Принцип свечения светодиода. Индикаторные LED-диоды по типу соединения делятся на

У многих возникает вопрос, почему диод одинаковой мощности (например 50W) стоит в китайском интернет магазине 100р, а в России 500 руб. Китайские продавцы и производители грамотно используют характеристики светодиодов, которые нельзя измерить без специального оборудования. К тому же научились производить очень дешевые и низкокачественные. 99% покупателей в них не разбираются и сталкиваются с ними впервые. Большая разница в цене даёт хороший повод для обмана, всегда можно впарить барахло по цене фирменного, что они умело и делают.


  • 1. Размер чипа
  • 2. Сила тока на кристалле
  • 3. Параметры сверхярких светодиодов от 10W
  • 4. Характеристики 5050, 2835, 5730, 5630, 3528
  • 5. Характеристики светодиодов для фонариков
  • 6. Основные характеристики
  • 7. Подробное описание

Размер чипа

Наверное вы видали, что иногда продавец пишет в характеристиках размер кристалла, указывая его в «mil». Так обозначаются тысячные доли дюйма, в миллиметрах получается 0,0254мм. Типовой кристалл имеет размеры 30*30mil и 45*45mil. В миллиметрах 0,762*0,762мм и 1,143*1,143мм. Измерить не очень просто, но можно сравнить на глаз, если есть эталон. Я использую цифровой штангенциркуль, с точностью до 0,01мм. Для замеров нужен инструмент с острыми концами, обычный микрометр не подходит, так как кристалл утоплен в корпусе.

Соответствие размеров и мощности:

  1. 1W — 45*45mil;
  2. 1W — 30*30mil;
  3. 0,75W — 24*40mil;
  4. 0,5W — 24*24mil.

Сила тока на кристалле

На светодиодных матрицах мощность можно узнать по количеству установленных КР. Они в виде точек видны под желтым люминофором. У цветных и RGB люминофора нет, их видно отлично.

На мощных светодиодах 1 КР имеет мощность 1W и номинальный ток 300мА. При таком токе обеспечивается штатный долговременный режим работы. Если видно 50 КР, то соответственно будут равны 50W.

Параметры сверхярких светодиодов от 10W

Рассмотрим особенности мощных светодиодных матриц белого света. Чтобы удешевить стоимость, китайцы решили ставить кристаллы поменьше и похуже на 0,5W и 0,75W, для которых номинальный ток 150мА и 220мА. Для них 300мА будет слишком много, они будут сильно деградировать и греться. Хорошие должны иметь длину и ширину от 30*30mil до 45*45mil.

Когда делаете выбор в магазине, то используйте эту информацию для вычисления реальных параметров мощных матриц от 10вт, 20вт, 30вт, 50вт, 70вт, 100вт.

Для визуального определения качества мощного светодиода, используйте геометрические параметры. Лучше всего если чипы под люминофором будут квадратные. Прямоугольные — это практически гарантия завышенных характеристик.

Характеристики 5050, 2835, 5730, 5630, 3528

..

Цифры в маркировке обозначают только размер SMD корпуса. И это никак не связано с его мощностью. Например для SMD5050 габариты будут 5,0мм на 5,0мм.

В больших корпусах SMD5630, SMD 5730 европейские и америкаские бренды Samsung, LG, Philips производят лед чипы на 0,5W. Китайцы этим умело пользуются, и ставят в стандартный корпус 5630 и 5730 слабый КР на 0,01W,продавая их как 0,5W. Поэтому китайские лампы-кукурузы утыканы слабыми диодами.

Технические характеристики китайских

Характеристики светодиодов для фонариков

Кроме изготовления низкокачественных LED, китайцы научились производить подделки сверхярких светодиодов для фонариков, светодиодных балок, велофар. Они на 95-99% копируют внешний вид, но параметры всё равно остаются китайские, на 30-40% хуже оригиналов.

Этим объясняется низкая стоимость аккумуляторных светодиодных фонарей на Cree Q5, Cree XML T6, Cree XHP50. В самых дешевых на 100% стоят подделки. Проверял сам лично, купив 10 разных фонариков на Крии Q5 и Т6. Все они оказались на поддельных КРИ производства LatticeBright.

Характеристики ярких светодиодов для фонариков подробно описаны по ссылкам:

Основные характеристики

Есть много вариантов его удешевить, заменить дорогостоящие материалы дешевыми. Самая главная особенность, что такая замена никак не сказывается на внешнем виде, поэтому и возникают такие вопросы.

Список отличий влияющих на цену:

  1. материал основания, медь или алюминий;
  2. количество проводников идущих к кристаллу;
  3. материал проводников;
  4. масса светодиода;
  5. срок службы по стандарту L70 или L80;
  6. максимальная рабочая температура;
  7. количество Люмен на 1 Ватт;
  8. качество люминофора;
  9. индекс цветопередачи CRI;
  10. размер кристалла;
  11. качество кристалла;
  12. разброс технических характеристик;
  13. точность пайки и сборки.

Некоторые параметры можно будет определить только после 5000ч. работы:

  • скорость деградации КР;
  • эффективный срок эксплуатации;
  • качество жёлтого люминофора.

Считаю, что на окупаемость первостепенную роль играет эффективный период службы по стандартам L80 и L70. Для уличных светодиодных светильников второстепенные параметры особой роли не играют.

Подробное описание

1. На дешевых светодиодах основание делают из алюминия, его теплопроводность хуже, чем у меди. Это значительно влияет на массу. Скорость отвода тепла от КР уменьшается, при работе их температура становится выше.

2. Кристалл имеет очень маленькие размеры, для подачи питания его соединяют тонкими проводниками с внешними контактами. Лучше всего если их 4,хуже всего 2 штуки.

3. В фирменных диодах проводники изготавливают из тонких золотых нитей, они выдерживают скачки тока, особенно в автомобиле. Золото заменяют на медь или позолоченную медь. Наверное многие из вас видали дневные ходовые огни или светодиодные лампы которые мигают. При нагреве контакт с Кр теряется, при охлаждении появляется снова.

4. Медь гораздо тяжелей алюминия или других сплавов на его основе. Поэтому хороший LED должен быть тяжелым. Для маломощных 1W, 3W, 5W разница будет небольшой. А начиная от 10W и до 100W, разница в весе будет 2-3 раза.

5. Стандарт L70 и L80 определяют количество часов, которые он проработает до снижения светового потока до 70% и 80% от первоначального. Китайцы пишут для всех стандартное значение в 30.000ч. и 50.000ч.

6. По характеристикам светодиоды имеют максимальную рабочую температуру в 60°. Уже 70° для них критические, требуется большая система охлаждения. Хорошие проработают положенное время в 50-70 тысяч часов при 110°.

7. Самые плохие дают 50 лм/вт, хорошие до 130лм/вт, лучшие до 200 лм/вт. Покупая у китайцев не надейтесь, что будет более 100 лм/вт.

8. Все белые лед чипы без люминофора светят синим цветом. Для придания ему теплого белого или нейтрально белого цвета наносят желтый люминфор. Он бывает разным, недорогой быстро выгорает. Это приводит к смещению цвета в сторону голубого и изменению индекса цветопередачи. Индекс CRI ниже 80 не пригоден для жилых помещений.

9. Цветопередача отвечает за точность передачи цветов предметом, которые мы видим при светодиодном освещении. При низком CRI <80 цвета будут сильно искажены, поэтому светодиодные светильники и лампы с CRI <80 используют в уличном освещении, в подсобных и нежилых помещениях.

10.От размера КР зависит сила тока, которую можно на него подавать. Квадратные светодиодные COB матрицы (сборки, модули) состоят из обычных кристаллов на 1W и 3W. Для них стандартный 30mil, 45mil. Для мощных COB LED на 10W, 20W, 30W, 50W, 100W могут быть размерами 24*24mil, 24*44mil, 44*44mil.

Для маломощных LED могут быть разных размеров, даже по 2-3 КР в одном корпусе, подключенных последовательно или параллельно.

11. Это же относится и к мощным светодиодам RGB. По размерам КР на 1W и 3W могут быть одинаковыми. Плохие маркируются как на 1Вт, которые лучше обозначаются 3Вт.

12. Косвенно о качестве можно узнать по разбросу параметров используемых КР. Их включают, чтобы слегка светились. Некоторые будут светить гораздо ярче других, это большой разброс. Чем равномерней они светят, тем лучше.

13. Качество сборки и установки КР влияет на срок службы. Все элементы подвергаются сильному нагреву и остыванию, материалы расширяются и сжимаются. Если отвод тепла ухудшается, то около него начинает чернеть люминофор.

1. Из чего состоит светодиод? Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации. Конструкция мощного светодиода схематически изображена на рисунке.2. Как работает светодиод? Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.Но не всякий p-n-переход излучает свет. Почему?Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона.Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения.Эти условия в той или иной степени противоречат друг другу. Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.3. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче? Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.4. Чем хорош светодиод? В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют.Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 5 — 10 раз больше, чем у люминесцентной лампы.Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.5. Когда светодиоды начали применяться для освещения? Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии.В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало светодиодов синего, сине-зеленого и белого цвета.К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.6. От чего зависит цвет светодиода? Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.7. Что такое квантовый выход светодиода? Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход.Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться).Внутренний квантовый выход для хороших кристаллов с хорошим теплоотводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности светодиода.8. Как получить белый свет с использованием светодиодов? Существует три способа получения белого света от светодиодов.Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет.Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа.И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.9. Какой из трех способов лучше? У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах.Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать. Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО.Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод.Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.10. Каковы электрические и оптические характеристики светодиодов? Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА.Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1 А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного светодиода.Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения. Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности.Также интересной маркетинговой характеристикой оказывается цена одного люмена.11. Как реагирует светодиод на повышение температуры? Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.12. Почему нужно стабилизировать ток через светодиод? Как видно из рисунка, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению. типичная вольт-амперная характеристика светодиода13. Для чего светодиоду требуется конвертор? Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.14. Можно ли регулировать яркость светодиода? Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы).Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.15. Чем определяется срок службы светодиода? Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20 — 100 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.16. «Портится» ли цвет светодиода с течением времени? Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.17. Не вреден ли светодиод для человеческого глаза? Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания.18. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей? Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон.Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области. За один процесс, который длится несколько часов, можно вырастить структуры на 6 — 12 подложках диаметром 50 — 75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек.Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5 — 2 млн. долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это — технология, требующая высокой культуры.Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к п- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24x0,24 до 1x1 мм2.Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол.Около половины стоимости светодиода определяется этими этапами высокой технологии. Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера.Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе. Раньше в светодиодных сборках было очень много светодиодов.Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.
технология СОВ Источник статьи: ООО "Фокус"

СВЕТОДИОД Графическое обозначение

Свободный перевод статьи "LED" из Википедии.

Светоизлучающий диод (СИД) является полупроводниковым источником света. Светодиоды используются в качестве индикаторов во многих устройствах и все чаще используются для освещения. В качестве электронного компонента, пригодного для практического использования, был разработан в 1962 году. Первые образцы излучали красный свет низкой интенсивности, но современные версии излучают во всей видимой, ультрафиолетовой и инфракрасной областях спектра с очень высокой яркостью.

Светодиод разработан на базе полупроводникового диода. Когда на диод подается рабочее напряжение, электроны с дырками меняются местами, высвобождая энергию в виде фотонов. Этот эффект называется электролюминесценцией и цвет света (соответствует энергии фотона) определяется энергией запрещенной зоны полупроводника. Светодиодные кристаллы, как правило, небольшие по площади (менее 1 мм2), диаграмма распределения света и индекс отражения формируется дополнительной оптической системой, входящей в конструкцию светодиода. Светодиоды имеют много преимуществ по сравнению с лампами накаливания и другими источниками света, включая низкое потребление энергии, большой срок службы, повышенную надежность, меньший размер, быстрое включение и большую долговечность. Тем не менее, они достаточно дороги и имеют повышенные требования к питанию и рассеиванию тепла по сравнению с традиционными источниками света. Текущие образцы светодиодной продукции для общего освещения являются более дорогостоящими, чем флуоресцентные источники сопоставимых параметров.

Светодиоды все чаще используются в автомобильной электронике в качестве указателей поворотов, габаритных огней и стоп-сигналов. Светодиодные светофоры уже являются обыденным способом регулировки движения. Компактные размеры светодиодов позволяют разрабатывать новые типы дисплеев и экранов, а их высокая скорость переключения полезна в передовых коммуникационных технологиях.

Изобретение и первые образцы

Электролюминесценция кристалла карбида кремния (зеленого цвета) была обнаружена в 1907 году английским ученым Раундом в лаборатории Маркони. Этому явлению тогда не придали значения. В 1923 году советский ученый О.В. Лосев , работая в НРЛ (Нижегородской радиолаборатории), проводил глубокие исследования такого явления, как излучательная рекомбинация, а так же наблюдал излучение света, исходящее из кристаллов карбида кремния SiC (карборунда). Длительные исследования позволили сформулировать основной принцип электролюминесценции полупроводниковых структур - инжекционная рекомбинация. В 1927 Лосев запатентовал принцип полупроводникового свечения. Изобретение было опубликовано в российских, немецких и английских научных журналах, но практического применения не получило. В 1955 году Р.Браунштейн из Radio Corporation of America заявил о наличии инфракрасного излучения арсенида галлия (GaAs) в комбинации с другими полупроводниковами сплавами. Браунштейн наблюдал инфракрасное излучение, генерируемое простой диодной структурой на основе антимонида галлия (GaSb), арсенида галлия, фосфида индия (InP) и кремниево - германиевого сплава (SiGe) при комнатной температуре.

В 1961 году разработчики Р.Бард и Г.Питман, работающие в компании Texas Instruments, обнаружили что сплав арсенида галлия производит инфракрасное излучение при пропускании через него электрического тока и получили патент на ИК светодиод.

Первый светодиод, излучающий свет видимого спектра, был изобретен в 1962 году Н.Холоньяком, работающим в компании General Electric. С тех пор многие называют его "отцом" современных светодиодов. Чтобы понять, что это не так, достаточно изучить исторические справки о исследованиях О.В.Лосева и других именитых ученых 20-50 г.г. двадцатого века. Однако история несправедлива, и мы имеем то, что имеем, и в 60-х годах Россия потеряла приоритет в изобретении полупроводниковых источников света.

В 1972 году бывший студент Холоньяка Г.Грэфорд изобрел желтый светодиод и увеличил яркость красных и красно-оранжевых светодиодов в десять раз. В 1976 году Т.Пирсэлл создал первый сверхяркий светодиод для световолоконных телекоммуникаций, изобретя новые полупроводниковые сплавы, специально приспособленные для передачи света по оптоволокну.

Вплоть до 1968 года видимые и инфракрасные светодиоды имели огромную себестоимость, около 200 USD за штуку, что создавало трудности для практического применения. Но в 1968 году фирма Monsanto впервые организовала массовое производство светодиодов видимого света на базе арсенида-фосфида галлия (GaAsP), пригодных для применения в качестве индикаторов. Компания Hewlett Paccard, представившая светодиоды в 1968 году, использовала светодиоды Monsanto для производства цифровых дисплеев и калькуляторов.

Практическое использование первых светодиодов

Первое коммерческое использование светодиодов связано с их применением в качестве замены индикаторов, ранее основанных на использовании ламп накаливания. Из светодиодов изготавливали семисегментные индикаторы, встраивали в дорогие лабораторные приборы, использовали в тестовом оборудовании, но позже светодиоды стали применять при изготовлении телевизоров, радиоприемников, телефонов, калькуляторов и даже часов. Светодиоды красного свечения, применяемые для этих целей имели яркость, достаточную для использования лишь в качестве индикаторов. Светодиоды других цветов имели еще меньшую яркость. Все типы led выпускались в типоразмерах 3 или 5 мм.

Дальнейшее развитие светодиодных технологий

Первые сверхяркие светодиоды синего свечения на базе InGaN были продемонстрированы Ш. Накамурой из японской компании Nichia. Это положило начало новой эре в применении светодиодов - использование в качестве источника света для освещения. Комбинация синего света и желтого фосфора позволила получить белый свет.

Благодаря этому открытию светодиодные технологии начали бурно развиваться. В феврале 2008 года сотрудники Bilkent university в Турции заявили о получении 300 люмен видимого света на один ватт световой мощности. Это был белый цвет теплого оттенка, полученный с использованием нанокристаллов.

В январе 2009 года исследователи из Кембриджа под предводительством С. Хэмфри доложили о выращивании нитрида галлия на подложке из кремния. Этот способ позволяет сократить производственные затраты при производстве сверхярких светодиодов на 90% по сравнению с выращиванием структур на сапфировой подложке.

Физические аспекты

Принцип работы светодиода

Как и обычный диод, светодиод содержит кристаллы полупроводников, создающих p-n переход. Как и в обычном диоде, ток легко проходит в прямом направлении от анода к катоду и не проходит в обратном. Когда электроны встречаются с дырками, они теряют энергию, которая преобразуется в фотоны. Длина волны, на которой излучаются фотоны, зависит от материала, образующего p-n переход.

Изобретние светодиодов начиналось с изготовления структур на базе арсенида галлия, излучающих красный и инфракрасный свет. Нынешнее развитие полупроводниковых технологий позволяет получить видимый свет самых разных цветов.

Электроны и дырки

Полупроводники занимают промежуточное положение между проводниками и изоляторами (диэлектриками). При низкой температуре большинство внешних электронов в полупроводнике "сидит" в атомах на своих местах. Но связаны они с атомами слабее, чем в изоляторе. Причем при росте температуры сопротивление полупроводников падает, то есть полупроводник при нагревании не уменьшает свою электропроводность, как металл, а, наоборот, увеличивает ее. Иначе говоря, в полупроводнике увеличивается количество свободных электронов, способных переносить электрический ток.

При подведении энергии (теплоты или света) в кристаллических решетках полупроводников часть электронов "убегает" из верхних атомных оболочек, при этом образуется положительный заряд. То место, где в решетке не хватает электрона, называют "дыркой".

Под действием электрического напряжения электроны дрейфуют к одному электроду (положительному полюсу), а дырки - к другому (отрицательному), причем их место тут же занимают свободные электроны. Закономерности движения дырок таковы, что этим "пустым местам" физики условно приписывают и заряд (равный заряду электрона, но положительный), и "эффективную массу".

В чистом полупроводнике, проводимость которого обусловлена тепловым возбуждением, одинаковое число электронов и дырок движется в противоположных направлениях. Если добавлять в полупроводник атомы других элементов, его проводимость можно существенно увеличить. При введении легирующих примесей в различные части кристаллической решетки полупроводника возникает так называемая примесная проводимость (в отличие от собственной проводимости), которая, в зависимости от валентности легирующих элементов, называется либо электронной (проводимостью n-типа), либо дырочной (p-типа).

В одном и том же образце полупроводникового материала один участок может обладать р-проводимостью, а другой - n-проводимостью. Между такими областями возникает пограничный слой, через который диффундируют основные носители (электроны или дырки), стремясь уравнять значения концентрации по обе стороны от слоя. На образующийся в этом слое p-n-переход можно воздействовать внешним напряжением, усиливая или, наоборот, "запирая" ток, проходящий через кристалл, - на основании этого принципа работают диоды и транзисторы. При положительной полярности внешнего напряжения (плюс - к p-зоне, минус - к n-зоне) барьер в p-n-переходе понижается, и происходит "перескакивание" (рекомбинирование) электронов и дырок в противоположные зоны, в результате чего выделяется энергия.

Сначала полупроводниковые приборы были только "гомопереходными" (как в случае с первым транзистором) - p-n-переход происходил внутри кристалла одного химического вещества. Но почти сразу появилась и идея гетероустройств, в которых такой переход образуется на стыке двух различных полупроводников. Реализация этой идеи позволила создать более миниатюрные приборы с большей эффективностью и функциональностью (так, первые в мире "гомопереходные" полупроводниковые светодиоды, а затем и лазеры могли работать только при температуре жидкого азота, а появившиеся позже гетеропереходные функционируют и при комнатной температуре).

Большинство материалов, используемых при производстве светодиодов, имеют очень высокий уровень отражения. Это необходимо для того, чтобы как можно больше света, производимого светодиодом, выходило с его поверхности за пределы корпуса. Именно поэтому этому посвящено большое количество исследований во всем мире.

Эффективность и параметры использования

Обычный светодиодный индикатор расчитан на мощность не более 30-60 мВт. В 1999 году компания Philips Lumileds представила мощный светодиод мощностью 1 Ватт. В этом светодиоде был использован полупроводниковый кристал гораздо большей площади, чем применяющиеся в обычных светодиодах индикаторного типа. Он был смонтирован на металлическом основании, что позволило организовать эффективный отвод тепла с кристалла.

Одной из ключевых позиций определения эффективности светодиода является световой выход на единицу мощности. Белый светодиод быстро достиг и превзошел показатели обычных систем на базе ламп накаливания. В 2002 году компания Lumileds произвела 5 Вт светодиод со значениями светового выхода на уровне 18-22 люмен/Ватт. Для сравнения, обычная лампа накаливания мощностью 60-100 Вт производит около 15 люмен на ватт. Люминесцентная лампа - около 100 Лм/Вт. Основной проблемой при разработке мощных светодиодов является падение светового потока при повышении тока, проходящего через кристалл.

В сентябре 2003 года компания Cree продемонстрировала новый тип синего светодиода, производящий 24 мВт при токе 20 мА. Это позволило наладить коммерческого производство белых светодиодов с эффективностью 65 Лм/Вт при токе 20 мА, которые стали наиболее яркими на тот момент на рынке и превысили эффективность ламп накаливания более чем в четыре раза. В 2006 году эта же компания представила прототип белого светодиода со световым выходом 131 Лм/Вт на 20 мА.

Нужно отметить, что мощность СИД 1 Вт и более вполне достаточна для коммерческого применения в качестве источника основного освещения. Типовой ток подобных светодиодов - 350 мА. Хотя ведущие производители и производят светодиоды с эффективностью выше 100 Лм/Вт, в условиях реального использования многое зависит от условий эксплуатации и конструкции светильника. Энергетический департамент США, который в 2008 году проводил тестирование светодиодных ламп, представленных в широкой продаже, предоставил данные, говорящие о том, что большинство таких ламп имеет среднюю эффективность на уровне 31 Лм/Вт.

Компания Cree 19 Ноября 2008 года предоставила данные о лабораторном прототипе светодиода с эффективностью 161 Лм/Вт при комнатной температуре и температуре света 4689 К.

Неисправности и срок жизни светодиодов

Твердотельные устройства, такие как светодиоды, в очень малой степени подвержены повреждениям, когда работают при низких температурах и небольшом токе. Множество светодиодов, произведенных в 70-80 годах, работают по сей день. Теоретически, работоспособность светодиодов неограничена по времени, однако повышенный ток и высокая температура может легко вывести их из строя. Основной признак неисправности светодиода - сильное снижение светового выхода при номинальном рабочем напряжении. Разработка новых типов светодиодов привела к повышению рабочих токов и увеличению температуры кристалла. Реакция материалов, из которых производятся мощные светодиоды, на подобные условия, еще до конца не изучена, поэтому деградация кристаллов - одна из основных причин отказов. Светодиод считается неработоспособным, когда его световой выход падает на 75%.

Материалы

В следующей таблице указана зависимость цвета свечения светодиода от материала полупроводника
Цвет Длина волны (nm) Вольтаж (V) Материал полупроводника
Инфракрасный λ > 760 ΔV < 1.9 Gallium arsenide (GaAs)
Aluminium gallium arsenide (AlGaAs)
Красный 610 < λ < 760 1.63 < ΔV < 2.03 Aluminium gallium arsenide (AlGaAs)

Оранжевый 590 < λ < 610 2.03 < ΔV < 2.10 Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP)
Gallium(III) phosphide (GaP)
Желтый 570 < λ < 590 2.10 < ΔV < 2.18 Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP)
Gallium(III) phosphide (GaP)
Зеленый 500 < λ < 570 1.9 [ 32] < ΔV < 4.0 Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN)
Gallium(III) phosphide (GaP)
Aluminium gallium indium phosphide (AlGaInP)
Aluminium gallium phosphide (AlGaP)
Синий 450 < λ < 500 2.48 < ΔV < 3.7 Zinc selenide (ZnSe)
Indium gallium nitride (InGaN)
Silicon carbide (SiC) as substrate
Silicon (Si) as substrate - (в разработке)
Фиолетовый 400 < λ < 450 2.76 < ΔV < 4.0 Indium gallium nitride (InGaN)
Пурпурный разные типы 2.48 < ΔV < 3.7 Dual blue/red LEDs,
синий с красным фосфором,
белый с пурпурным фильтром
Ультрафиолетовый λ < 400 3.1 < ΔV < 4.4 diamond (235 nm) [ 33]
Boron nitride (215 nm) [ 34] [ 35]
Aluminium nitride (AlN) (210 nm) [ 36]
Aluminium gallium nitride (AlGaN)
Aluminium gallium indium nitride (AlGaInN) - (down to 210 nm) [ 37]
Белый Широкий спектр ΔV = 3.5 Синий/УФ диод и желтый фосфор

Синие светодиоды

Синий светодиод

Синие светодиоды базируются на сплавах GaN и InGaN. Комбинация с красным и зеленым светодиодами позволяет получить чистый белый цвет, но такой принцип формирования белого сейчас используется редко.

Первый синий светодиод был изготовлен в 1971 году Jacques Pankove (изобретателем нитрида галлия). Но он производил слишком мало света, чтобы его можно было использовать на практике. Первый яркий синий диод был продемонстрирован в 1993 году и получил широкое распостранение.

Белый свет

Существует два пути получения белого света достаточной интенсивности с применением светодиодов. Первый из них - объединение в одном корпусе кристаллов трех основных цветов - красного, синего и зеленого. Смешение этих цветов позволяет получить белый цвет. Другой путь - использование фософора для преобразования синего или ультрафиолетового излучения в белый цвет широкого спектра. Подобный принцип используется при производстве ламп дневного света.

Системы RGB

Белый цвет может быть получен смешением различных цветов, наиболее используемая комбинация - красный, синий и зеленый. Но из-за необходимости контролировать смешение и степень рассеивания цветов стоимость производства RGB-светодиодов довольно высока. Тем не менее этот метод интересен многим исследователям и ученым, так как позволяет получить разные оттенки цвета. При этом эффективность такого способа получения белого света очень высока.

Есть несколько типов многоцветных белых светодиодов - ди-, три-, и тетрахроматичные. Есть несколько ключевых особенностей каждого из этих типов, включая стабильность цвета, цветопередачу и световую эффективность. Высокая световая эффективность подразумевает низкий индекс цветопередачи (CRI). Например, дихроматичный белый светодиод имеет лучшую световую эффективность (около 120 Лм/Вт), но самый низкий CRI. Тетрахроматичный - небольшую световую эффективность, но превосходный CRI. Трихроматичный находится примерно посередине.

Хотя многоцветные светодиоды являются не самым оптимальным решением для получения белого цвета, их использование позволяет создавать системы, производящие миллионы различных оттенков цвета. Основная проблема при этом - разные значения световой эффективности для основных цветов. При повышении температуры это вызывает "уплывание" необходимого цвета и, как следствие, более жестких требований к системам питания и контроля.

Светодиоды на базе фосфора

Спектр белого светодиода определяется синим светом, который излучается кристаллом на базе GaN (пик в районе 465 Нм) и, проходя через желтый фосфор (500-700 Нм) преобразуется в белый. Использование фосфора разных типов и оттенков позволяет получать разные оттенки белого - от теплого до самого холодного. Так же зависит от этого и качество цветопередачи. Нанесение на синий кристалл нескольких слоев фосфора разных типов позволяет добиться самого высокого CRI .

СИД на базе фосфора имеют меньшую эффективность, чем обычные светодиоды, так как часть света рассеивается в слое фосфора, к тому же сам фосфор также подвержен деградации. Тем не менее это способ остается наиболее популярным при коммерческом производстве белых светодиодов. Наиболее часто используется желтый фосфорный материал Ce3+:YAG.

Также белые светодиоды могут быть изготовлены на базе ультрафиолетовых светодиодов с примененим фосфора красного и синего цвета с добавлением сульфида цинка (ZnS:Cu,Al) . Этот принцип аналогичен используемому в лампах дневного света. Этот способ хуже предыдущего, но позволяет добиться лучшей цветопередачи. К тому же ультрафиолетовые диоды имеют большую световую эффективность. С другой стороны, УФ излучение вредно для человека.

Органические светодиоды (OLED)

Если основа излучающей поверхности светодиода имеет органическое происхождение, такой светодиод называют OLED (Organic Light Emitting Diode). Излучающим материалом может быть небольшая молекула в фазе кристаллизации или полимер. Полимерные кристаллы могут быть гибкими, соответсвенно их называют PLED или FLED.

По сравнению с обычными светодиодами, OLED светлее, а полимерные вдобавок позволяют делать источник света гибким. В будущем на базе таких светодиодов планируется изготовление гибких недорогих дисплеев для портативных устройств, источников света, декоративных систем, светящейся одежды. Но пока уровень разработки OLED не допускает их коммерческое применение.

Светодиоды на квантовых точках (экспериментальная разработка)

Новая технология производства светодиодов, разработанная M.Bowers предполагает покрытие синего светодиода "квантовыми точками", которые начинают излучать белый свет при облучении синим светом светодиода. Эта технология позволяет получить теплый желто-белый свет, схожий со светом ламп накаливания. "Квантовые точки" это нанокристаллы полупроводника, имеющие уникальные оптические характеристики. Их цвет излучения может быть изменен в широких пределах - от видимого спектра до невидимого - любой цвет в пределах CIE диаграммы.

В сентябре 2009 года компания Nanoco Group объявила о заключении исследовательского соглашения с одной из крупнейших японских компаний. Темой исследований является дальнейшая разработка технологии "квантовых точек" для применения в жидкокристаллических телевизионных дисплеях.

Продолжение следует

С момента открытия красного светодиода (1962 г.) развитие твердотельных источников света не останавливалось ни на миг. Каждое десятилетие отмечалось научными достижениями и открывало для ученых новые горизонты. В 1993 году, когда японским ученым удалось получить синий свет, а затем и белый, развитие светодиодов перешло на новый уровень. Перед физиками всего мира стала новая задача, суть которой заключалась в использовании светодиодного освещения в качестве основного.

В наше время можно сделать первые выводы, свидетельствующие об успехах становления светодиодного освещения и продолжающейся модернизации светодиода. На прилавках магазинов появились светильники со светодиодами, изготовленными по технологии COB, COG, SMD, filament.

Как устроен каждый из перечисленных видов, и какие физические процессы вынуждают полупроводниковый кристалл светиться?

Что такое светодиод?

Перед разбором устройства и принципа работы, кратко рассмотрим, что светодиод из себя представляет.

Светодиод – это полупроводниковый компонент с электронно-дырочным переходом, создающий оптическое излучение при пропускании электрического тока в прямом направлении.

В отличие от нити накала и люминесцентных источников света, испускаемый свет светодиодом лежит в небольшом диапазоне спектра. То есть кристалл светоизлучающего диода испускает конкретный цвет (в случае со светодиодами видимого спектра). Для получения определенного спектра излучения в светодиодах используют специальный химический состав полупроводников и люминофора.

Устройство, конструкция и технологические отличия

Существует много признаков, по которым можно классифицировать светодиоды на группы. Одним из них является технологическое отличие и небольшое различие в устройстве, которое вызвано особенностью электрических параметров и будущей сферой применения светодиода.

DIP

Цилиндрический корпус из эпоксидной смолы с двумя выводами стал первым конструктивом для светоизлучающего кристалла. Закругленный цветной или прозрачный цилиндр служит линзой, формируя направленный пучок света. Выводы вставляются в отверстия печатной платы (DIP) и с помощью пайки обеспечивают электрический контакт.

Излучающий кристалл располагается на катоде, который имеет форму флажка, и соединяется с анодом тончайшим проводом. Существуют модели с двумя и тремя кристаллами разного цвета в одном корпусе с количеством выводов от двух до четырёх. Кроме этого, внутри корпуса может быть встроен микрочип, управляющий очередностью свечения кристаллов либо задающий чистоту его мигания. Светодиоды в DIP корпусе относятся к слаботочным, используется в подсветке, системах индикации и гирляндах.

В попытках нарастить световой поток, появился аналог с усовершенствованным устройством в DIP корпусе с четырьмя выводами, известный как «пиранья». Однако увеличенная светоотдача нивелировалась размерами светодиода и сильным нагревом кристалла, что ограничило область применения «пираньи». А с появлением SMD технологии их производство практически прекратилось.

SMD

Полупроводниковые приборы с креплением на поверхность печатной платы коренным образом отличаются от предшественников. Их появление расширило возможности конструирования систем освещения, позволило снизить габариты светильника и полностью автоматизировать монтаж. Сегодня SMD-светодиод – это самый востребованный компонент, используемый для построения источников света любых форматов.

Основа корпуса, на которую крепится кристалл, является хорошим проводником тепла, что в разы улучшило отвод тепла от светоизлучающего кристалла. В устройстве белых светодиодов между полупроводником и линзой присутствует слой люминофора для задания нужной цветовой температуры и нейтрализации ультрафиолета. В SMD-компонентах с широким углом излучения линза отсутствует, а сам светодиод имеет форму параллелепипеда.

COB

Chip-On-Board – одно из новейших практических достижений, которое в ближайшем будущем займет лидерство по производству белых светодиодов в искусственном освещении. Отличительная черта устройства светодиодов по заключается в следующем: на алюминиевую основу (подложку) через диэлектрический клей крепят десятки кристаллов без корпуса и подложки, а затем полученную матрицу покрывают общим слоем люминофора. В результате получается источник света с равномерным распределением светового потока, исключающий появление теней.

Разновидностью COB является Chip-On-Glass (COG), которая подразумевает размещение множества мелких кристаллов на поверхности из стекла. В частности, широко известны , в которых излучающим элементом служит стеклянный стержень со светодиодами, покрытыми люминофором.

Принцип работы светодиода

Несмотря на рассмотренные технологические особенности, работа всех светодиодов базируется на общем принципе действия излучающего элемента. Преобразование электрического тока в световой поток происходит в кристалле, который состоит из полупроводников с разным типом проводимости. Материал с n­-проводимостью получают путем его легирования электронами, а материал с p-проводимостью – дырками. Таким образом, в сопредельных слоях создаются дополнительные носители заряда противоположной направленности.
В момент подачи прямого напряжения начинается движение электронов и дырок к p-n-переходу. Заряженные частицы преодолевают барьер и начинают рекомбинировать, в результате чего протекает электрический ток. Процесс рекомбинации дырки и электрона в зоне p-n-перехода сопровождается выделением энергии в виде фотона.

Вообще, данное физическое явление применимо ко всем полупроводниковым диодам. Но в большинстве случаев длина волны фотона находится за пределами видимого спектра излучения. Чтобы заставить элементарную частицу двигаться в диапазоне 400-700 нм ученым пришлось провести немало экспериментов с подбором подходящих химических элементов. В результате появились новые соединения: арсенид галлия, фосфид галлия и более сложные их формы, каждая из которых характеризуется своей длиной волны, а значит, и цветом излучения.

Кроме полезного света, испускаемого светодиодом, на p-n-переходе выделяется некоторое количество теплоты, которая снижает эффективность полупроводникового прибора. Поэтому в конструкции мощных светодиодов должна быть продумана возможность реализации эффективного отвода тепла.

Читайте так же

В двух словах, светодиод (LED) представляет собой полупроводниковое устройство, излучающее свет при прохождении через него электрического тока. Свет возникает, когда частицы, несущие ток (известные как электроны и дырки) объединяются в полупроводниковом материале в зоне p-n перехода.

Поскольку свет генерируется в твердом полупроводниковом материале, светодиоды описываются как твердотельные устройства. Термин твердотельное освещение, которое также включает в себя органические светодиоды (OLED), отличает эту технологию освещения от других источников света, таких как лампы накаливания, галогенные лампы, флуоресцентные лампы.

Различные цвета светодиодов

Внутри полупроводникового материала светодиода электроны и дырки находятся в энергетических зонах. Ширина запрещенной зоны определяет энергию фотонов (частиц света), излучаемых светодиодом.

Энергия фотона определяет длину волны испускаемого света и, следовательно, его цвет. Различные полупроводниковые материалы с различными запрещенными зонами создают разные цвета света. Точная длина волны (цвет) могут быть настроены путем изменения состава светоизлучающей или активной области.

Светодиоды состоят из соединений полупроводниковых элементов из III и V группы периодической таблицы химических элементов Менделеева. Примерами таких материалов, которые обычно используются в производстве светодиодов, являются арсенид галлия (GaAs) и фосфид галлия (GaP).

До середины 90-х годов светодиоды имели ограниченный диапазон цветов, в частности, коммерческие синие и белые светодиоды не существовали. Разработка светодиодов на основе нитрида галлия (GaN) завершила палитру цветов и открыла множество новых устройств.

Основные материалы, используемые при изготовлении светодиодов

Основными полупроводниковыми материалами, используемыми для производства светодиодов, являются:

  • InGaN: синие, зеленые и ультрафиолетовые светодиоды высокой яркости
  • AlGaInP: желтые, оранжевые и красные светодиоды высокой яркости
  • AlGaAs: красные и инфракрасные светодиоды
  • GaP: желтые и зеленые светодиоды

Подключение светодиодов

Как уже было сказано выше, светодиоды имеют различные цвета и рабочие напряжения. Важной характеристикой светодиода является его номинальный ток. В зависимости от рабочего напряжения нам необходимо , чтобы избежать повреждения светодиода большим током.

В электронных устройствах с напряжением питания 5 вольт для большинства маломощных светодиодов, как правило, сопротивлением около 220 Ом вполне достаточно.

Светодиоды имеют полярность. Поэтому, чтобы светодиод светился, его анод должен быть соединен с плюсом источника питания, а катод с минусом. Обычно у светодиода ножка анода длиннее, чем ножка катода. К тому же, со стороны катода корпус светодиода скошен.

Не следует беспокоиться при ошибке в полярности подключения. Со светодиодом ничего не случиться, просто он не будет светиться. За исключением особого случая, когда вы подали очень большое напряжение.

Помимо простых светодиодов, существуют также RGB-светодиоды , которые могут отображать любой цвет, основанный на системе RGB. Светодиод RGB можно представить в виде отдельных трех светодиодов в одном корпусе: красный (R), зеленый (G), синий (B). Изменяя интенсивность свечения каждого из них, мы можем получить любой цвет.

У RGB светодиодов есть четыре вывода для подключения — по одному для каждого цвета (три вывода) и один для плюса (общий анод) или минуса (общий катод) питания.

Если у вас RGB светодиод с общим катодом, то схема подключения будет следующей:

Здесь мы видим, что три вывода подключаются через резисторы к источнику питания или к микроконтроллеру (например, Arduino), а четвертый вывод к минусу питания.

Если же у вас RGB светодиод с общим анодом, то схема подключения будет следующей:

Следует обратить внимание, что нужно подключать сопротивления к каждому цвету, поскольку светодиоды работают с меньшим напряжением, чем выход микроконтроллера. Обычно для светодиода красного цвета достаточно резистора сопротивлением 150-180 Ом и 75-100 Ом для зеленого и синего цвета.

Если у вас нет именно этих сопротивлений, то используйте большее сопротивление (это верно во всех случаях, когда сопротивление используется для защиты от перенапряжения — мы выбираем меньше напряжения, в пользу сохранения светодиода).