Информатика - система счисления. Виды систем счисления

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

1476 = 1 * 10 3 + 4 * 10 2 + 7 * 10 1 + 6 * 10 0

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001 2 = 137 10

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Эта система имеет основание S = 10, но каждая цифра изображается четырехразрядным двоичным числом, называемым тетрадой. Обычно данная система счисления используется в ЭВМ при вводе и выводе информации. Однако в некоторых типах ЭВМ в АЛУ имеются специальные блоки десятичной арифметики, выполняющие операции над числами в двоично-десятичном коде. Это позволяет в ряде случаев существенно повышать производительность ЭВМ.

Например, в автоматизированной системе обработки данных чисел много, а вычислений мало. В этом случае операции, связанные с переводом чисел из одной системы в другую, существенно превысили бы время выполнения операций по обработке информации.

Перевод чисел из десятичной системы в двоично-десятичную весьма прост и заключается в замене каждой цифры двоичной тетрадой.

Пример.

Записать десятичное число 572.38 (10) в двоично-десятичной системе счисления.

Обратный перевод также прост: необходимо двоично-десятичное число разбить на тетрады от точки влево (для целой части) и вправо (для дробной), дописать необходимое число незначащих нулей, а затем каждую тетраду записать в виде десятичной цифры.

Пример.

Записать двоично-десятичное число 10010.010101 (2-10) в десятичной системе счисления.

Перевод чисел из двоично-десятичной в двоичную систему осуществляется по общим правилам, описанным выше.

2.3. Восьмеричная система счисления

В восьмеричной системе счисления употребляются всего восемь цифр, т.е. эта система счисления имеет основание S = 8. В общем виде восьмеричное число выглядит следующим образом:

где
.

Восьмеричная система счисления не нужна ЭВМ в отличие от двоичной системы. Она удобна как компактная форма записи чисел и используется программистами (например, в текстах программ для более краткой и удобной записи двоичных кодов команд, адресов и операндов). В восьмеричной системе счисления вес каждого разряда кратен восьми или одной восьмой, поэтому восьмиразрядное двоичное число позволяет выразить десятичные величины в пределах 0-255, а восьмеричное охватывает диапазон 0-99999999 (для двоичной это составляет 27 разрядов).

Поскольку 8=2 3 , то каждый восьмеричный символ можно представить трехбитовым двоичным числом. Для перевода числа из двоичной системы счисления в восьмеричную необходимо разбить это число влево (для целой части) и вправо (для дробной) от точки (запятой) на группы по три разряда (триады) и представить каждую группу цифрой в восьмеричной системе счисления. Крайние неполные триады дополняются необходимым количеством незначащих нулей.

Пример.

Двоичное число 10101011111101 (2) записать в восьмеричной системе счисления.

Пример.

Двоичное число 1011.0101 (2) записать в восьмеричной системе счисления.

Перевод из восьмеричной системы счисления в двоичную осуществляется путем представления каждой цифры восьмеричного числа трехразрядным двоичным числом (триадой).

2.4. Шестнадцатеричная система счисления

Эта система счисления имеет основание S = 16. В общем виде шестнадцатеричное число выглядит следующим образом:

где
.

Шестнадцатеричная система счисления позволяет еще короче записывать многоразрядные двоичные числа и, кроме того, сокращать запись 4-разрядного двоичного числа, т.е. полубайта, поскольку 16=2 4 . Шестнадцатеричная система также применяется в текстах программ для более краткой и удобной записи двоичных чисел.

Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить это число влево и вправо от точки на тетрады и представить каждую тетраду цифрой в шестнадцатеричной системе счисления.

Пример.

Двоичное число 10101011111101 (2) записать в шестнадцатеричной системе.

Пример.

Двоичное число 11101.01111 (2) записать в шестнадцатеричной системе.

Для перевода числа из шестнадцатеричной системы счисления в двоичную, необходимо, наоборот, каждую цифру этого числа заменить тетрадой.

В заключение следует отметить, что перевод из одной системы счисления в другую произвольных чисел можно осуществлять по общим правилам, описанным в разделе “Двоичная система счисления”. Однако на практике переводы чисел из де­сятичной системы в рассмотренные системы счисления и обратно осуществляются через двоичную систему счисления.

Кроме того, следует помнить, что шестнадцатеричные и восьмеричные числа – это только способ представления больших двоичных чисел, которыми фактически оперирует процессор. При этом шестнадцатеричная система оказывается предпочтительнее, поскольку в современных ЭВМ процессоры манипулируют словами длиной 4, 8, 16, 32 или 64 бита, т.е. длиной слов, кратной 4. В восьмеричной же системе счисления предпочтительны слова, кратные 3 битам, например слова длиной 12 бит (как в PDP-8 фирмы DEC).

Двоично-десятичная система счисления получила большое распространение в современных компьютерах ввиду легкости перевода в десятичную систему и обратно. Она используется там, где основное внимание уделяется не простоте технического построения машины, а удобству работы пользователя. В этой системе счисления все десятичные цифры отдельно кодируются четырьмя двоичными цифрами и в таком виде записываются последовательно друг за другом.

Двоично-десятичная система не экономична с точки зрения реализации технического построения машины (примерно на 20 % увеличивается потребное оборудование), но очень удобна при подготовке задач и при программировании. В двоично-десятичной системе счисления основанием системы счисления является число десять, но каждая из 10 десятичных цифр (0, 1, ..., 9) изображается при помощи двоичных цифр, то есть кодируется двоичными цифрами. Для представления одной десятичной цифры используются четыре двоичных. Здесь имеется, конечно, избыточность, поскольку четыре двоичных цифры (или двоичная тетрада) могут изобразить не 10, а 16 чисел, но это уже издержки производства в угоду удобства программирования. Существует целый ряд двоично-кодированных десятичных систем представления чисел, отличающихся тем, что определенным сочетаниям нулей и единиц внутри одной тетрады поставлены в соответствие те или иные значения десятичных цифр 1 .

В наиболее часто используемой естественной двоично-кодированной десятичной системе счисления веса двоичных разрядов внутри тетрады естественны, то есть 8, 4, 2, 1 (табл. 3.1).

Таблица 3.1. Таблица двоичных кодов десятичных и шестнадцатеричных цифр

Цифра Код Цифра Код
A
B
C
D
E
F

Например, десятичное число 9703 в двоично-десятичной системе выглядит так: 1001011100000011.

18 вопрос. ос. Логические основы работы ЭВМ. Операции алгебры логики

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают & , дизъюнкцию - || , а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание – это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

19 вопрос. Основные правила алгебры логики

Обычная запись этих законов в формальной логике:

20 вопрос. Таблица истинности

Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности , в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

21 Вопрос. Логические элементы. Их названия и обозначения на схема

Как же использовать полученные нами знания из области математической логики для конструирования электронных устройств? Нам известно, что О и 1 в логике не просто цифры, а обозначение состояний какого-то предмета нашего мира, условно называемых "ложь" и "истина". Таким предметом, имеющим два фиксированных состояния, может быть электрический ток. Устройства, фиксирующие два устойчивых состояния, называются бистабильными (например, выключатель, реле). Если вы помните, первые вычислительные машины были релейными. Позднее были созданы новые устройства управления электричеством - электронные схемы , состоящие из набора полупроводниковых элементов. Такие электронные схемы, которые преобразовывают сигналы только двух фиксированных напряжений электрического тока (бистабильные) , стали называть логическими элементами.

Логический элемент компьютера - это часть электронной логичеcкой схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и другие (называемые также вентилями ), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Чтобы представить два логических состояния - “1” и “0” в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению “истина” (“1”), а низкий - значению “ложь” (“0”).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Представление чисел в памяти компьютера имеет специфическую особенность, связанную с тем, что в памяти компьютера они должны располагаться в байтах – минимальных по размеру адресуемых ячейках памяти. Вся память компьютера разбита на отдельные участки из 8 бит (т.е. на байты). Байты имеют номера: 0, 1, 2, …, называемые адресами. Два соседних участка: 0 и 1, 2 и 3 и т.д. образуют ячейку памяти ЭВМ. Т.е. одна ячейка памяти может хранить два байта или 16 битов информации. Для содержимого одной ячейки используют название – «машинное слово» или просто «слово». Очевидно, адресом числа считается адрес первого байта, т.е. четные числа, начиная с 0, 2, 4, 6 и т.д. В байте может содержаться произвольный код из восьми двоичных разрядов, и задача представления состоит в том, чтобы указать правила, как в одном или нескольких байтах записать число.

Числа могут быть целые точные, дробные точные, рациональные, иррациональные, дробные приближенные, положительные и отрицательные. Числа могут быть «карликами» (например, масса атома), «гигантами» (например, масса земли), реальными (например, количество студентов в группе, рост, возраст). И каждое из чисел потребует для оптимального представления в памяти свое количество байтов.

Единого оптимального представления для действительных чисел создать невозможно. Поэтому множества чисел разделили на типы (например, целые в диапазоне от … до …, приближенные с плавающей точкой с количеством значащих цифр … и т.д.). Для каждого в отдельности типа создается собственный способ представления.

Целые числа . Целые положительные числа от 0 до 255 можно представить непосредственно в двоичной системе счисления (двоичном коде). Такие числа будут занимать один байт в памяти компьютера.

В такой форме представления на компьютере легко реализуется двоичная арифметика. Знак числа «плюс» или «минус» кодируется отдельным битом. Обычно это старший бит. Ноль интерпретируется, как «плюс», единица - как «минус». Таким образом, одним байтом могут быть закодированы целые числа в интервале от –128 до +127. Двоичная арифметика при этом будет несколько усложнена, т.к. в этом случае существуют два кода, изображающих число ноль 00000000 и 100000000. В компьютере на аппаратном уровне это необходимо предусмотреть. Данный способ представления целых чисел называется прямым кодом . С отрицательными числами несколько проще, если использовать дополнительный код. В дополнительном коде положительные числа совпадают с положительными числами в прямом коде, отрицательные же числа получаются в результате вычитания из 100000000 соответствующего числа. Например, число –3 получит код:

В дополнительном коде хорошо реализуется арифметика. Каждый последующий код получается из предыдущего прибавлением единицы с точностью до бита в девятом разряде. Например, 5 – 3 = 5 + (-3)

1 00000010

Отбрасывая подчеркнутый старший разряд, получим 2.

Аналогично целые числа от 0 до 65536 и целые числа от –32768 до 32767 в двоичной (шестнадцатеричной) системе счисления представляются в двухбайтовых ячейках. Существуют представления целых чисел и в четырехбайтовых ячейках.

Действительные числа . Действительные числа в математике представляются конечными или бесконечными дробями, т.е. точность представления чисел не ограничена. Однако, в компьютере числа хранятся в регистрах и ячейках памяти, которые представляют собой последовательность байтов с ограниченным количеством разрядов. Следовательно, бесконечные или очень длинные числа усекаются до некоторой длины и в компьютерном представлении выступают как приближенные. В большинстве систем программирования целая и дробная части в написании действительных чисел разделяются не запятой, а точкой.

Для представления действительных чисел, как очень маленьких, так и очень больших, удобно использовать форму записи чисел в виде произведения:

Где m- основание системы счисления;

P – целое число, называемое порядком.

Такой способ записи чисел называется представлением числа с плавающей точкой .

Т.е. число 1234,56 может быть записано:

1234,56 = 123,456*10 1 = 12,3456*10 2 = 1,23456*10 3 = 0,123456*10 4 .

Такое представление не однозначно. Если мантисса (0,1 для десятичной С.С.), то представление числа становится однозначным, а такая форма называется нормализованной . Если «плавающая» точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведенных под мантиссу, обеспечивается запись максимального количества значащих цифр числа, т.е., максимальная точность.

Действительные числа в компьютерах различных типов записываются по-разному, но существует несколько стандартных международных форматов, различающихся по точности, но имеющих одинаковую структуру. Рассмотрим на примере 4 байтного числа.

Смещенный порядок Мантисса

мантиссы

Первый разряд представления используется для записи знака мантиссы. За ним – группа разрядов, определяющих порядок, а остальные разряды определяют абсолютную величину мантиссы. Размеры обеих групп разрядов фиксируются. Т.к. порядок может быть положительным или отрицательным, нужно решить проблему его знака. Величина порядка представляется с избытком, т.е., вместо истинного значения порядка хранится число, называемое характеристикой (или смещенным порядком ). Для получения характеристики надо к порядку прибавить смещение. Например, при использовании для хранения порядка восьми бит и значений от –128 до +127 используется смещение 128. Тогда для представления порядка будут использоваться значения от 0 до 255, т.е. только неотрицательные числа.

Т.к. мантисса нормализованного числа всегда равна 1, некоторые схемы представления ее лишь подразумевают, используя лишний разряд для повышения точности представления мантиссы.

Использование смещенной формы позволяет производить операции над порядками, как над без знаковыми числами, что упрощает операции сравнения, сложения и вычитания порядков. А также упрощает операцию сравнения самих нормализованных чисел. Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа. Чем больше разрядов занимает порядок, тем шире диапазон от наименьшего, отличного от нуля числа до наибольшего числа, представимого в компьютере при заданном формате.

Как и в случае целых чисел, в программных системах могут использоваться несколько типов данных, реализующих модель с плавающей точкой. Например, в языке СИ применяются три типа данных с разной «длиной». Шестнадцатиразрядные компиляторы для IBM-совместимых ПК реализуют эти типы следующим образом:

Float – 4 байта, из них 23 разряда мантиссы и 8 битов порядка

(от 3,4*10 -38 до 3,4*10 38 , обеспечивает точность с 7 значащими цифрами);

Double – 8 байтов, из них 52 разряда мантиссы и 11 битов порядка

(от 1,7*10 -308 до 1,7*10 308 , обеспечивает точность с 15 знаками);

Long double – 10 байтов, из них 65 разрядов мантиссы и 14 битов порядка

(от 3,4 * 10 -4932 , обеспечивает точность с 19 знаками).

Понятие типа данных . Мы уже говорили, что минимально адресуемой единицей памяти является байт, но представление числа требует большего объема. Такие числа займут группу байт, а адресом числа будет адрес первого байта группы. Следовательно, произвольно взятый из памяти байт ничего не скажет о том, частью какого информационного объекта от является – целого числа,числа с плавающей точкой или командой. Отсюда можно сделать вывод, что кроме задачи представления данных в двоичном коде, параллельно решается обратная задача – интерпретации кодов, т.е. как из кодов восстановить первоначальные данные.

Для представления основных видов информации (числа целые, числа с плавающей точкой, символы, звук и т.д.) в системах программирования используют типы данных. Каждый тип данных определяет логическую структуру представления и интерпретации для соответствующих данных.

Иногда бывает удобно хранить числа в памяти процессора в десятичном виде (Например, для вывода на экран дисплея). Для записи таких чисел используются двоично-десятичные коды . Не нужно путать двоично-десятичный код с . Для записи одного десятичного разряда используется четыре двоичных бита. Эти четыре бита называются тетрадой. Иногда встречается название, пришедшее из англоязычной литературы: нибл. При помощи четырех бит можно закодировать шестнадцать цифр. Лишние комбинации в двоично-десятичном коде являются запрещенными. Таблица соответствия двоично-десятичного кода и десятичных цифр приведена ниже:

Двоично-десятичный код Десятичный код
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9

Остальные комбинации двоичного кода в тетраде являются запрещенными. Запишем пример двоично-десятичного кода:

1258 = 0001 0010 0101 1000

В первой тетраде записана цифра 1, во второй — 2, в третьей — 5, а в последней тетраде записана цифра 8. В данном примере для записи числа 1258 потребовалось четыре тетрады. Количество ячеек памяти микропроцессора зависит от его разрядности. При 16-разрядном процессоре все число уместится в одну ячейку памяти.

589 = 0000 0101 1000 1001

В данном примере для записи числа достаточно трех тетрад, но ячейка памяти 16-разрядная. Поэтому старшая тетрада заполняется нулями. Они не изменяют значение цифры. Если бы мы заполнили нулями младшую тетраду, то число увеличилось бы в десять раз!

При записи десятичных чисел часто требуется записывать знак числа и десятичную запятую (в англоязычных странах точку). Двоично-десятичный код часто применяется для набора телефонного номера или набора кодов телефонных служб. В этом случае кроме десятичных цифр часто применяются символы "*" или "#". Для записи этих символов в двоично-десятичном коде применяются запрещенные комбинации

Достаточно часто в памяти процессора для хранения одной десятичной цифры выделяется одна ячейка памяти (восьми, шестнадцати или тридцатидвухразрядная). Это делается для повышения скорости работы программы. Для того, чтобы отличить такой способ записи двоично-десятичного числа от стандартного, способ записи десятичного числа, как это показано в примере, называется упакованной формой двоично-десятичного числа. Запишем те же числа, что и в предыдущем примере в неупакованном двоично-десятичном коде для восьмиразрядного процессора:

1258 =00000001 00000010 00000101 00001000

В первой строке записана цифра 1, во второй - 2, в третьей - 5, а в последней строке записана цифра 8. В данном примере для записи числа 1258 потребовалось четыре строки (ячейки памяти)

589 = 00000000 00000101 00001000 00001001

Суммирование двоично-десятичных чисел.

Суммирование двоично-десяичных чисел можно производить по правилам обычной двоичной арифметики, а затем производить двоично-десятичную коррекцию . Двоично-десятичная коррекция заключается в проверке каждой тетрады на допустимые коды. Если в какой либо тетраде обнаруживается запрещенная комбинация, то это говорит о переполнении. В этом случае необходимо произвести двоично-десятичную коррекцию. Двоично-десятичная коррекция заключается в дополнительном суммировании числа шесть (число запрещенных комбинаций) с тетрадой, в которой произошло переполнение или произошёл перенос в старшую тетраду. Приведём два примера.