Основы беспроводной технологии. Расширенный диапазон ISO: действительно полезная функция или хитрый маркетинговый ход

При расширении спектра методом прямой последовательности (direct sequence spread spectrum - DSSS) после обработки исходного сигнала кодом расширения каждому исходному биту ставится в соответствие несколько битов передаваемого сигнала. Степень расширения спектра прямо пропорциональна количеству битов кода. Другими словами, 10-битовый код расширяет полосу частот сигнала в 10 раз больше, чем 1-битовый код.

Один из методов применения DSSS - комбинирование цифрового информа­ционного потока и битовой последовательности кода расширения с использова­нием исключающего ИЛИ. Операция исключающего ИЛИ выполняется согласно следующим правилам:

Пример такого комбинирования приводится на рис. 7.6. Отметим, что бит дан­ных, равный единице, инвертирует биты кода; если же бит данных равен нулю, биты кода расширения передаются без изменений. Комбинация двух последова­тельностей битов имеет такую же скорость передачи, как и последовательность кода расширения. Следовательно, полоса комбинированной последовательности больше полосы последовательности данных. В данном примере скорость переда­чи последовательности битов кода в четыре раза превышает аналогичный пара­метр для битов данных.

DSSS с использованием BPSK

Рассмотрим использование схемы DSSS на практике, предполагая применение модуляции BPSK. Для обозначения двоичных данных удобнее будет использо­вать не нуль и единицу, а "+1" и "−1" соответственно. Как было показано в уравнении (6.5), сигнал BPSK можно описать следующей формулой:

А - амплитуда сигнала;

f c - несущая частота;

d (t ) - дискретная функция, принимающая значение +1, если соответствую­щий бит потока данных равен 1, и −1, когда бит данных равен 0.

Рис. 7.6. Пример использования расширения спектра

методом прямой последовательности

Чтобы получить сигнал DSSS, необходимо умножить s d (t ) на функцию c (t ), которая соответствует псевдослучайной последовательности и принимает значе­ния −1 и +1:

При поступлении сигнала на приемник он еще раз умножается на c (t ). Посколь­ку c (t ) × c (t ) = 1, в результате умножения будет восстановлен исходный сигнал:

Формулу (7.5) можно интерпретировать двояко, откуда следуют две реали­зации описанного метода. Первая интерпретация - умножение c (t ) на d (t ) с по­следующим применением модуляции BPSK (именно такой подход рассматривал­ся выше). Можно также использовать альтернативный подход - модуляцию по схеме BPSK потока данных d (t ) с последующим умножением полученной функ­ции s d (t ) на c (t ).

Рис. 7.7. Система расширения спектра методом

прямой последовательности

Реализация второй трактовки приведена на рис. 7.7 Пример использования такого подхода изображен на рис. 7.8.

Рис. 7.8. Пример системы расширения спектра методом

прямой последователь­ности (модуляция BPSK )

Анализ производительности

Расширение спектра при использовании схемы DSSS определить довольно просто (рис. 7.9). В нашем примере ширина полосы одного бита информационного сиг­нала равна Т , что соответствует скорости передачи данных 1/T . Следовательно, в зависимости от кодировки ширина спектра сигнала будет составлять порядка 2/T . Подобным образом, спектр псевдослучайного сигнала равен 2/Т с . Получаю­щийся расширенный спектр изображен на рис. 7.9, в. Степень расширения пря­мо зависит от скорости передачи псевдослучайной последовательности.

Как и для схемы FSSS, представление об эффективности DSSS можно полу­чить, проанализировав устойчивость системы связи к подавлению. Предполо­жим, что намеренная помеха ставится на центральной частоте системы DSSS. Сигнал помех имеет следующий вид:

Полученный сигнал можно представить так:

s (t ) - переданный сигнал;

s j (t ) - сигнал намеренных помех;

n (t ) - аддитивный белый шум;

S j - мощность сигнала помех.

Рис. 7.9. Приблизительный спектр сигнала DSSS

Устройство сужения спектра в приемнике умножает s r (t ) на c (t ). Компонент сиг­нала, соответствующий намеренным помехам, можно записать в следующем виде:

Таким образом, имеем простое применение модуляции BPSK к несущему тону. Следовательно, мощность несущей S j распределена в полосе, ширина которой приблизительно равна 2/Т с . В то же время демодулятор BPSK (рис. 7.7), следую­щий за устройством сужения спектра, включает полосовой фильтр с шириной полосы 2/T , который согласован с данными BPSK. Значит, большая часть мощ­ности помех отфильтровывается. Хотя строго следует учитывать влияние множе­ства факторов, мощность намеренных помех, которые не были отсеяны полосо­вым фильтром, можно записать приблизительно:

Таким образом, использование расширенного спектра снизило мощность наме­ренных помех в (Т c /Т ) раз. Величина, обратная данному коэффициенту, выража­ет выигрыш в отношении сигнал/шум:

R c - скорость передачи данных кода расширения;

R - скорость передачи данных;

W d - ширина полосы сигнала;

W s - ширина полосы сигнала расширенного спектра.

Результат подобен полученному ранее для схемы FHSS (уравнение (7.3)).

Метод расширения спектра скачкообразной перестройкой частоты (FHSS – Frequency Hopping Spread Spectrum) основан на постоянной смене несущей в пределах широкого диапазона частот.

Частота несущей F1, …, FN случайным образом меняется через определенный период времени, называемый периодом отсечки (чип) , в соответствии с выбранным алгоритмом выработки псевдослучайной последовательности. На каждой частоте применяется модуляция (FSK или PSK). Передача на одной частоте ведётся в течение фиксированного интервала времени, в течение которого передаётся некоторая порция данных (Data). В начале каждого периода передачи для синхронизации приемника с передатчиком используются синхробиты, которые снижают полезную скорость передачи.

В зависимости от скорости изменения несущей различают 2 режима расширения спектра:

· медленное расширение спектра – за один период отсечки передается несколько бит;

· быстрое расширение спектра – один бит передается за несколько периодов отсечки, то есть повторяется несколько раз.

В первом случае период передачи данных меньше периода передачи чипа , во втором – больше.

Метод быстрого расширения спектра обеспечивает более надёжную передачу данных при наличии помех за счёт многократного повторения значения одного и того же бита на разных частотах, но более сложен в реализации, чем метод медленного расширения спектра.

Прямое последовательное расширение спектра

Метод прямого последовательного расширения спектра (DSSS – Direct Sequence Spread Spectrum) состоит в следующем.

Каждый «единичный» бит в передаваемых данных заменяется двоичной последовательностью из N бит, которая называется расширяющей последовательностью , а «нулевой» бит кодируется инверсным значением расширяющей последовательности. В этом случае тактовая скорость передачи увеличивается в N раз, следовательно, спектр сигнала также расширяется в N раз.

Зная выделенный для беспроводной передачи (линии связи) частотный диапазон, можно соответствующим образом выбрать скорость передачи данных и значение N , чтобы спектр сигнала заполнил весь диапазон.

Основная цель кодирования DSSS как и FHSS – повышение помехоустойчивости.

Чиповая скорость – скорость передачи результирующего кода.

Коэффициент расширения – количество битов N в расширяющей последовательности. Обычно N находится в интервале от 10 до 100. Чем больше N , тем больше спектр передаваемого сигнала.

DSSS в меньшей степени защищен от помех, чем метод быстрого расширения спектра.

Множественный доступ с кодовым разделением

Методы расширения спектра широко используются в сотовых сетях, в частности, при реализации метода доступа CDMA (Code Division Multiple Access) – множественный доступ с кодовым разделением . CDMA может использоваться совместно с FHSS, но в беспроводных сетях чаще с DSSS.

Каждый узел сети использует собственную расширяющую последовательность, которая выбирается так, чтобы принимающий узел мог выделить данные из суммарного сигнала.

Достоинство CDMA заключается в повышенной защищенности и скрытности передачи данных: не зная расширяющей последовательности, невозможно получить сигнал, а иногда и обнаружить его присутствие.

Технология WiFi. Технология WiМах. Беспроводные персональные сети. Технология Bluetooth. Технология ZigBee. Беспроводные сенсорные сети. Сравнение беспроводных технологий.

Технология WiFi

Технология беспроводных ЛВС (WLAN) определяется стеком протоколов IEEE 802.11, который описывает физический уровень и канальный уровень с двумя подуровнями: MAC и LLC.

На физическом уровне определены несколько вариантов спецификаций, которые различаются:

· используемым диапазоном частот;

· методом кодирования;

· скоростью передачи данных.

Варианты построения беспроводных ЛВС стандарта 802.11, получившего название WiFi.

IEEE 802.11 (вариант 1):

· среда передачи – ИК-излучение;

· передача в зоне прямой видимости;

· используются 3 варианта распространения излучения:

Ненаправленная антенна;

Отражение от потолка;

Фокусное направленное излучение («точка-точка»).

IEEE 802.11 (вариант 2):

· метод кодирования – FHSS: до 79 частотных диапазонов шириной

1 МГц, длительность каждого из которых составляет 400 мс (рис.3.49);

· при 2-х состояниях сигнала обеспечивается пропускная способность среды передачи в 1 Мбит/с, при 4-х – 2 Мбит/с.

IEEE 802.11 (вариант 3):

· среда передачи – микроволновый диапазон 2,4 ГГц;

· метод кодирования – DSSS c 11-битным кодом в качестве расширяющей последовательности: 10110111000.

IEEE 802.11a:

1) диапазон частот – 5 ГГц;

2) скорости передачи: 6, 9, 12, 18, 24, 36, 48, 54 Мбит/с;

3) метод кодирования – OFDM.

Недостатки:

· слишком дорогое оборудование;

· в некоторых странах частоты этого диапазона подлежат лицензированию.

IEEE 802.11b:

1) диапазон частот – 2,4 ГГц;

2) скорость передачи: до 11 Мбит/с;

3) метод кодирования – модернизированный DSSS.

IEEE 802.11g:

1) диапазон частот – 2,4 ГГц;

2) максимальная скорости передачи: до 54 Мбит/с;

3) метод кодирования – OFDM.

В сентябре 2009 года был утверждён стандарт IEEE 802.11n. Его применение позволит повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с. Радиус действия беспроводных сетей IEEE 802.11 – до 100 метров.

Технология WiМах

Технология беспроводного широкополосного доступа с высокой пропускной способностью WiMax представлена группой стандартов IEEE 802.16 и первоначально была предназначена для построения протяженных (до 50 км) беспроводных сетей, относящихся к классу региональных или городских сетей.

Стандарт IEEE 802.16 или IEEE 802.16-2001 (декабрь 2001 года), являющийся первым стандартом «точка-многоточка», был ориентирован на работу в спектре от 10 до 66 ГГц и, как следствие, требовал нахождения передатчика и приёмника в области прямой видимости, что является существенным недостатком, особенно в условиях города. Согласно описанным спецификациям, сеть 802.16 могла обслуживать до 60 клиентов со скоростью канала T-1 (1,554 Мбит/с).

Позднее появились стандарты IEEE 802.16a, IEEE 802.16-2004 и IEEE 802.16е (мобильный WiMax), в которых было снято требование прямой видимости между передатчиком и приёмником.

Основные параметры перечисленных стандартов технологии WiMax.

Рассмотрим основные отличия технологии WiМах от WiFi.

1. Малая мобильность. Первоначально стандарт разрабатывался для стационарной беспроводной связи на большие расстояния и предусматривал мобильность пользователей в пределах здания. Лишь в 2005 году был разработан стандарт IEEE 802.16e, ориентированный на мобильных пользователей. В настоящее время ведётся разработка новых спецификаций 802.16f и 802.16h для сетей доступа с поддержкой работы мобильных (подвижных) клиентов при скорости их движения до 300 км/ч.

2. Использование более качественных радиоприемников и передатчиков обусловливает более высокие затраты на построение сети. 3. Большие расстояния для передачи данных требуют решения ряда специфических проблем: формирование сигналов разной мощности, использование нескольких схем модуляции, проблемы защиты информации.

4. Большое число пользователей в одной ячейке.

5. Более высокая пропускная способность , предоставляемая пользователю.

6. Высокое качество обслуживания мультимедийного трафика.

Первоначально считалось, что IEEE 802.11 мобильный аналог Ethernet , 802.16 – беспроводной стационарный аналог кабельного телевидения . Однако появление и развитие технологии WiMax (IEEE 802.16e) для поддержки мобильных пользователей делает это утверждение спорным.

Большинство современных цифровых камер предлагают пользователям возможность выбирать между применением штатного диапазона ISO и его расширенным режимом.

Опытные фотографы хорошо понимают, какие функции камеры реально полезны, а какие в работе практически не используются и добавлены производителем в качестве маркетингового хода. Новички же при выборе фотоаппарата могут легко запутаться во всем многообразии опций, например, что такое ISO и как правильно выбрать рабочий диапазон ISO.

Выбор между штатным и расширенным диапазоном ISO

При изменении значения ISO на цифровой фотокамере пользователь регулирует силу сигнала, меняя тем самым отношение принудительного усиления к считывающей способности световоспринимающего сенсора. Существуют определенные минимальные и максимальные значения усиления ISO - именно этот диапазон называется штатным. После уменьшения или превышения штатных показателей датчики камеры не смогут адекватно считывать данные.

До некоторого времени верхний порог значения светочувствительности считался незыблемым, однако бурное развитие аппаратной части и программного обеспечения современных фотокамер позволило замахнуться на невероятные высоты. То же самое касается и нижнего значения диапазона ISO - современная техника позволяет существенно снизить его. По сути, фотосъемка с использованием расширенного диапазона ISO напоминает постобработку фотографии в компьютере, только этот процесс происходит непосредственно в самой камере.

Как увеличенный диапазон ISO может повлиять на снимки

В камерах с большим диапазоном ISO используют датчики со стандартной светочувствительностью, такие же, как и в обычных фотоаппаратах. Расширенные диапазоны ISO, такие как, например, ISO 12800, ISO 25600, ISO 51200, ISO 102400 получаются путем использования обычных сенсоров и электронных схем, светочувствительность которых повышается с помощью программного обеспечения. Из этого следует, что расширенный диапазон ISO - это не более чем маркетинговый ход.

Заявления о том, что камера может снимать до ISO 102400, впечатляют начинающих фотографов, но это не значит, что при покупке камеры они покупают датчик с такой высокой светочувствительностью. На самом деле эти значения достигаются, благодаря программному обеспечению, и проявляются зачастую в низком качестве снимков с большим количеством цифрового шума.

Фотографии, полученные на экстремально высоких значениях ISO, будут хорошо выглядеть только при условии черно-белой съемки, что сводит на нет подобное преимущество камер с расширенным диапазоном ISO.

Внимательный пользователь обязательно заметит, что камера в расширенном диапазоне ISO делает кадры в формате JPEG, но не в RAW. Это связано с тем, что при съемке в режиме RAW формируется цифровой негатив с минимальной обработкой, так как это расширяет возможности при постобработке кадров с использованием фоторедакторов. (Стоит, правда, оговориться, что некоторые производители допускают возможность использования расширенного диапазона ISO при фотосъемке в RAW-формате.)

Определенная польза от использования увеличенного диапазона значений ISO может быть для фотографов, снимающих в формате JPEG, кто не обрабатывает в последствии изображения. Необходимо все-таки учесть, что на качество придется закрыть глаза.

1.1. Краткая характеристика расширения спектра сигналов методом ППРЧ

1.1.1. Основные принципы и методы расширения спектра сигналов

В случае, когда перед исследователями и разработчиками систем радиосвязи (СРС) встает проблема обеспечения надежной связи в условиях организованных и непреднамеренных помех, многолучевого распространения радиоволн, а также осуществления многостанционного доступа при работе в пакетных сетях радиосвязи, наилучшие результаты могут быть получены при использовании в СРС сигналов с расширением спектра . Основные принципы известных методов расширения спектра сигналов, адекватно отражающие их физическую сущность, приведены в : ...расширение спектра сигнала есть способ передачи, при котором сигнал занимает полосу частот более широкую по сравнению с полосой, минимально необходимой для передачи информации; расширение полосы частот сигнала обеспечивается специальным кодом, который не зависит от передаваемой информации; для последующего сжатия полосы частот сигнала и восстановления данных в приемном устройстве также используется специальный код, аналогичный коду в передатчике СРС и синхронизированный с ним... Таким образом, способ передачи информации с расширением спектра заключается: на передающей стороне – в одновременной и независимой модуляции параметров сигнала специальным кодом (расширяющей спектр функцией) и передаваемым сообщением; на приемной стороне – в синхронной демодуляции сигнала в соответствии с расширяющей спектр функцией и восстановлении переданного сообщения .

Несмотря на то, что принципы расширения спектра сигналов в общем виде были известны уже в 20-30-х годах XX века, теоретической базой для разработки СРС с такими сигналами стала фундаментальная формула К.Е. Шеннона

которая, характеризуя предельные возможности гауссовского канала, кардинальным образом расширяет представление о возможности передачи информации по каналам радиосвязи с ограниченным по полосе аддитивным белым гауссовским шумом (АБГШ).

Так, из (1.1) следует, что пропускная способность (бит/с) канала радиосвязи, после того как она задана, в условиях действия аддитивной гауссовской помехи (шума) с ограниченной средней мощностью (Вт) может быть обеспечена либо использованием широкой полосы частот (Гц) с малым отношением сигнал-помеха , либо – узкой полосы частот (Гц) с более высоким отношением сигнал-помеха , где - средняя мощность сигнала. Следовательно, между полосой пропускания канала и отношением сигнал-помеха в этом канале возможен взаимообмен. При этом в соответствии с зависимостью (1.1) наиболее целесообразным является обмен мощности сигнала на полосу пропускания канала. Например, требуется обеспечить пропускную способность бит/с при отношении сигнал-помеха =. На основе (1.1) канал радиосвязи должен иметь полосу МГц. При большем отношении сигнал-помеха, например , пропускная способность канала радиосвязи бит/с может быть реализована достаточно узкой полосой частот кГц. Формула (1.1) указывает и на то, что при заданном отношении сигнал-помеха в канале радиосвязи с АБГШ пропускная способность может быть увеличена путем соответствующего расширения спектра си шала .

При малых отношениях сигнал-помеха выражение (1.1) принимает вид:

где 1,44 - модуль перехода от двоичных логарифмов к натуральным; в случае больших отношений из (1.1) с хорошим приближением следует, что

Предельное значение пропускная способность для гауссовского канала радиосвязи имеет при

где - односторонняя спектральная плотность мощности белого шума.

Выражение (1.2в) указывает на то, что в канале с шумами даже в предельном случае при отношение сигнал-помеха должно превышать определенное пороговое значение. Так, для передачи бита информации требуемая энергия сигнала (или ) .

Если пропускная способность равна требуемой скорости передачи информации , то из (1.1) и (1.2) видно, что при канал радиосвязи может работать при значительном превышении мощности помехи над мощностью полезного сигнала . Поэтому методы расширения спектра сигналов находят широкое применение в специальных СРС, которые должны обеспечивать надежную связь в условиях радиоэлектронного подавления (РЭП).

Методы расширения спектра могут базироваться на изменении (модуляции) амплитуды, фазы, частоты и временного положения (задержки) сигнала в соответствии со специальным кодом, формируемым на основе псевдослучайной последовательности.

Однако амплитудная модуляция для формирования сигнала с расширением спектра, как правило, не применяется, так как при этом получается сигнал с большим значением пиковой (мгновенной) мощности, который достаточно легко обнаруживается простыми приемниками станций радиотехнической разведки (РТР) .

Из-за недостаточной помехозащищенности самостоятельное применение в СРС не находит и метод расширения спектра за счет модуляции временного положения (задержки) сигнала, так называемый метод псевдослучайной время-импульсной модуляции (ПВИМ) . При методе ПВИМ расширение спектра достигается путем сжатия информационного сигнала во временной области. Сокращение времени передачи каждого информационного сигнала в раз приводит к расширению спектра сигнала в раз и уменьшает до общее время передачи. Информация передается только в заданные интервалы времени, которые следуют друг за другом в соответствии с выбранным кодом. При использовании метода ПВИМ, как и метода расширения спектра за счет амплитудной модуляции, имеет место большой пикфактор, что приводит к нерациональному расходованию мощности передатчика СРС.

Основными, базовыми методами расширения спектра сигналов, широко применяемыми в современных СРС, системах управления и распределения информации, являются:

Метод непосредственной модуляции несущей псевдослучайной последовательностью (ПСП);

Метод псевдослучайной перестройки рабочей частоты (ППРЧ);

Метод совместного (комплексного) использования различных методов; например, метода непосредственной модуляции несущей ПСП и метода ППРЧ; метода ППРЧ и метода ПВИМ и другие сочетания.

При первом методе расширение спектра сигнала достигается за счет непосредственной модуляции несущей частоты ПСП , элементы которой генерируются со скоростью , значительно превышающей скорость передачи элементов информационной последовательности , и затем накладываются на каждый информационный символ. Типовым примером таких сигналов являются фазоманипулированные широкополосные сигналы (ФМШПС) . При прямоугольной форме элементов информационной последовательности и при использовании ПСП , обеспечивающей расширение спектра сигнала, двоичный ФМШПС можно описать выражением

На рис.1.4, а, б в идеализированном виде изображены спектральные плотности мощности сигнала и узкополосной помехи в характерных точках структурных схем передатчика и приемника СРС с ФМШПС.

На рис. 1.4 видно, как происходит преобразование спектра полезного сигнала и расширение спектра узкополосной помехи в передающем и приемном устройствах СРС с ФМШПС.

Изначально метод расширенного спектра создавался для разведывательных и военных целей. Основная идея метода состоит в том, чтобы распределить информационный сигнал по широкой полосе радиодиапазона, что в итоге позволит значительно усложнить подавление или перехват сигнала. Первая разработанная схема расширенного спектра известна как метод перестройки частоты. Более современной схемой расширенного спектра является метод прямого последовательного расширения. Оба метода используются в различных стандартах и продуктах беспроводной связи.

Расширение спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum - FHSS)

Для того чтобы радиообмен нельзя было перехватить или подавить узкополосным шумом, было предложено вести передачу с постоянной сменой несущей в пределах широкого диапазона частот. В результате мощность сигнала распределялась по всему диапазону, и прослушивание какой-то определенной частоты давало только небольшой шум. Последовательность несущих частот была псевдослучайной, известной только передатчику и приемнику. Попытка подавления сигнала в каком-то узком диапазоне также не слишком ухудшала сигнал, так как подавлялась только небольшая часть информации.

Идею этого метода иллюстрирует рис. 1.10 .

В течение фиксированного интервала времени передача ведется на неизменной несущей частоте. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции , такие как FSK или PSK . Для того чтобы приемник синхронизировался с передатчиком, для обозначения начала каждого периода передачи в течение некоторого времени передаются синхробиты. Так что полезная скорость этого метода кодирования оказывается меньше из-за постоянных накладных расходов на синхронизацию.


Рис. 1.10.

Несущая частота меняется в соответствии с номерами частотных подканалов, вырабатываемых алгоритмом псевдослучайных чисел. Псевдослучайная последовательность зависит от некоторого параметра, который называют начальным числом. Если приемнику и передатчику известны алгоритм и значение начального числа, то они меняют частоты в одинаковой последовательности, называемой последовательностью псевдослучайной перестройки частоты.

Если частота смены подканалов ниже, чем скорость передачи данных в канале, то такой режим называют медленным расширением спектра (рис. 1.11а); в противном случае мы имеем дело с быстрым расширением спектра (рис. 1.11б).

Метод быстрого расширения спектра более устойчив к помехам, поскольку узкополосная помеха, которая подавляет сигнал в определенном подканале, не приводит к потере бита, так как его значение повторяется несколько раз в различных частотных подканалах. В этом режиме не проявляется эффект межсимвольной интерференции, потому что ко времени прихода задержанного вдоль одного из путей сигнала система успевает перейти на другую частоту.

Метод медленного расширения спектра таким свойством не обладает, но зато он проще в реализации и сопряжен с меньшими накладными расходами.

Методы FHSS используются в беспроводных технологиях IEEE 802.11 и Bluetooth .

В FHSS подход к использованию частотного диапазона не такой, как в других методах кодирования - вместо экономного расходования узкой полосы делается попытка занять весь доступный диапазон. На первый взгляд это кажется не очень эффективным - ведь в каждый момент времени в диапазоне работает только один канал. Однако последнее утверждение не всегда справедливо - коды расширенного спектра можно использовать и для мультиплексирования нескольких каналов в широком диапазоне. В частности, методы FHSS позволяют организовать одновременную работу нескольких каналов путем выбора для каждого канала таких псевдослучайных последовательностей , чтобы в каждый момент времени каждый канал работал на своей частоте (конечно, это можно сделать, только если число каналов не превышает числа частотных подканалов).

Прямое последовательное расширение спектра (Direct Sequence Spread Spectrum - DSSS)

В методе прямого последовательного расширения спектра также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. В отличие от метода FHSS , весь частотный диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N-битами, так что тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в N раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон.

Цель кодирования методом DSSS та же, что и методом FHSS , - повышение устойчивости к помехам. Узкополосная помеха будет искажать только определенные частоты спектра сигнала, так что приемник с большой степенью вероятности сможет правильно распознать передаваемую информацию.

Код, которым заменяется двоичная единица исходной информации, называется расширяющей последовательностью , а каждый бит такой последовательности - чипом.

Соответственно, скорость передачи результирующего кода называют чиповой скоростью. Двоичный нуль кодируется инверсным значением расширяющей последовательности. Приемники должны знать расширяющую последовательность, которую использует передатчик, чтобы понять передаваемую информацию.

Количество битов в расширяющей последовательности определяет коэффициент расширения исходного кода. Как и в случае FHSS , для кодирования битов результирующего кода может использоваться любой вид модуляции, например BFSK .

Чем больше коэффициент расширения, тем шире спектр результирующего сигнала и выше степень подавления помех. Но при этом растет занимаемый каналом диапазон спектра. Обычно коэффициент расширения имеет значение от 10 до 100.