
  • Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные разветвители (couplers) на 2—8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети. Кроме того, в разветвителе есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.
  • Оптоволоконный кабель менее прочен и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растяжение, а также раздавливающие воздействия.
  • Чувствителен оптоволоконный кабель и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно сказываются на нем, стекловолокно может треснуть.
  • Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели или, во всяком случае, сильно потеснит их.

Перспективы развития ВОЛС:

  • В связи с ростом требований, предъявляемых новыми сетевыми приложениями, становится все более актуальным применение оптоволоконных технологий в структурированных кабельных системах. Каковы же преимущества и особенности использования оптических технологий в горизонтальной кабельной подсистеме, а также на рабочих местах пользователей?
  • Проанализировав изменения сетевых технологий за последние 5 лет, легко заметить, что медные стандарты СКС отставали от гонки "сетевых вооружений". Не успев инсталлировать СКС третьей категории, предприятиям приходилось переходить на пятую, сейчас уже и на шестую, а не за горами использование седьмой категории.
  • Очевидно, развитие сетевых технологий не остановится на достигнутом: гигабит на рабочее место вскоре станет стандартом де-факто, а впоследствии и де-юре, и для ЛВС (локальных вычислительных сетей) крупного или даже среднего предприятия 10 Гбит/с Etnernet не будет редкостью.
  • Поэтому очень важно использовать такую кабельную систему, которая позволила бы легко справляться с возрастающими скоростями сетевых приложений на протяжении как минимум 10 лет - именно такой минимальный срок службы СКС определен международными стандартами.
  • Более того, при изменении стандартов на протоколы ЛВСнеобходимо избегать повторной прокладки новых кабелей, которая раньше была причиной значительных расходов на эксплуатацию СКС и просто не допустима в будущем.
  • Только одна среда передачи в СКС удовлетворяет данным требованиям- оптика. Оптические кабели используются в телекоммуникационных сетях уже более 25 лет, в последнее время они также находят широкое применение в кабельном телевидении и ЛВС.
  • В ЛВС они в основном используются для построения магистральных кабельных каналов между зданиями и в самих зданиях, обеспечивая при этом высокую скорость передачи данных между сегментами этих сетей. Однако развитие современных сетевых технологий актуализирует использование оптоволокна как основной среды для подключения непосредственно пользователей.

Новые стандарты и технологии ВОЛС:

За последние годы на рынке появилось несколько технологий и продуктов, позволяющих значительно облегчить и удешевить использование оптоволокна в горизонтальной кабельной системе и подключение его к рабочим местам пользователей.

Среди этих новых решений прежде всего хочется выделить оптические разъемы с малым форм-фактором - SFFC (small-form-factor connectors), плоскостные лазерные диоды с вертикальным резонатором - VCSEL (vertical cavity surface-emitting lasers) и оптические многомодовые волокна нового поколения.

Следует отметить, что недавно утвержденный тип многомодового оптического волокна ОМ-3 обладает полосой пропускания более 2000 МГц/км на длине лазерного излучения 850 нм. Данный тип волокна обеспечивает последовательную передачу потоков данных протокола 10 Gigabit Ethernet на расстояние 300 м. Использование новых типов многомодового оптоволокна и 850-нанометровых VCSEL-лазеров обеспечивает наименьшую стоимость реализации 10 Gigabit Ethernet-решений.

Разработка новых стандартов оптоволоконных разъемов позволила сделать оптоволоконные системы серьезным конкурентом медным решениям. Традиционно оптоволоконные системы требовали в два раза большего числа разъемов и коммутационных шнуров, чем медные - в телекоммуникационных пунктах требовалась гораздо большая площадь для размещения оптического оборудования, как пассивного, так и активного.

Оптические разъемы с малым форм-фактором, представленные недавно целым рядом производителей, обеспечивают в два раза большую плотность портов, чем предыдущие решения, поскольку каждый такой разъем содержит в себе сразу два оптических волокна, а не одно, как ранее.

При этом уменьшаются размеры и оптических пассивных элементов - кроссов и т.д., и активного сетевого оборудования, что позволяет снизить в четыре раза расходы на установку (по сравнению с традиционными оптическими решениями).

Следует отметить, что американские органы стандартизации EIA и TIA в 1998 году приняли решение не регламентировать использование какого-либо определенного типа оптических разъемов с малым форм-фактором, что привело к появлению на рынке сразу шести типов конкурирующих решений в данной области: MT-RJ, LC, VF-45, Opti-Jack, LX.5 и SCDC. Также сегодня есть и новые разработки.

Наиболее популярным миниатюрным разъемом является разъем типа MT-RJ, который имеет один полимерный наконечник с двумя оптическими волокнами внутри. Его конструкция была спроектирована консорциумом компаний во главе с AMP Netconnect на основе разработанного в Японии многоволоконного разъема MT. AMP Netconnect на сегодня представила уже более 30 лицензий на производство данного типа разъема MT-RJ.

Своему успеху разъем MT-RJ во многом обязан внешней конструкции, которая схожа с конструкцией 8-контактного модульного медного разъема RJ-45. За последнее время характеристики разъема MT-RJ заметно улучшились - AMP Netconnect предлагает разъемы MT-RJ с ключами, предотвращающими ошибочное или несанкционированное подключение к кабельной системе. Кроме того, ряд компаний разрабатывает одномодовые варианты разъема MT-RJ.

Достаточно высоким спросом на рынке оптических кабельных решений пользуются разъемы LC компании Avaya (http://www.avaya.com). Конструкция этого разъема основана на использовании керамического наконечника с уменьшенным до 1,25 мм диаметром и пластмассового корпуса с внешней защелкой рычажного типа для фиксации в гнезде соединительной розетки.

Разъем выпускается как в симплексном, так и в дуплексном варианте. Основным преимуществом разъема LC являются низкие средние потери и их среднеквадратичное отклонение, которое составляет всего 0,1 дБ. Такое значение обеспечивает стабильную работу кабельной системы в целом. Для установки вилки LC применяются стандартная процедура вклеивания на эпоксидной смо ле и полировки. Сегодня разъемы нашли свое применение у производителей 10 Гбит/с-трансиверов.

Компания Corning Cable Systems (http://www.corning.com/cablesystems) производит одновременно как разъемы типа LC, так и MT-RJ. По ее мнению, индустрия СКС сделала свой выбор в пользу разъемов MT-RJ и LC. Недавно компания выпустила первый одномодовый разъем MT-RJ и UniCam-версии разъемов MT-RJ и LC, особенностью которых является малое время монтажа. При этом для установки разъемов типа UniCam нет необходимости использовать эпоксидный клей и поли

Волоконно-оптическая линия связи (ВОЛС) - линия связывающая две электрические цепи путем перенесения информации с использованием светового сигнала внутри оптического волокна (тонкой стеклянной или пластиковой нити) Принцип работы оптического волокна основан на эффекте полного внутреннего отражения. Входной сигнал модулирует источник светового излучения, а для обратного преобразования света в электрический сигнал используют фотоприемники. Таким образом ВОЛС включает следующие основные компоненты:

1) передатчик;

2) кабель на базе оптического волокна;

3) приемник;

4) соединители (коннекторы).

Для более сложных линий и коммуникационных сетей используются дополнительные элементы, такие как разветвители, мультиплексоры и распределительные устройства.

Передатчик

В качестве передатчиков используют светодиоды и полупроводниковые лазеры.

Для передачи информации в основном применяют излучения с длинами волн: 1550 нм, 1300 нм, 850 нм, чтобы обеспечить минимальное затухание в оптических волокнах.

Светодиоды могут излучать свет с длинной волны 850 нм и 1300 нм. Излучатели с длиной волны 850 нм существенно дешевле, чем излучатели с длиной волны 1300 нм. При этом полоса пропускания кабеля для волн 850 нм уже (200 МГц/км вместо 500 МГц/км). Принцип действия, характеристики и конструкцию светодиодов см. лекцию №7.

Лазерные излучатели работают на длинах волн 1300 нм и 1500 нм. Быстродействие современных лазеров позволяет модулировать световой поток с частотами 10 ГГц и выше. Лазерные излучатели создают когерентный поток света, за счет чего потери в оптических волокнах становятся меньше, чем при использовании некогерентного потока от светодиода. Принцип действия, характеристики и конструкцию лазеров см. лекцию №10.

Оптоволоконные кабели.

Конструкция.

Оптическое волокно состоит из центрального проводника света (ядро) и окружающей оптической оболочки, имеющей меньший показатель преломления. Распространяясь по ядру лучи света не выходят за его пределы, испытывая отражение на границе раздела ядро – оболочка. Свет, падающий на границу под углом, меньше критического, будет проникать в оптическую оболочку, и затухать по мере распространения в ней, т.к. оптическая оболочка не предназначена для переноса света. Также волокна имеют дополнительное защитное покрытие, которое предохраняет от ударов ядро и оптическую оболочку. Волокна сами по себе имеют чрезвычайно малый диаметр .

На Рис.1 представлена схема распространения света по волокну. Свет заводится внутрь волокна под углом, больше критического, к границе “ядро/оптическая оболочка”, и испытывает полное внутреннее отражение на этой границе. Поскольку углы падения и отражения совпадают, то свет и в дальнейшем будет отражаться от границы. Таким образом, луч света будет дви­гаться зигзагообразно вдоль волокна.

Характеристики оптоволоконных кабелей.

- Дисперсия – это зависимость фазовой скорости волны, распространяющейся в оптическом кабеле от частоты.

- Количество мод в волокне . Из специальных глав физики известно, что параметры оптического волокна определяют количество электромагнитных волн (мод), которые могут в нем распространяться. Для каждого волокна существует КР, такая, что все волны, имеющие< КР не будут распространяться. Изменяя КР можно добиться распространения в волокне необходимого числа волн (мод). Для распространения излучения одной длины волны (моды) необходимо выполнение условия, при котором все, кроме одной, излучаемые источником длины волн имеют> КР.

- Ширина полосы пропускания – часто ее указывают вместо дисперсии в многомодовых волокнах, выражается в мегагерцах на километр (МГц/км). Полоса пропускания в 400 МГц/км означает возможность передачи сигнала в полосе 400 МГц на расстояние 1 км, т.е. произведение максимальной частоты сигнала на длину передачи может быть меньше или равно 400. Другими словами, можно передавать сигнал более низкой частоты на большее расстояние или более высокой частоты на меньшее расстояние, как показано на Рис.1.

В

Рис.1

ыражение полосы пропускания через одномодовую дисперсию является сложным, его приблизительная оценка может быть получена на основе следующего уравнения:

, (2)

где:D isp - дисперсия на рабочей длине волны в сек на нанометр и на километр;

S W - ширина спектра источника в нм; L - длина волокна в км.

-

Рис.2

Затухание – это потеря оптической энергии по мере движения света по волокну, измеряется в децибелах на километр. Затухание зависит от длины волны света. Существуют окна прозрачности, в которых свет распространяется вдоль волокна с малым затуханием. Следовательно, при работе источника света в этих диапазонах потери при передаче в волокне будут минимальны. На Рис.2а представлена типичная кривая затухания для многомодового волокна с низкими потерями. Рис.2б представляет ту же кривую для одномодового волокна. Важнейшей особенностью затухания в оптическом волокне является его независимость от частоты модуляций внутри полосы пропускания. Затухание в волокне определяется тремя эффектами: рассеянием, поглощением и наличием м

Рис.3

икроизгибов. На Рис.3 показано, что вариации границы могут приводить к отражению мод высокого порядка под углами, не допускающими дальнейших отражений.

- Численная апертура (NA) - определяет способность волокна собирать лучи. NA зависит от свойств материалов волокна и определяется показателями преломления ядра и оптической оболочки:
. NA волокна указывает на то, как свет вводится в волокно и распространяется по нему. Волокно с большим значением NA (т.е. подразумевает большее количество возможных световых траекторий)хорошо принимает свет, в то время, как в волокно с малым значением NA (волокна с широкой полосой пропускания) можно ввести только узконаправленный пучок света.

Также можно определить величину углов, при которых свет распространяется вдоль волокна. Эти углы образуют конус, называемый входным конусом , угловой растр которого определяет максимальный угол ввода света в волокно.

(3)

Рис.4

где - половина угла ввода (Рис.4).

Источник и приемник также имеют свои апертуры:

NA ист источника определяет угловую апертуру входного света.

NA дет детектора определяет рабочий диапазон углов для приемника.

Очень важно выполнить условие: NA ист = NA дет . Рассогласование NA приводит к дополнительным потерям при передаче света от устройства с меньшим значением NA к устройству с большим значением.

- Прочность волокна - характеризует способность волокна противостоять натяжению, разрыву и изгибу без повреждения. Основная причина, обусловливающая хрупкость волокна, - наличие микротрещин на поверхности и дефектов внутри волокна. Поверхностные дефекты могут возрастать под воздействием растягивающей нагрузки, возникающей во время прокладки кабеля. Температурные изменения, механические и химические воздействия, обычное старение также приводят к появлению дефектов. Стеклянные волокна можно согнуть в виде окружности небольшого диаметра. При этом необходимо помнить, что минимальный радиус кривизны равен пяти диаметрам кабеля при отсутствии растягивающих напряжений и 10 диаметрам кабеля при их наличии.

- Радиационная прочность – определяет способность оборудования противостоять ядерным эффектам. Волокна в отличие от проводников не накапливают статические заряды под воздействием радиации. Волокна также не повреждаются мгновенно после расплавления их кабельной оболочки под тепловым воздействием радиационного источника.

Волокна противостоят росту затухания в условиях постоянного радиоактивного облучения высокой интенсивности. Рост затухания зависит от величины накопленной дозы и интенсивности облучения.

Состоит оптоволокно из центрального проводника света (сердцевины) - стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В оптоволокне световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника оптоволокно подразделяется на одномодовое и многомодовое.

Рынок оптоволоконной продукции в России

История

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, - необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Преимущества оптоволоконного типа связи

  • Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  • Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  • Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий;
  • Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  • Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  • Долговечность ВОЛС - срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  • Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  • Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Элементы волоконно-оптической линии

  • Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  • Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных. Передатчик состоит из параллельно-последовательного преобразователя с синтезатором синхроимпульсов (который зависит от системной установки и скорости передачи информации в битах), драйвера и источника оптического сигнала. Для оптических систем передачи могут быть использованы различные оптические источники. Например, светоизлучающие диоды часто используются в дешёвых локальных сетях для связи на малое расстояние. Однако, широкая спектральная полоса пропускания и невозможность работы в длинах волны второй и третьей оптических окон, не позволяет использовать светодиод в системах телесвязи.

  • Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  • Микросхема cинхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  • Блок преобразования последовательного кода в параллельный
  • Параллельно-последовательный преобразователь
  • Лазерный формирователь

Основной его задачей является подача тока смещения и модулирующего тока для прямого модулирования лазерного диода.

  • Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Одномодовое волокно

При достаточно малом диаметре волокна и соответствующей длине волны через световод будет распространяться единственный луч. Вообще сам факт подбора диаметра сердечника под одномодовый режим распространения сигнала говорит о частности каждого отдельного варианта конструкции световода. То есть под одномодовостью следует понимать характеристики волокна относительно конкретной частоты используемой волны. Распространение лишь одного луча позволяет избавиться от межмодовой дисперсии, в связи с чем одномодовые световоды на порядки производительнее. На данный момент применяется сердечник с внешним диаметром около 8 мкм. Как и в случае с многомодовыми световодами, используется и ступенчатая, и градиентная плотность распределения материала.

Второй вариант более производительный. Одномодовая технология более тонкая, дорогая и применяется в настоящее время в телекоммуникациях. Оптическое волокно используется в волоконно-оптических линиях связи, которые превосходят электронные средства связи тем, что позволяют без потерь с высокой скоростью транслировать цифровые данные на огромные расстояния. Оптоволоконные линии могут как образовывать новую сеть, так и служить для объединения уже существующих сетей - участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически - на уровне протоколов передачи данных. Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду. Уже сейчас дорабатывается стандарт, позволяющий передавать данные со скоростью 100 Гбит/c, а стандарт 10 Гбит Ethernet используется в современных телекоммуникационных структурах уже несколько лет.

Многомодовое волокно

В многомодовом ОВ может распространяться одновременно большое число мод – лучей, введенных в световод под разными углами. Многомодовое ОВ обладает относительно большим диаметром сердцевины (стандартные значения 50 и 62,5 мкм) и, соответственно, большой числовой апертурой. Больший диаметр сердцевины многомодового волокна упрощает ввод оптического излучения в волокно, а более мягкие требования к допустимым отклонениям для многомодового волокна позволяют уменьшить стоимость оптических приемо-передатчиков. Таким образом, многомодовое волокно преобладает в локальных и домашних сетях небольшой протяженности.

Основным недостатком многомодового ОВ является наличие межмодовой дисперсии, возникающей из-за того, что разные моды проделывают в волокне разный оптический путь. Для уменьшения влияния этого явления было разработано многомодовое волокно с градиентным показателем преломления, благодаря чему моды в волокне распространяются по параболическим траекториям, и разность их оптических путей, а, следовательно, и межмодовая дисперсия существенно меньше. Однако насколько не были бы сбалансированы градиентные многомодовые волокна, их пропускная способность не сравнится с одномодовыми технологиями.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид. Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET Стандарт SDH Скорость передачи
OC 1 - 51,84 Мб/сек
OC 3 STM 1 155,52 Мб/сек
OC 12 STM 4 622,08 Мб/сек
OC 48 STM 16 2,4883 Гб/сек
OC 192 STM 64 9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

Волоконно-оптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно".

Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основания так считать вытекают из ряда особенностей, присущих оптическим волноводам.

1.1 Физические особенности.

  1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=10**14 Гц). Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 10**12 бит/с или Терабит/с. Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.
  2. Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фторцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.

1.2 Технические особенности.

  1. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.
  2. Оптические волокна имеют диаметр около 100 мкм., то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.
  3. Стеклянные волокна - не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.
  4. Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации.

    Существует способ скрытой передачи информации по оптическим линиям связи. При скрытой передаче сигнал от источника излучения модулируется не по амплитуде, как в обычных системах, а по фазе. Затем сигнал смешивается с самим собой, задержанным на некоторое время, большее, чем время когерентности источника излучения.

    При таком способе передачи информация не может быть перехвачена амплитудным приемником излучения, так как он зарегистрирует лишь сигнал постоянной интенсивности.

    Для обнаружения перехватываемого сигнала понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видность интерференционной картины может быть ослаблена как 1:2N, где N - количество сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.

  5. Важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.

Есть в волоконной технологии и свои недостатки:

  1. При создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.
  2. Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.
  3. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.

Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

2. Оптическое волокно

Промышленность многих стран освоила выпуск широкой номенклатуры изделий и компонентов ВОЛС. Следует заметить, что производство компонентов ВОЛС, в первую очередь оптического волокна, отличает высокая степень концентрации. Большинство предприятий сосредоточено в США. Обладая главными патентами, американские фирмы (в первую очередь это относится к фирме "CORNING") оказывают влияние на производство и рынок компонентов ВОЛС во всем мире, благодаря заключению лицензионных соглашений с другими фирмами и созданию совместных предприятий.

Важнейший из компонентов ВОЛС - оптическое волокно. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. Свое название волокна получили от способа распространения излучения в них. Волокно состоит из сердцевины и оболочки с разными показателями преломления n1 и n2.

В одномодовом волокне диаметр световодной жилы порядка 8-10 мкм, то есть сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода).

В многомодовом волокне размер световодной жилы порядка 50-60 мкм, что делает возможным распространение большого числа лучей (много мод).

Оба типа волокна характеризуются двумя важнейшими параметрами: затуханием и дисперсией.

Затухание обычно измеряется в дБ/км и определяется потерями на поглощение и на рассеяние излучения в оптическом волокне.

Потери на поглощение зависят от чистоты материала, потери на рассеяние зависят от неоднородностей показателя преломления материала.

Затухание зависит от длины волны излучения, вводимого в волокно. В настоящее время передачу сигналов по волокну осуществляют в трех диапазонах: 0.85 мкм, 1.3 мкм, 1.55 мкм, так как именно в этих диапазонах кварц имеет повышенную прозрачность.

Другой важнейший параметр оптического волокна - дисперсия. Дисперсия - это рассеяние во времени спектральных и модовых составляющих оптического сигнала. Существуют три типа дисперсии: модовая, материальная и волноводная.

модовая дисперсия присуща многомодовому волокну и обусловлена наличием большого числа мод, время распространения которых различно

материальная дисперсия обусловлена зависимостью показателя преломления от длины волны

волноводная дисперсия обусловлена процессами внутри моды и характеризуется зависимостью скорости распространения моды от длины волны.

Поскольку светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространению по волокну и тем самым порождает искажения сигналов. При оценке пользуются термином "полоса пропускания" - это величина, обратная к величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км. Измеряется полоса пропускания в МГц*км. Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.

Если при распространении света по многомодовому волокну как правило преобладает модовая дисперсия, то одномодовому волокну присущи только два последних типа дисперсии. На длине волны 1.3 мкм материальная и волноводная дисперсии в одномодовом волокне компенсируют друг друга, что обеспечивает наивысшую пропускную способность.

Затухание и дисперсия у разных типов оптических волокон различны. Одномодовые волокна обладают лучшими характеристиками по затуханию и по полосе пропускания, так как в них распространяется только один луч. Однако, одномодовые источники излучения в несколько раз дороже многомодовых. В одномодовое волокно труднее ввести излучение из-за малых размеров световодной жилы, по этой же причине одномодовые волокна сложно сращивать с малыми потерями. Оконцевание одномодовых кабелей оптическими разъемами также обходится дороже.

Многомодовые волокна более удобны при монтаже, так как в них размер световодной жилы в несколько раз больше, чем в одномодовых волокнах. Многомодовый кабель проще оконцевать оптическими разъемами с малыми потерями (до 0.3 dB) в стыке. На многомодовое волокно расчитаны излучатели на длину волны 0.85 мкм - самые доступные и дешевые излучатели, выпускаемые в очень широком ассортименте. Но затухание на этой длине волны у многомодовых волокон находится в пределах 3-4 dB/км и не может быть существенно улучшено. Полоса пропускания у многомодовых волокон достигает 800 МГц*км, что приемлемо для локальных сетей связи, но не достаточно для магистральных линий.

3. Волоконно-оптический кабель

Вторым важнейшим компонентом, определяющим надежность и долговечность ВОЛС, является волоконно-оптический кабель (ВОК). На сегодня в мире несколько десятков фирм, производящих оптические кабели различного назначения. Наиболее известные из них: AT&T, General Cable Company (США); Siecor (ФРГ); BICC Cable (Великобритания); Les cables de Lion (Франция); Nokia (Финляндия); NTT, Sumitomo (Япония), Pirelli(Италия).

Определяющими параметрами при производстве ВОК являются условия эксплуатации и пропускная способность линии связи.

По условиям эксплуатации кабели подразделяют на:

  • монтажные
  • станционные
  • зоновые
  • магистральные

Первые два типа кабелей предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину.

Кабели последних двух типов предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.

Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.

При изготовлении ВОК в основном используются два подхода:

  • конструкции со свободным перемещением элементов
  • конструкции с жесткой связью между элементами

По видам конструкций различают кабели повивной скрутки, пучковой скрутки, кабели с профильным сердечником, а также ленточные кабели. Существуют многочисленные комбинации конструкций ВОК, которые в сочетании большим ассортиментом применяемых материалов позволяют выбрать исполнение кабеля, наилучшим образом удовлетворяющее всем условиям проекта, в том числе - стоимостным.

Особый класс образуют кабели, встроенные в грозотрос.

Отдельно рассмотрим способы сращивания строительных длин кабелей.

Сращивание строительных длин оптических кабелей производится с использованием кабельных муфт специальной конструкции. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс-пластин. Сплайс-пластина - это конструкция для укладки и закрепления сращиваемых волокон разных кабелей.

4. Оптические соединители

После того, как оптический кабель проложен, необходимо соединить его с приемо-передающей аппаратурой. Сделать это можно с помощью оптических коннекторов (соединителей). В системах связи используются коннекторы многих видов. Сегодня мы рассмотрим лишь основные виды, получившие наибольшее распространение в мире. Внешний вид разъемов показан на рисунке.

Характеристики коннекторов представлены в таблице 1. Когда мы говорим, что данные виды коннекторов имеют наибольшее распространение, то это означает, что большинство приборов ВОЛС имеют розетки (адаптеры) под один из перечисленных видов коннекторов. Хотелось бы сказать несколько слов о последнем разделе таблицы 1. В нем упомянут новый тип фиксации: "Push-Pull".

Таблица 1:

Тип разъема

телекоммуникации

кабельное ТВ

измерит. аппаратура

Дуплексные системы связи

фиксация

Фиксация "Push-Pull" обеспечивает подключение коннектора к розетке наиболее простым образом - на защелке. Защелка-фиксатор обеспечивает надежное соединение, при этом не нужно вращать накидную гайку. Важное преимущество разъемов с фиксацией Push-Pull - это высокая плотность монтажа оптических соединителей на распределительных и кроссовых панелях и удобство подключения.

5. Электронные компоненты систем оптической связи

Теперь коснемся проблемы передачи и приема оптических сигналов. Первое поколение передатчиков сигналов по оптическому волокну было внедрено в 1975 году. Основу передатчика составлял светоизлучающий диод, работающий на длине волны 0.85 мкм в многомодовом режиме.

В течение последующих трех лет появилось второе поколение - одномодовые передатчики, работающие на длине волны 1.3 мкм.

В 1982 году родилось третье поколение передатчиков - диодные лазеры, работающие на длине волны 1.55 мкм.

Исследования продолжались и вот появилось четвертое поколение оптических передатчиков, давшее начало когерентным системам связи - то есть системам, в которых информация передается модуляцией частоты или фазы излучения. Такие системы связи обеспечивают гораздо большую дальность распространения сигналов по оптическому волокну. Специалисты фирмы NTT построили безрегенераторную когерентную ВОЛС STM-16 на скорость передачи 2.48832 Гбит/с протяженностью в 300 км, а в лабораториях NTT в начале 1990 года ученые впервые создали систему связи с применением оптических усилителей на скорость 2.5 Гбит/с на расстояние 2223 км.

Появление оптических усилителей на основе световодов, легированных эрбием, способных усиливать проходящие по световоду сигналы на 30 dB, дало начало пятому поколению систем оптической связи. В настоящее время быстрыми темпами развиваются системы дальней оптической связи на расстояния в тысячи километров. Успешно эксплуатируются трансатлантические линии связи США-Европа ТАТ-8 и ТАТ-9, Тихоокеанская линия США-Гавайские острова-Япония ТРС-3. Ведутся работы по завершению строительства глобального оптического кольца связи Япония-Сингапур-Индия-Саудовская Аравия-Египет-Италия.

В последние годы наряду с когерентными системами связи развивается альтернативное направление: солитоновые системы связи. Солитон - это световой импульс с необычными свойствами: он сохраняет свою форму и теоретически может распространяться по "идеальному" световоду бесконечно далеко. Солитоны являются идеальными световыми импульсами для связи. Длительность солитона составляет примерно 10 трилионных долей секунды (10 пс). Солитоновые системы, в которых отдельный бит информации кодируется наличием или отсутствием солитона, могут иметь пропускную способность не менее 5 Гбит/с на расстоянии 10 000 км.

Такую систему связи предполагается использовать на уже построенной трансатлантической линии ТАТ-8. Для этого придется поднять подводный ВОК, демонтировать все регенераторы и срастить все волокна напрямую. В результате на подводной магистрали не будет ни одного промежуточного регенератора.

6. Применение ВОЛС в вычислительных сетях

Наряду со строительством глобальных сетей связи оптическое волокно широко используется при создании локальных вычислительных сетей (ЛВС).

Фирма "ВИМКОМ ОПТИК", занимаясь автоматизацией и электронными технологиями, разрабатывает и устанавливает локальные и магистральные сети Ethernet, Fast Ethernet, FDDI, ATM/SDH с применением оптических линий связи. Фирма "ВИМКОМ ОПТИК" делает это по трем причинам. Во-первых, это выгодно. При установке протяженных сегментов сети не требуются повторители. Во-вторых, это надежно. В оптических линиях связи очень низкий уровень шумов, что позволяет передавать информацию с коэффициентом ошибок не более 10**(-10). В третьих, это перспективно. Волоконно-оптические линии связи позволяют наращивать вычислительные возможности сети без замены кабельных коммуникаций. Для этого нужно просто установить более быстродействующие передатчики и приемники. Это важно для тех пользователей, кто ориентируется на развитие своей ЛВС.

Кабель для связи сегментов сети стоит недорого, но работы по его прокладке могут составить самую крупную статью расходов по установке сети. Потребуется труд не только техников-кабельщиков, но и целой команды строителей (штукатуров, маляров, электриков), что обойдется недешево, если учесть возрастающую стоимость ручного труда. Основные топологии ЛВС: "шина", "звезда", "кольцо". В настоящее время оптическое волокно сложно использовать при строительстве общей шины, но его удобно использовать для связи "точка-точка", применяемой в топологии "звезда" и "кольцо".

Схема ВОЛС, применяемых, в частности, в ЛВС, устроена следующим образом:

Электрический сигнал идет от сетевого контроллера, устанавливаемого в рабочую станцию или сервер (например, сетевой контроллер Ethernet), затем поступает на электрический вход трансивера (например, оптический трансивер ISOLAN 3Com), который преобразует электрический сигнал в оптический. Оптический кабель (например, ОКГ-50-2) присоединяется к оптическим разъемам трансивера с помощью оптических соединителей (например, ST).

Рассмотрим несколько вариантов строительства ВОЛС.

  1. ВОЛС внутри одного здания. В этом случае для связи применяется двухволоконный ОК (типа "Лапша"), который при необходимости может быть проложен в трубке ПНД-32 под фальш-полом или вдоль стен в декоративных коробах. Все работы могут быть произведены самим заказчиком, если поставляемый кабель будет оконцован соответствующими коннекторами.
  2. ВОЛС между зданиями строится с прокладкой ВОК либо по колодцам кабельных коммуникаций, либо путем подвеса ВОК между опорами. В этом случае необходимо обеспечить сопряжение толстого многоволоконного кабеля с оптическими трансиверами. Для этого используют кабельные муфты, в которых производится разделка концов ВОК, идентификация волокон и оконцевание волокон коннекторами, соответствующими выбранным трансиверам. Эту работу можно выполнить несколькими способами.
    1. Можно заказать ВОК в специальном исполнении Break-Out. Это более дорогой вариант, зато кабель можно сразу оконцевать оптическими коннекторами, вывести из муфты оконцованные модули (шнуры, подобные монтажным проводам) и подключить их к приемо-передающей аппаратуре.
    2. Можно приварить к разделанным в кабельной муфте волокнам оптические шнуры с коннекторами на одном конце (pig tail). Длина pig tail выбирается из соображений удобства для пользователя (например, 3 м).
    3. Можно оконцевать волокна коннекторами и воткнуть коннекторы изнутри в оптические розетки (coupling), вмонтированные в стенку кабельной муфты. Снаружи в coupling втыкается коннектор оптического шнура, ведущего к приемо-передающей аппаратуре.

Возможны и другие способы стыковки ВОК с оптическими трансиверами. У каждого способа есть свои достоинства и недостатки. В практике специалистов фирмы "ВИМКОМ ОПТИК" получил распространение третий способ, так как он экономичен, надежен, обеспечивает малые вносимые оптические потери за счет применения розеток и коннекторов с керамическими элементами, а также удобен для пользователей.

Особо следует сказать о необходимости оптического кросс-коннекта.

Следует отметить, что за последние годы разработано несколько способов сращивания оптических волокон. Универсальным считается способ сращивания волокон путем сварки на специальном аппарате. Такие аппараты производят фирмы: BICC(Великобритания), Ericsson (Швеция), Fujikura, Sumitomo(Япония). Высокая стоимость сварочных аппаратов стала причиной создания альтернативных технологий сращивания оптических волокон.

Например, для быстрого соединения волокон сейчас используются специально разработанные фирмой 3М механические "сплайсы" (splice). Это пластиковые устройства размерами 40x7x4 мм, состоящие из двух частей: корпуса и крышки. Внутри корпуса находится специальный желоб, в который с разных сторон вставляются соединяемые волокна. Затем надевается крышка, являющаяся одновременно замком. Особая конструкция "сплайса" надежно центрирует волокна. Получается герметичное и качественное соединение волокон с потерями на стыке ~ 0.1 dB. Такие "сплайсы" особенно удобны при быстром восстановлении повреждений ВОЛС. Время на соединение двух волокон не превышает 30 секунд после того как волокна подготовлены (снято защитное покрытие, сделан строго перпендикулярный скол). Монтаж ведется без применения клея и специального оборудования, что очень удобно при работе в труднодоступном месте (например, в кабельном колодце).

Фирма SIECOR предлагает другую технологию сращивания волокон, при которой волокна вводятся в прецизионную втулку. В месте стыка волокон внутри втулки помещен гель на основе силикона высокой прозрачности с показателем преломления, близким к показателю преломления оптического волокна. Этот гель обеспечивает оптический контакт между торцами сращиваемых волокон и одновременно герметизирует место стыка.

Другие способы сращивания менее распространены, мы на них останавливаться не будем.

Монтаж оптических линий связи фирма "ВИМКОМ ОПТИК" проводит с помощью сварочного аппарата фирмы "Sumitomo" type 35 SE. Этот аппарат позволяет сваривать любые типы волокон в ручном и автоматическом режимах, тестирует волокно перед сваркой, устанавливает оптимальные параметр работы, оценивает качество поверхностей волокон перед сваркой, измеряет потери в месте соединений волокон и,если это необходимо, дает команду повторить сварку. Кроме этого аппарат защищает место сварки специальной гильзой и проверяет на прочность сварное соединение. Аппарат позволяет сваривать одномодовые и многомодовые волокна с потерями 0.01dB, что является превосходным результатом. Особо хочется сказать о специально разработанной методике оценки качества сварки. В аппаратах других конструкций, например BICC, волокно изгибается, и в месте изгиба свариваемого волокна водится излучение лазера, которое регистрируется в месте изгиба второго свариваемого волокна фотоприемником. При таком способе измерений волокно подвергается чрезмерной деформации изгиба, что может привести к образованию трещин на этом участке волокна. Sumitomo проводит измерения неразрушающим способом на основе обработки видеоинформации по специально разработанным алгоритмам.

Для некоторых специальных применений оптические волокна выпускаются с особым покрытием оболочки или со сложным профилем показателя преломления на границе "жила-оболочка". В такие волокна очень трудно ввести зондирующее излучение в области изгиба. Для аппаратов Sumitomo работа со специальными волокнами не вызывает затруднений. Подобные аппараты довольно дороги, но мы работаем именно на таких аппаратах. Этим достигаются две цели: 1) высокое качество сварки, 2) высокая скорость работ, что немаловажно при выполнении ответственных заказов (срочная ликвидация аварии на магистральной линии связи).

В процессе монтажа ВОЛС осуществляется тестирование линии с помощью оптического рефлектометра. По мнению специалистов "ВИМКОМ ОПТИК" одним из наиболее приспособленных аппаратов для этих целей является мини-рефлектометр фирмы Ando AQ7220. Легкий и компактный (340х235х100 мм,4.6 кг с встроенной батареей на 3-4 часа работы), он особенно удобен для работы в полевых условиях. Прибор имеет внутреннюю память, 3.5" дисковод, жесткий диск (дополнительно).

Прирост объема продаж приводит к значительному снижению стоимости всех компонентов ВОЛС, а новые технологии строительства оптических сетей позволяют создавать высоконадежные телекоммуникации.

Технология GEPON

В данном материале пойдет речь о технологии и оборудовании для организации пассивных оптических сетей - Passive Optical Network, PON. Основными отличиями PON от классических оптических каналов связи являются использование для агрегации трафика пассивного оборудования - оптических сплиттеров - и высокая плотность портов.

Не секрет, что требования потребителей к скорости доставки информации из Интернет растут по экспоненте. Сегодня в крупных городах 10 Мбит/с являются совершенно обычным делом. Причины этого процесса остаются неизменными уже давно - передача голоса и видео, мультимедиа, телевидение (в последнее время также и в версии высокого разрешения). Только вот битрейты постоянно возрастают.

Существенную часть затрат любого провайдерского проекта несет кабельная инфраструктура. Причем здесь учитывается не только стоимость кабеля, но и его прокладки, которая в случае работы в уже существующей инфраструктуре может быть очень велика. И конечно хочется чтобы вложения работали долго, не требовали частых обновлений и имели хороший запас по нужным параметрам. С этой точки зрения оптические каналы связи сегодня это наиболее производительный и «дальнобойный» способ обеспечения сетевого соединения устройств. При этом классическая архитектура предполагает топологию «точка-точка», когда каждая линия имеет свои выделенные порты с каждой стороны, а при необходимости создания «ответвлений» требуется установка активного оборудования в узле. Так что наиболее удачно она может использоваться для одиночных линий большой протяженности.

Однако в некоторых ситуациях более удобной может оказаться древовидная топология, которая интересна с точки зрения масштабируемости и сниженной общей длины прокладываемых кабелей. Как раз для подобных проектов и подходит PON. В России сети этого типа появилась уже достаточно давно, более пяти лет назад.

А рост числа подключенных пользователей и старт первых российских проектов класса волокно в каждый дом (Fiber To The Home, FTTH), основанных на PON, показывает, что технология прижилась и у нас.

Структура сети PON

Сеть PON состоит из нескольких элементов - коммутатора на узле связи, линий связи с пассивными сплиттерами в узлах сети и модемов на стороне абонентов. К каждому модему поступают все пакеты от коммутатора, а во время передачи используется временное мультиплексирование кадров.

Передача данных в прямом канале


Передача данных в обрантом канале

Компания ZyXEL предлагает сегодня оборудование стандарта EPON (IEEE 802.3ah), называемого также GEPON.

В настоящий момент оборудование участвует в нескольких проектах, а также в тестированиях у провайдеров по всей России. Именно о нем и пойдет дальше речь. Отметим что другие стандарты рассматриваемого типа сетей отличаются скоростными и другими техническими характеристиками.

Коммутатор позволяет по одному волокну (одному порту) подключить до 32 или даже 64 абонентов. Общая скорость передачи данных (которая делится между абонентами) составляет 1,25 Гбит/с. Дальнейшее развитие EPON уже в ближайшие годы предлагает также переход на скорости 10/1 Гигабит/с и 10/10 Гигабит/с. В следующем году ожидается принятие рабочей версии стандарта 10G EPON, а уже в 2010 году могут стартовать первые пилотные проекты.

C задержкой в два-три года планируется переход на 10-гигабитные скорости и технологии GPON.

Для приема и передачи используются лазеры с разной длиной волны - 1490 нм для передачи и 1310 для приема. При необходимости возможно добавление в канал и аналоговых кабельных телевизионных каналов (100 и более), которые модулируются лазером на 1550 нм. В зависимости от конкретной схемы сети и использованного оборудования, общая протяженность канала может составлять до 20 км.


Мультисервисная сеть на базе технологии GEPON

Кабель прокладывается от порта коммутатора в виде дерева. Сплиттеры, устанавливаемые в узлах, чрезвычайно неприхотливы - не требуют электропитания, настройки и управления, термошкафов, недороги и очень компактны. Это позволяет размещать их, например, в уже имеющихся телефонных распределительных шкафах.


Сплиттер

Простейшие оконечные устройства представляют собой конвертеры оптика-кабель со встроенным фильтром MAC-адресов. В случае использования телевидения, в модем устанавливается еще один приемник, а на телевизор выводится обычный высокочастный кабель.

Для защиты информации возможно использование шифрования (AES128) всех передаваемых пакетов. Технология не допускает прямого общения отдельных абонентов, находящихся на одном порту коммутатора - данные от одного абонента могут попасть к другому только через GEPON-коммутатор, который ретранслирует потоки данных восходящего потока на длине волны 1310 нм в нисходящий поток на длине 1490 нм. Дополнительным плюсом с точки зрения безопасности является использование на линии исключительно пассивного оборудования, затрудняющего перехват.

Из положительных сторон PON нужно отметить:

  • минимальное использование активного оборудования;
  • минимизация кабельной инфраструктуры;
  • низкая стоимость обслуживания;
  • возможность интеграции с кабельным телевидением;
  • хорошая масштабируемость;
  • высокая плотность абонентских портов.

В тоже время при рассмотрении технологии нужно учесть и ее особенности, особенно в сравнении с линиями «точка-точка»: разделяемая между абонентами полоса пропускания, общая среда может не подойти клиенту с точки зрения безопасности, пассивные сплиттеры затрудняют диагностику оптической линии, возможно влияние неисправности оборудования одного абонента на работу остальных, меньшая выгода в случае реализации на этапе строительства.

Оборудование

Линейка продуктов GEPON у ZyXEL состоит из трех коммутаторов и трех модемов. Младшая модель коммутатора - - имеет восемь портов GEPON и восемь соответствующих им Gigabit Ethernet (обратите внимание, что именно гигабитных, устройства с меньшей скоростью к ним подключить нельзя). К каждому оптическому порту можно подключить до 32-х модемов в итоге получив 256 абонентов на устройство. Все коннекторы расположены на лицевой стороне устройства - 8xPON, 8xGigabit, консольный, 10/100BaseT внесетевого управления и питание. Здесь же есть и кнопка сброса устройства. Все порты имеют набор индикаторов для определения текущего статуса. У есть встроенный гигабитный L2+ коммутатор (неблокируемая коммутация с пропускной способностью 24 Гбит/с, скорость коммутации кадров 17,8 млн. пак/с) и четыре совмещенных порта 1000Base-T/SFP. Такой вариант можно использовать для резервирования канала - при одновременном подключении двух разъемов (SC и RJ45) работает оптика, а в случае аварии в оптическом канале происходит автоматическое переключение на медь. Питание и консольный порт у этой модификации находятся на задней панели. Данные модели выполнены в стандартном 1U корпусе и рекомендуются для использования в быстрорастущих сетях. Самой производительной моделью является модульный . В его 4,5U корпусе предусмотрено место для установки до шестнадцати OLC-2301. Каждый такой линейный модуль имеет порт GEPON и совмещенный порт 1000Base-T/SFP. В шасси также устанавливается управляющий модуль и блок питания с двойным резервированием. Линейный модули допускают горячую замену, что положительно сказывается на удобстве обслуживания сети и надежности предоставления услуг. Максимально OLT-2300 может поддерживать 512 абонентов. Все оптические модули коммутаторов рассчитаны на дальность работы 20 км.


OLT-1308

Последние обновления прошивок моделей OLT-1308/OLT-1308H позволяют работать на одном канале не 32, а 64 абонентам, что существенно снижает стоимость одного подключения. Для OLC-2301 такой возможности пока нет.


Шасси OLT-2300

Все GEPON-коммутаторы поддерживают протоколы STP/RSTP и механизмы приоритезации трафика и организации виртуальных сетей (включая Port Based и 802.1Q). Эффективность многоадресных рассылок обеспечивается поддержкой IGMP v.2, IGMP proxy, IGMP snooping и MVR. Для управления предусмотрены порты RS-232 и 10/100Base-TX. Настраивать коммутаторы можно через Web-интерфейс (поддерживается SSL, предусмотрена установка до пяти аккаунтов, примеры скриншотов - , , ), telnet, SSH, FTP или консольный порт. Номера портов всех сервисов можно изменить. Возможно ограничение доступа по IP-адресам. Web-интерфейс имеет встроенную систему помощи.

Устройство автоматически находят все подключенные абонентские модемы и позволяет назначить им специфические профили. Они включают в себя настройки скорости, фильтрации, VLAN, приоритетов и другие параметры. Допускается использование протокола аутентификации 802.1x.

Коммутаторы также позволяют следить за физическим состоянием - проверяются температуры, скорости вращения вентиляторов, напряжения. Для больших сетей будет полезной поддержка коммутаторами проколола SNMP и совместимость с EMS системой управления NetAtlas. Кроме того, возможно объединение устройство в кластеры для общего управления.

В настоящий момент моделей со встроенными инжекторами КТВ у ZyXEL нет. Впрочем, для микширования сигнала ТВ в оптический канал можно использовать внешние сплиттеры и медиаконвертеры коаксиал/оптика.




ONU-631HA

Первой моделью абонентского GEPON-модема является . Он работает в режиме моста, прост в обслуживании и управляется исключительно со стороны провайдера по специальному протоколу. Для пользователя он предлагает стандартный порт Gigabit Ethernet. Предусмотрено две модификации модемов - с индексами -11 и -12. Первая работает на расстояниях до 10 км, а вторая - до 20 км. Корпус выполнен из темного пластика, на передней панели есть несколько индикаторов (питание, PON, LAN, скорость LAN, дуплекс). На задней стороне расположены два сетевых порта (оптический и медный) и вход блока питания (12 В 1,5 А). Данная модель позиционируется для подключения корпоративных абонентов и выносов операторской сети.




ONU-634HA

Вторая модель более интересна для подключения домашних пользователей - имеет встроенный централизованно управляемый 4-портовый коммутатор с привязкой VLAN 802.1Q к портам Fast Ethernet. Как и 631-й она полностью настраивается со стороны провайдера, что сокращает затраты на обслуживание. Также сейчас существуют семплы ONU-634FA - четыре сетевых порта и выход кабельного телевидения, позволяющий напрямую подключить к GEPON-модему обычный телевизор.




ONU-634FA

Рекомендованные цены на оборудование GEPON
Модель Стоимость ($) Стоимость на абонента ($)
ONU-631HA-11/12 372/454 372/454
ONU-634HA-11/12 388/502 388/502
OLT-1308 23 939 47
OLT-1308H 23 283 46
OLT-2300M/OLC-2301HA-12 1 317/2 670 90 (на 512 абонентов)

Для построения сети также потребуются сплиттеры (примерная стоимость - от 400 руб за 1×2 до 4000 руб за 1×8, существуют и модели 1×32), оптический одномодовый кабель (стоимость сравнялась с ценой кабеля UTP: цены на одволоконный кабель начинаются с 7-8 рублей за метр) и коннекторы (от 100&ndsah;140 рублей за одно соединение).

Тестирование описанного оборудования в составе коммутатора OLT-1308 и модемов ONU-631A проводилось на тестовой площадке компании ZyXEL с использованием тестового пакета Ixia Chariot. Результаты при одновременной работе одного, двух и трех клиентов приводятся в таблице (пакеты максимального размера, Мбит/с). Модемы подключались к одному из портов коммутатора через один сплиттер. Видно, что в случае максимальной нагрузки, скорости равномерно распределяются по всем клиентам. Отметим и высокую эффективность передачи данных, включая режим работы нескольких клинетов - суммарная скорость практически совпадает с максимально возможной.

В целом можно отметить, что технология не сложна в настройке и эксплуатации и работает согласно спецификациям. Скорости соответствуют знакомым по медным гигабитным сетям.

Выводы

Технология GEPON может успешно применяться для организации оптических каналов каналов связи до абонента и особенно эффективна в случае наличия ограничений на прокладку кабелей и установку активного оборудования на линии. Эффективность данного решения зависит от многих факторов и однозначно сказать, что это лучший вариант конечно нельзя, все определяется конкретными требованиями заказчика. Тем не менее, произведенные оценки позволяют сделать вывод, что уже сегодня в некоторых случаях себестоимость подключения по оптике домашних абонентов может не превышать 500 долларов.

Что касается описанного оборудования, то компания ZyXEL предлагает сегодня полную линейку GEPON-устройств, позволяющую создавать оптические сети любого масштаба со всеми необходимыми системами управления и технологиями повышения надежности.