Детектирование модулированных сигналов. Детектирование

>> Модуляция и детектирование

§ 53 МОДУЛЯЦИЯ и ДЕТЕКТИРОВАНИЕ

Амплитудная модуляция высокочастотных колебаний достигается специальным воздействием на генератор высокочастотных незатухающих колебаний. В частности, модуляцию можно осуществить, изменяя на колебательном контуре напряжение, создаваемое источником (см. § 36). Чем больше напряжение на контуре генератора, тем больше.энергии поступает за период от источника в контур. Это приводит к увеличению амплитуды ко.чебаний в контуре. При уменьшении напряжения энергия, поступающая в контур, также уменьшается. Поэтому уменьшается и амплитуда колебаний в контуре.

Если менять напряжение на контуре с частотой, много меньшей частоты колебаний, вырабатываемых генератором, то изменения амплитуды этих колебаний будут приближенно прямо пропорциональны изменениям напряжения. В самом простом устройстве для осуществления амплитудной модуляции включают последовате.тьно с источником постоянного напряжения дополнительный источник переменного напряжения низкой частоты. Этим источником может быть, например, вторичная обмотка трансформатора , если по его первичной обмотке проходит ток звуковой частоты (рис. 7.10). В результате амплитуда колебаний в колебательном контуре генератора будет изменяться в такт с изменениями напряжения на транзисторе. Это и означает, что высокочастотные колебания модулируются по амплитуде низкочастотным сигналом.

Временную развертку модулированных колебаний можно непосредственно наблюдать на экране осциллографа, если подать на него напряжение с колебательного контура.

Кроме амплитудной модуляции, в некоторых случаях применяют частотную модуляцию - изменение частоты колебаний в соответствии с управляющим сигналом. Ее преимуществом является большая устойчивость по отношению к помехам.

Детектирование. Принятый приемником модулированный высокочастотный сигнал даже после усиления не способен непосредственно вызвать колебания мембраны телефона или рупора громкоговорителя со звуковой частотой. Он может вызвать только высокочастотные колебания, не воспринимаемые нашим ухом. Поэтому в приемнике необходимо сначала из высокочастотных модулированных колебаний выделить сигнал звуковой частоты, т. е. провести детектирование .

Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью - детектор. Таким элементом может быть полупроводниковый диод.

Рассмотрим принцип работы полупроводникового детектора. Пусть этот прибор включен в цепь последовательно с источником модулированных колебаний и нагрузкой (рис. 7.11). Ток в цени будет идти преимущественно в одном направлении, отмеченном на рисунке стрелкой, так как сопротивление диода в прямом направлении много меньше, чем в обратном. Мы вообще можем пренебречь обратным током и считать, что диод обладает односторонней проводимостью. Вольт-амперную характеристику диода приближенно можно представить в виде ломаной, состоящей из двух прямолинейных отрезков (рис. 7.12).

В цепи (см. рис. 7.11) будет идти пульсирующий ток, график силы тока которого показан на рисунке 7.13. Этот пульсирующий ток сглаживается с помощью фильтра. Простейший фильтр представляет собой конденсатор , присоединенный к нагрузке (рис. 7.14).

Фильтр, работает так. В те моменты времени, когда диод пропускает ток, часть его проходит через нагрузку, а другая часть тока ответвляется в конденсатор, заряжая его (сплошные стрелки на рисунке 7.14). Разветвление тока уменьшает пульсации тока, проходящего через нагрузку. Зато в промежутке между импульсами, когда диод заперт, конденсатор частично разряжается через нагрузку. Поэтому в интервале между импульсами ток через нагрузку идет в ту же сторону (штриховые стрелки на рисунке 7.14). Каждый новый импульс подзаряжает конденсатор. В результате этого через нагрузку идет ток звуковой частоты, форма колебаний которого почти точно воспроизводит форму низкочастотного сигнала на передающей станции (рис. 7.15).

Более сложные фильтры сглаживают небольшие высокочастотные пульсации, и колебания звуковой частоты происходят более плавно, чем это изображено на рисунке 7.15.

Простейший радиоприемник. Простейший радиоприемник состоит из колебательного контура, связанного с антенной, и подключенной к нему цепи, состоящей из детектора, конденсатора и телефона (рис. 7.16). В колебательном контуре радиоволной возбуждаются модулированные колебания. Катушки телефонов выполняют роль нагрузки. Через них идет ток звуковой частоты. Небольшие пульсации высокой частоты не сказываются заметно на колебаниях мембраны и не воспринимаются на слух .

Модулировать можно амплитуду или частоту колебаний. Проще всего осуществляется амплитудная модуляция.

При детектировании переменный ток выпрямляется и высокочастотные пульсации сглаживаются фильтром.


1. От чего зависит амплитуда автоколебаний в генераторе на транзисторе!
2. Как устроен простейший детекторный радиоприемник!

Мякишев Г. Я., Физика . 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Библиотека с учебниками и книгами на скачку бесплатно онлайн , Физика и астрономия для 11 класса скачать , школьная программа по физике, планы конспектов уроков

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

ДЕТЕКТИРОВАНИЕ (демодуляция), преобразование модулированных высокочастотных электрических колебаний в исходный модулирующий сигнал более низкой частоты. Детектирование применяется в радиоприёмных устройствах для выделения колебаний звуковой частоты, в телевидении - сигналов изображения и т.д. В более широком понимании детектирование - обнаружение сигнала.

Модулированное по амплитуде колебание представляет собой в простейшем случае совокупность трёх высоких частот ω, ω + Ω, ω - Ω, где ω - высокая несущая частота, Ω - низкая частота модуляции (смотри Модуляция колебаний и волн). Детектирование заключается в преобразовании ВЧ-компонент ω + Ω, ω - Ω в НЧ-сигнал Ω, который можно, в частности, услышать или увидеть на экране. Для выделения сигнала частоты Ω используют нелинейное устройство (детектор), которое состоит из диода и линейного фильтра. Диод пропускает ток преимущественно в одном направлении, а фильтр обладает высоким сопротивлением на частоте Ω и малым - на частотах ω, 2ω. Напряжение на выходе этого фильтра имеет частоту Ω и амплитуду, пропорциональную глубине модуляции ВЧ-сигнала на входе.

Существует также синхронное детектирование, при котором принимаемый ВЧ-сигнал смешивается с немодулированным колебанием той же частоты от генератора. В этом случае на разностной частоте формируется непосредственно НЧ-сигнал.

Детектирование возможно и в оптическом диапазоне, где оно осуществляется с помощью фотоприёмников или нелинейных кристаллов (смотри Детектирование света).

Лит.: Гоноровский И. С., Демин М. Л. Радиотехнические цепи и сигналы. 5-е изд. М., 1994; Основы радиофизики. М., 1996.

Детектирование представляет собой процесс, обратный модуляции. При модуляции один из параметров высокочастотного переносчика изменяется пропорционально первичному сигналу. Детектирование заключается в восстановлении того первичного сигнала, которым производилась модуляция. Детектирование считается неискаженным, если напряжение на выходе детектора повторяет закон изменения параметра модулированного колебания (амплитуды в случае AM, частоты в случае ЧМ, фазы в случае ФМ).

Поскольку в спектре модулированного колебания содержатся только высокочастотные компоненты (несущая и боковые частоты), а результатом детектирования является получение низкочастотных колебаний, линейные цепи для детектирования непригодны. В большинстве случаев детекторы являются устройствами нелинейными, реже - параметрическими.

На рис. 3.41 приведена обобщенная схема детектора, состоящая из двух элементов: а) нелинейного (НП) или параметрического (ПП) преобразователя, в выходном токе которого при воздействии на вход гармонического напряжения появляется постоянная составляющая фильтра нижних частот предотвращающего прохождение на выход детектора высокочастотных составляющих.

Требование к преобразователям: величина должна зависеть в детекторе AM сигналов от в детекторе ЧМ сигналов от , в детекторе ФМ сигналов от

При подаче на вход модулированного колебания, один из параметров которого меняется с низкой частотой, постоянная составляющая тока на выходе соответствующего детектора также будет изменяться с низкой частотой, и это колебание после ФНЧ выделится на выходе детектора. Для неискаженного детектирования необходимо, чтобы компонента тока изменялась пропорционально модулируемому параметру или ). В связи

с этим важнейшими характеристиками детекторов являются характеристики детектирования, под которыми подразумеваются зависимости от в амплитудных, от в частотных и от в фазовых детекторах.

ДЕТЕКТИРОВАНИЕ AM КОЛЕБАНИЙ В НЕЛИНЕЙНЫХ ЦЕПЯХ

На рис. показано графическое определение тока, протекающего через диод при воздействии на него AM напряжения

Поскольку диод обладает односторонней проводимостью, ток имеет характер импульсов длительностью в половину периода частоты амплитуда которых изменяется при изменении огибающей входного напряжения. В получившейся последовательности импульсов тока содержится уже и низкочастотная составляющая частоты .

Действительно, импульсы тока различаются главным образом амплитудой Зависимость можно рассматривать как результат модуляции импульсов тока, записанных в виде ряда Фурье колебанием низкой частоты

Таким образом, ток содержит постоянную составляющую и компоненты высокой частоты и ее гармоник, каждая из которых модулирована низкочастотным сигналом.

На рис. 3.42в штрихпунктирная линия изображает зависимость постоянной составляющей тока от времени определяемой как среднее значение тока за период высокой частоты :

Для выделения низкочастотного сигнала последовательно с нелинейным элементом включают такую цепь RC (рис. 3.43), чтобы

Здесь емкость С выполняет роль ФНЧ: в силу (3.90) высокочастотные компоненты тока напряжения на выходе почти не создают. Для того чтобы низкочастотные компоненты тока создавали большое выходное напряжение, сопротивление должно быть достаточно большим и притом с тем, чтобы для низких частот сопротивление нагрузочной цепи Объединяя эти неравенства, получаем условия, определяющие выбор емкости С:

График рис. 3.42 г показывает форму выходного напряжения.

На рис. 3.44 а и б представлены спектры напряжения (3.87) и тока (3.88). Пунктирная линия на рис. 3.446 изображает зависимость при условии (3.91). Перемножая амплитуды спектральных компонент на соответствующие величины получаем спектр выходного напряжения (рис. 3.44в).

Переходя к более подробному рассмотрению процесса детектирования, отметим, что сопротивление нагрузки обычно выбирается настолько большим, что учет его влияния на ток оказывается необходимым.

Пусть на детектор в схеме рис. 3.43 действует синусоидальное напряжение частоты

Напряжение на диоде Вследствие наличия цепочки RC, оно отличается от напряжения (3.92) на величину постоянного смещения На рис. 3.45 показано определение

тока с учетом влияния для кусочно-линейной аппроксимации характеристики диода. При больших диод работает с небольшими углами отсечки 0, т. е. ток через диод протекает только в течение небольшой части периода, соответствующей заштрихованной части входного сигнала. Так как сопротивление открытого диода мало, в это время происходит быстрый заряд конденсатора С, сопровождающийся возрастанием напряжения на нем.

Когда оказывается меньшим диод запирается, - входное напряжение перестает влиять на процессы в RC-цепи, конденсатор С разряжается через большое сопротивление Согласно (3.90) постоянная времени разряда или траз Поэтому за ту часть периода Т, пока конденсатор разряжается, напряжение уменьшается незначительно. Характер изменения по времени и тока протекающего через диод, показан на рис. 3.46. Пренебрегая пульсацией напряжения будем в дальнейшем считать его при воздействии сигнала (3.92) постоянным и равным (штрих-пунктирная на рис. 3.46) Это позволяет записать напряжение на диоде как Определим угол отсечки 0 как значение при котором

Согласно (3.31) при кусочно-линейной характеристике диода

(рис. 3.45) . Подставляя это выражение в (3.93), получаем уравнение, определяющее 0:

Амплитуда в (3.94) не входит. Следовательно, угол отсечки 0 не зависит от амплитуды входного сигнала, а определяется исключительно параметрами схемы Поэтому согласно данный детектор обладает линейной характеристикой детектирования, и детектирование в нем происходит без искажений. Детектор с линейной характеристикой детектирования называется линейным детектором. Диодный детектор является линейным в случае достаточно больших амплитуд входного сигнала, когда пригодна кусочно-линейная аппроксимация его характери-, стики. При этом следует помнить, что линейный детектор является устройством нелинейным, работающим с отсечкой тока.

Объединяя нелинейные элементы с соответствующими линейными частотно-избирательными звеньями, можно создавать устройства для детектирования (демодуляции) радиосигналов. Ниже будет рассмотрена теория работы важнейших видов детекторов.

Принцип детектирования АМ-сигналов.

Операция амплитудного детектирования прямо противоположна амплитудной модуляции.

Имея на входе идеального детектора АМ-колебание следует получить на выходе низкочастотный сигнал ивых пропорциональный передаваемому сообщению. Эффективность работы детектора принято оценивать коэффициентом детектирования

равным отношению амплитуды низкочастотного сигнала на выходе к «размаху» изменения амплитуды высокочастотного сигнала на входе.

Можно осуществить детектирование, подав АМ-сигнал на безынерционный нелинейный элемент и предусмотрев последующую фильтрацию низкочастотных составляющих спектра.

Рассмотрим схему так называемого коллекторного детектора, представляющего собой транзисторное устройство с нагрузкой в виде параллельной RC-цепи. Для того чтобы нагрузочная цепь выполняла роль частотного фильтра, подавляющего высокочастотные спектральные составляющие, потребуем выполнение неравенств

Это означает, что для сигнала с частотой модуляции нагрузка детектора практически резистивна и равна , в то же время модуль сопротивления нагрузки, а значит, и коэффициент передачи системы на несущей частоте пренебрежимо мал.

Пусть входное напряжение на базе транзистора

причем амплитуда достаточно велика для того, чтобы можно было воспользоваться кусочно-линейной аппроксимацией вольт-амперной характеристики нелинейного элемента. Положим также для простоты, что и угол отсечки тока 90° независимо от изменения во времени амплитуды входного сигнала. Процессы в коллекторном детекторе иллюстрируются графиками рис. 11.11.

Рис. 11.11. Осциллограммы токов и напряжений в коллекторном детекторе

Последовательность импульсов коллекторного тока оказывается промодулированной по амплитуде; нулевая составляющая тока медленно (с частотой ) изменяется во времени, причем

Выходное напряжение детектора

откуда коэффициент детектирования

(11.53)

Существенно, что здесь амплитуды сигналов на входе и на выходе связаны прямой пропорциональностью. Поэтому такой режим работы детектора, принято называть линейным. Его отличительная черта - отсутствие искажений передаваемого сообщения.

Квадратичное детектирование.

Рассмотрим отдельно важный для приложений случай детектирования слабых сигналов, когда вольт-амперная характеристика должна быть аппроксимирована степенной зависимостью вида

Ограничимся лишь выписанными здесь членами и предположим, что на детектор подано напряжение АМ-сигнала вместе с постоянным смещением

Подставив (11.55) в (11.54), обнаружим среди разнообразных комбинационных колебаний, присутствуюших в токе, следующую низкочастотную составляющую:

Благодаря фильтрующему действию нагрузочной -цепи выходной сигнал будет определяться именно этим током:

(11.57)

Полезный эффект детектирования пропорционален здесь величине поэтому детектирование АМ-сигналов с малыми амплитудами является квадратичным. Наличие в (11.57) слагаемого, пропорционального говорит о том, что квадратичное детектирование сопровождается искажениями передаваемого сообщения. Введя коэффициент нелинейных искажений к, равный отношению амплитуд выходных колебаний с частотами находим из (11.57), что . Нелинейные искажения оказываются весьма значительными при глубокой амплитудной модуляции на входе.

Поэтому в радиоприемных устройствах желательно, чтобы амплитуда несущего колебания АМ-сигнала, подаваемого на детектор, составляла несколько вольт. При этом реализуется режим линейного детектирования и нелинейных искажений не возникает.

Диодный детектор АМ-сигналов.

Широко используется диодный детектор, особенно пригодный для работы с сигналами большого уровня. Такой детектор образован последовательным соединением диода и параллельной RС-цепи, которая выполняет роль частотного фильтра. Параметры RС-цепи выбирают согласно условиям (11.51).

Для нормальной работы детектора необходимо, чтобы сопротивление резистора нагрузки значительно превышало сопротивление диода в прямом направлении, т. е. чтобы Пусть на вход детектора подан немодулированный гармонический сигнал Конденсатор заряжается через открытый диод гораздо быстрее, чем разряжается через высокоомный резистор нагрузки. Поэтому осциллограмма выходного сигнала представляет собой пилообразную кривую с малой относительной высотой зубцов. Средний уровень выходного напряжения близок к амплитуде входного сигнала. Таким образом, диод ббльшую часть периода оказывается запертым.

Пренебрежем указанным непостоянством выходного сигнала и будем считать, что - постоянная величина. Заметим далее, что напряжение приложено к дноду в обратном направлении и служит для него напряжением смещения Коэффициент детектирования данного устройства

может быть сделан близким к единице, поскольку а значит, угол отсечки тока достаточно мал.

Угол отсечки находят из соотношения

откуда следует трансцендентное уравнение или

При корень этого уравнения близок к нулю, так что из (11.58) вытекает формула для расчета коэффициента детектирования:

(11.59)

Пример 11.5. Диодный детектор имеет параметры: Определить коэффициент детектирования данного устройства.

Безразмерное произведение достаточно велико, поэтому можно воспользоваться формулой (11.59), которая дает

Если на вход диодного детектора поступает АМ-колебание, то при выполнении условий (11.51) выходное напряжение детектора «отслеживает» мгновенный уровень амплитуды входного сигнала.

Взаимодействие сигнала и помехи в амплитудном детекторе.

Предположим, что на входе идеального линейного детектора АМ-сигнала с известным коэффициентом детектирования присутствует сумма полезного однотонального АМ-колебания и немодулированного колебания помехи:

частоты в общем случае различны.

Выходной сигнал детектора пропорционален физической огибающей колебания Чтобы вычислить этот сигнал, воспользуемся понятием сопряженного сигнала (см. гл. 5), который, очевидно, записывается так:

(11.60)

Рассмотрим случай, когда полезный сигнал значительно слабее помехи, т. е. с 1. Будем интересоваться полезной составляющей выходного колебания, которая изменяется во времени пропорционально передаваемому сообщению Разлагая радикал, входящий в (11.60), в ряд по степеням малого параметра убеждаемся, что данная спектральная составляющая создает на выходе колебание

Видно, что с ростом амплитуды помехи происходит подавление полезного сигнала. Это явление уже обсуждалось ранее в настоящей главе.

Вредное действие помехи проявляется также в том, что на выходе детектора может возникнуть большое число комбинационных колебаний из-за нелинейного взаимодействия сигнала и помехи.

Фазовое детектирование.

Известно много схем фазовых детекторов - устройств для демодуляции колебаний с полной фазой промодулированных по фазовому углу.

Работа таких детекторов основана на нелинейном взаимодействии модулированного сигнала с немодулированным опорным колебанием, которое должно создаваться вспомогательным внешним источником.

Пусть, например, к нелинейному безынерционному двухполюснику с ВАХ вида приложена сумма двух напряжений:

Из-за квадратичного слагаемого характеристики в токе будет присутствовать составляющая, которая описывает нелинейное взаимодействие колебаний:

Второму слагаемому в последней части формулы (11.62) отвечает высокочастотный сигнал со средней частотой который без труда подавляется линейным фильтром нижних частот (например, RC-цепью). Первое слагаемое в (11.62) описывает низкочастотный ток

приближенно пропорциональный передаваемому сообщению Ф (0, если девиация фазы (индекс модуляции) детектируемого сигнала достаточно мала.

При создании фазовых детекторов неизбежны трудности, связанные с требованием жесткой стабилизации фазы колебаний опорного генератора.

Частотное детектирование.

При частотной модуляции, как известно, полезное сообщение пропорционально отклонению мгновенной частоты сигнала от частоты несущего колебания. Рассмотрим некоторые способы демодуляции ЧМ-сигналов.

Частотную модуляцию можно превратить в неглубокую амплитудную модуляцию, подавая демодулируемый сигнал на линейный частотный фильтр, настроенный таким образам, чтобы в разложении АЧХ

коэффициент был отличен от нуля. Тогда, полагая, что частота детектируемого сигнала получим на выходе фильтра сигнал со сложной амплитудноугловой модуляцией. Мгновенная амплитуда переменной составляющей этого сигнала изменяется во времени по закону

где - постоанный коэффициент, т. е. повторяет по форме передаваемое сообщение.

Окончательная обработка сигнала проводится обычным АМ-детектором, включенным на выходе фильтра.

Лучшие результаты обеспечивает способ, основанный на преобразовании ЧМ-сигнала в ФМ-сигнал при помощи линейного частотно-избирательного фильтра с последующим фазовым детектированием. При таком методе демодуляции фазочастотная характеристика избирательной узкополосной цепи (см. гл. 9) в малой окрестности частоты имеет вид

где - групповое время запаздывания.

Если то узкополосный, сигнал на выходе фильтра имеет полную фазу

т. е. действительно является ФМ-сигналом.

Детектирование (демодуляция) – нелинейный процесс, в результате которого из модулированного высокочастотного сигнала выделяется низкочастотный сигнал сообщения. Детектирование - это радиотехнический процесс обратный модуляции и поэтому его часто называют демодуляцией.

7.4.1. Детектирование амплитудно-модулированных сигналов .

Амплитудный детектор (АД). Процесс детектирования рассмотрим для случая АМ-сигнала с однотональной модуляцией:

После детектирования мы должны получить низкочастотный сигнал сообщения Поскольку в спектре высокочастотного модулированного сигналане содержится низкочастотная составляющая с частотой, то возникает необходимость в изменении спектра высокочастотного модулированного сигнала с последующим выделением низкочастотной составляющей сигнала сообщения. Этим определяется структурная схема АД (рис. 7.7а), в которой нелинейный элемент, преобразует спектр АМ- сигнала, а с помощью фильтра низких частот (ФНЧ) из преобразованного спектра выделяется низкочастотный сигнал сообщения.

где – несущая частота;– верхняя частота спектра низкочастотного сигнала сообщения.

Рис. 7.7. Схемы детекторов амплитудно-модулированных сигналов

а) структурная схема;

б) схема диодного амплитудного детектора

Квадратичное детектирование. При подаче на вход детектора амплитудно-модулированного сигнала с малой амплитудой (0,3 В) вольт-амперная характеристика диода достаточно точно аппроксимируется полиномом второй степени:

Пусть на вход амплитудного детектора поступает сигнал вида

Подставив (7.27) в (7.26), получим

Из этого выражения видно, что вследствие нелинейности ВАХ диод изменил спектр выходного тока. На выходе диода ток содержит постоянную составляющую, низкочастотную составляющую и две высокочастотные составляющие с частотами и. ФНЧ отфильтрует высокочастотные составляющие. Разделительный конденсаторне пропускает на выход детектора постоянное напряжение, возникающее на резистореR за счет протекания постоянной составляющей тока. Низкочастотная составляющая тока, которая несет информацию,

протекая через резистор R , образует выходное напряжение детектора, пропорциональное квадрату амплитуды входного сигнала

Поэтому такое детектирование называется квадратичным.

В случае модуляции однотональным низкочастотным сигналом получим

Как видно из (7.31), при квадратичном детектировании выходное напряжение кроме полезного сигнала с частотой содержит составляющую с удвоенной частотой 2, которая порождает нелинейные искажения передаваемого сигнала. Поэтому квадратичное детектирование используется, например, для детектирования радиоимпульсов прямоугольной формы. Ввиду больших нелинейных искажений, квадратичное детектирование не применяется в радиовещании.

Линейное детектирование. При подаче на вход детектора сигнала с большой амплитудой (= 0,5…1,0 В) работу линейного детектора обычно рассматривают, считая диод идеальным, а его вольт-амперную характеристику аппроксимируют кусочно-линейной зависимостью

Как видно из рис. 7.8 ток через диод протекает только часть периода, т.е. диод работает в режиме отсечки с углом отсечки <90 0 . В спектре импульсов тока содержится низкочастотная (нулевая) составляющая, основная гармоника с частотой и бесконечное количество гармоник с частотами кратными(см. ряд Фурье). В соответствии с неравенством (7.25), из всего спектраRC -фильтр низких частот выделит составляющую с n =0, которая изменяется по закону низкочастотного информационного сигнала,

Низкочастотный ток, протекая через резистор R , образует напряжение

где – коэффициент нулевой гармоники.

В стационарном режиме на диоде действует напряжение . Угол отсечки определяется из условия:а отсюда