Набор протоколов tcp ip.

Набор интернет-протоколов обеспечивает сквозную передачу данных, определяющую, как данные должны пакетироваться, обрабатываться, передаваться, маршрутизироваться и приниматься. Эта функциональность организована в четыре слоя абстракции, которые классифицируют все связанные протоколы в соответствии с объемом задействованных сетей. От самого низкого до самого высокого уровня - это уровень связи, содержащий методы связи для данных, которые остаются в пределах одного сегмента сети (ссылка); интернет-уровень, обеспечивающий межсетевое взаимодействие между независимыми сетями; транспортный уровень, обрабатывающий связь между хостами; и прикладной уровень, который обеспечивает обмен данными между процессами для приложений.

Развитием архитектуры Интернета и протоколов в модели TCP/IP занимается открытое международное сообщество проектировщиков IETF .

История

Стек протоколов TCP/IP был создан на основе NCP (Network Control Protocol) группой разработчиков под руководством Винтона Серфа в 1972 году. В июле 1976 года Винт Серф и Боб Кан впервые продемонстрировали передачу данных с использованием TCP по трём различным сетям. Пакет прошел по следующему маршруту: Сан-Франциско - Лондон - Университет Южной Калифорнии. К концу своего путешествия пакет проделал 150 тысяч км, не потеряв ни одного бита. В 1978 году Серф, Джон Постел и Дэнни Кохэн решили выделить в TCP две отдельные функции: TCP и IP (англ. Internet Protocol , межсетевой протокол). TCP был ответственен за разбивку сообщения на датаграммы (англ. datagram ) и соединение их в конечном пункте отправки. IP отвечал за передачу (с контролем получения) отдельных датаграмм. Вот так родился современный протокол Интернета. А 1 января 1983 года ARPANET перешла на новый протокол. Этот день принято считать официальной датой рождения Интернета.

Уровни стека TCP/IP

Стек протоколов TCP/IP включает в себя четыре уровня :

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI . На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных, благодаря чему, в частности, обеспечивается полностью прозрачное взаимодействие между проводными и беспроводными сетями.

Распределение протоколов по уровням модели TCP/IP
Прикладной
(Application layer)
напр., HTTP , RTSP , FTP , DNS
Транспортный

Транспортный уровень

Сетевой (межсетевой) уровень

Канальный уровень

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель , витая пара , оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов , модуляцию , амплитуду сигналов , частоту сигналов , способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

При проектировании стека протоколов на канальном уровне рассматривают помехоустойчивое кодирование - позволяющие обнаруживать и исправлять ошибки в данных вследствие воздействия шумов и помех на канал связи.

Сравнение с моделью OSI

Три верхних уровня в модели OSI, то есть уровень приложения, уровень представления и уровень сеанса, отдельно не различаются в модели TCP/IP , которая имеет только прикладной уровень над транспортным уровнем. Хотя некоторые чистые приложения протокола OSI, такие как X.400 , также объединяют их, нет требования, чтобы стек протокола TCP/IP должен накладывать монолитную архитектуру над транспортным уровнем. Например, протокол NFS-приложений работает через протокол представления данных External Data Representation (XDR), который, в свою очередь, работает по протоколу Remote Procedure Call (RPC). RPC обеспечивает надежную передачу данных, поэтому он может безопасно использовать транспорт UDP с максимальным усилием.

Различные авторы интерпретировали модель TCP/IP по-разному и не согласны с тем, что уровень связи или вся модель TCP/IP охватывает проблемы уровня OSI уровня 1 (физический уровень) или предполагается, что аппаратный уровень ниже уровня канала.

Несколько авторов попытались включить слои 1 и 2 модели OSI в модель TCP/IP, поскольку они обычно упоминаются в современных стандартах (например, IEEE и ITU). Это часто приводит к модели с пятью слоями, где уровень связи или уровень доступа к сети разделяются на слои 1 и 2 модели OSI.

Усилия по разработке протокола IETF не касаются строгого расслоения. Некоторые из его протоколов могут не соответствовать чисто модели OSI, хотя RFC иногда ссылаются на нее и часто используют старые номера уровня OSI. IETF неоднократно заявлял, что разработка интернет-протокола и архитектуры не должна соответствовать требованиям OSI. В RFC 3439 , адресованном интернет-архитектуре, содержится раздел, озаглавленный «Слой, считающийся вредным».

Например, считается, что уровни сеанса и представления пакета OSI включены в прикладной уровень пакета TCP/IP. Функциональность уровня сеанса можно найти в протоколах, таких как HTTP и SMTP , и более очевидна в таких протоколах, как Telnet и протокол инициации сеанса (SIP). Функциональность уровня сеанса также реализована с нумерацией портов протоколов TCP и UDP, которые охватывают транспортный уровень в наборе TCP/IP. Функции уровня представления реализуются в приложениях TCP/IP со стандартом MIME при обмене данными.

Конфликты очевидны также в оригинальной модели OSI, ISO 7498, когда не рассматриваются приложения к этой модели, например, ISO 7498/4 Management Framework или ISO 8648 Internal Organization of the Network layer (IONL). Когда рассматриваются документы IONL и Management Framework, ICMP и IGMP определяются как протоколы управления уровнем для сетевого уровня. Аналогичным образом IONL предоставляет структуру для «зависимых от подсетей объектов конвергенции», таких как ARP и RARP.

Протоколы IETF могут быть инкапсулированы рекурсивно, о чем свидетельствуют протоколы туннелирования, такие как Инкапсуляция общей маршрутизации (GRE). GRE использует тот же механизм, который OSI использует для туннелирования на сетевом уровне. Существуют разногласия в том, как вписать модель TCP/IP в модель OSI, поскольку уровни в этих моделях не совпадают.

К тому же, модель OSI не использует дополнительный уровень - «Internetworking» - между канальным и сетевым уровнями. Примером спорного протокола может быть ARP или STP .

Вот как традиционно протоколы TCP/IP вписываются в модель OSI:

Распределение протоколов по уровням модели OSI
TCP/IP OSI
7 Прикладной Прикладной напр., HTTP , SMTP , SNMP , FTP , Telnet , SSH , SCP , SMB , NFS , RTSP , BGP
6 Представления напр., XDR , AFP , TLS , SSL
5 Сеансовый напр., ISO 8327 / CCITT X.225, RPC , NetBIOS , PPTP , L2TP , ASP
4 Транспортный Транспортный напр., TCP , UDP , SCTP , SPX , ATP , DCCP , GRE
3 Сетевой Сетевой напр., , ICMP , IGMP , CLNP , OSPF , RIP , IPX , DDP , ARP
2 Канальный Канальный напр., Ethernet , Token ring , HDLC , PPP , X.25 , Frame relay , ISDN , ATM , SPB , MPLS
1 Физический напр., электрические провода , радиосвязь , волоконно-оптические провода , инфракрасное излучение

Обычно в стеке TCP/IP верхние 3 уровня модели OSI (прикладной , представления и сеансовый) объединяют в один - прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению.

Описание модели TCP/IP в технической литературе

Примечания

  1. Модели OSI и TCP/IP . База знаний osLogic.ru
  2. Сетевые модели TCP/IP и OSI . Cisco Learning
  3. Васильев А. А. , Телина И. С. , Избачков Ю. С. , Петров В. Н. Информационные системы: Учебник для вузов. - СПб. : Питер, 2010. - 544 с. - ISBN 978-5-49807-158-9 .
  4. Эндрю Кровчик, Винод Кумар, Номан Лагари и др. .NET сетевое программирование для профессионалов / пер. с англ. В. Стрельцов. - М. : Лори, 2005. - 400 с. - ISBN 1-86100-735-3 . - ISBN 5-85582-170-2 .

Набор многоуровневых протоколов, или как называют стек TCP/IP (табл. 2.1), предназначен для использования в различных вариантах сетевого окружения. Стек TCP/IP с точки зрения системной архитектуры соответствует эталонной модели OSI (Open Systems Interconnection – взаимодействие открытых систем) и позволяет обмениваться данными по сети приложениям и службам, работающим практически на любой платформе, включая Unix, Windows, Macintosh и другие.

Таблица 2.1. Семейство протоколов TCP/IP

Название протокола

Описание протокола

Сетевой программный интерфейс

Связь с приложениями ОС Windows

Интерфейс транспортного драйвера (Transport Driver Interface) позволяет создавать компоненты сеансового уровня.

Протокол управления передачей (Transmission Control Protocol)

Протокол пользовательских дейтаграмм (User Datagram Protocol)

Протокол разрешения адресов (Address Resolution Protocol)

Протокол обратного разрешения адресов (Reverse Address Resolution Protocol)

Протокол Internet(Internet Protocol)

Протокол управляющих сообщений Internet (Internet Control Message Protocol)

Протокол управления группами Интернета (Internet Group Management Protocol),

Интерфейс взаимодействия между драйверами транспортных протоколов

Протокол пересылки файлов (File Transfer Protocol)

Простой протокол пересылки файлов (Trivial File Transfer Protocol)

Реализация TCP/IP фирмы Microsoft соответствует четырехуровневой модели вместо семиуровневой модели, как показано на рис. 2.2. Модель TCP/IP включает большее число функций на один уровень, что приводит к уменьшению числа уровней. В модели используются следующие уровни:

Уровень Приложения модели TCP/IP соответствует уровням Приложения, Представления и Сеанса модели OSI;

Уровень Транспорта модели TCP/IP соответствует аналогичному уровню Транспорта модели OSI;

Рис. 2.2. Соответствие семиуровневой модели OSI и четырехуровневой модели TCP/IP

Межсетевой уровень модели TCP/IP выполняет те же функции, что и уровень Сети модели OSI;

Уровень сетевого интерфейса модели TCP/IP соответствует Канальному и Физическому уровням модели OSI.

Уровень Приложения

Через уровень Приложения модели TCP/IP приложения и службы получают доступ к сети. Доступ к протоколам TCP/IP осуществляется посредством двух программных интерфейсов (API – Application Programming Interface):

Сокеты Windows;

Интерфейс сокетов Windows, или как его называют WinSock, является сетевым программным интерфейсом, предназначенным для облегчения взаимодействия между различными TCP/IP – приложениями и семействами протоколов.

Интерфейс NetBIOS используется для связи между процессами (IPC – Interposes Communications) служб и приложений ОС Windows. NetBIOS выполняет три основных функции: определение имен NetBIOS; служба дейтаграмм NetBIOS; служба сеанса NetBIOS.

Уровень транспорта

Уровень транспорта TCP/IP отвечает за установления и поддержания соединения между двумя узлами. Основные функции уровня:

Подтверждение получения информации;

Управление потоком данных;

Упорядочение и ретрансляция пакетов.

В зависимости от типа службы могут быть использованы два протокола:

TCP (Transmission Control Protocol – протокол управления передачей);

UDP (User Datagram Protocol – пользовательский протокол дейтаграмм).

TCP обычно используют в тех случаях, когда приложению требуется передать большой объем информации и убедиться, что данные своевременно получены адресатом. Приложения и службы, отправляющие небольшие объемы данных и не нуждающиеся в получении подтверждения, используют протокол UDP, который является протоколом без установления соединения.

Протокол управления передачей (TCP)

Протокол управления передачей данных – TCP (Transmission Control Protocol) – обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений . Появился в начальный период создания сетей, когда глобальные сети не отличались особой надежностью.

Надежность протокола TCP заключается в следующем:

– он диагностирует ошибки,

– при необходимости посылает данные повторно,

– если не может самостоятельно исправить ошибку, сообщает о ней на другие уровни.

Перед отправкой сегментов информации вниз по модели отправляющий протокол TCP контактирует с принимающим протоколом TCP с целью установления связи. В результате создается виртуальный канал. Такой тип коммуникации называется ориентированным на соединение.

Установление соединения происходит в три шага:

1. Клиент, запрашивающий соединение, отправляет серверу пакет, указывающий номер порта, который клиент желает использовать, а также код (определенное число) ISN (Initial Sequence number).

2. Сервер отвечает пакетом, содержащий ISN сервера, а также ISN клиента, увеличенный на 1.

3. Клиент должен подтвердить установление соединения, вернув ISN сервера, увеличенный на 1.

Принцип работы TCP:

Берет из приложения большие блоки информации, разбивает их на сегменты,

Нумерует и упорядочивает каждый сегмент так, чтобы протокол TCP на принимающей стороне мог правильно соединить все сегменты в исходный большой блок;

Согласовывает с протоколом принимающей стороны количество информации, которое должно быть отправлено до получения подтверждения от принимающего TCP;

После отправки сегментов TCP ждет подтверждения от целевого TCP о получении каждого из них;

Заново отправляет те сегменты, получение которых не было подтверждено.

Трехступенчатое открытие соединения устанавливает номер порта, а также ISN клиента и сервера. Каждый, отправляемый TCP-пакет содержит номера TCP-портов отправителя и получателя, номер фрагмента для сообщений, разбитых на меньшие части, а также контрольную сумму, позволяющую убедиться, что при передаче не произошло ошибок. Протокол TCP отвечает за надежную передачу данных от одного узла сети к другому. Он создает сеанс с установлением соединения, иначе говоря, виртуальный канал между машинами.

Пользовательский протокол дейтаграмм (UDP)

Протокол UDP предназначен для отправки небольших объемов данных (дейтаграмм) без установки соединения и используется приложениями, которые не нуждаются в подтверждении адресатом их получения . UDP считается более простым протоколом, так как не загромождает сеть служебной информацией и выполняет не все функции TCP. Однако он успешно справляется с передачей информации, не требующей гарантированной доставки, и при этом использует намного меньше сетевых ресурсов. UDP не создает виртуальных каналов и не контактирует с целевым устройством перед отправкой информации. Поэтому он считается протоколом без постоянного соединения, или не ориентированным на соединение .

Принцип работы UDP:

Получает с верхних уровней блоки информации, разбивает их на сегменты;

Нумерует каждый из сегментов, чтобы все сегменты можно было воссоединить в требуемый блок в пункте назначения, но не упорядочивает сегменты и не заботится о том, в каком порядке они поступят в место назначения,

Отправляет сегменты и «забывает» о них;

Не ждет подтверждений о получении и даже не допускает таких подтверждений и потому считается ненадежным протоколом. Но это не значит, что UDP неэффективен – просто он не относится к надежным протоколам.

UDP также использует номера портов для определения конкретного процесса по указанному IP-адресу. Однако UDP-порты отличаются от TCP-портов и, следовательно, могут использовать те же номера портов, что и TCP, без конфликта между службами.

Межсетевой уровень

Межсетевой уровень отвечает за маршрутизацию данных внутри сети и между различными сетями. На этом уровне работают маршрутизаторы, которые зависят от используемого протокола и используются для отправки пакетов из одной сети (или ее сегмента) в другую (или другой сегмент сети). В стеке TCP/IP на этом уровне используется протокол IP.

Протокол Интернета IP

Протокол IP обеспечивает обмен дейтаграммами между узлами сети и является протоколом, не устанавливающим соединения и использующим дейтаграммы для отправки данных из одной сети в другую. Данный протокол не ожидает получение подтверждения (ASK, Acknowledgment) отправленных пакетов от узла адресата. Подтверждения, а также повторные отправки пакетов осуществляется протоколами и процессами, работающими на верхних уровнях модели.

К его функциям относится фрагментация дейтаграмм и межсетевая адресация. Протокол IP предоставляет управляющую информацию для сборки фрагментированных дейтаграмм. Главной функцией протокола является межсетевая и глобальная адресация. В зависимости от размера сети, по которой будет маршрутизироваться дейтаграмма или пакет, применяется одна из трех схем адресации.

Адресация в IP-сетях

Каждый компьютер в сетях TCP/IP имеет адреса трех уровней: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя) .

Физический, или локальный адрес узла, определяемый технологией, с помощью которой построена сеть, в которую входит узел. Для узлов, входящих в локальные сети – это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем.

Сетевой, или IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла гибкое, и граница между этими полями может устанавливаться произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

При разработке протокола IP на основе размера сетей были выделены их классы (табл. 2.2):

· Класс а – немногочисленные сети с очень большим количеством узлов; номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети.

· Класс В – сети средних размеров; под адрес сети и под адрес узла отводится по 16 битов (по 2 байта).

· Класс С – сети с малым числом узлов; под адрес сети отводится 24 бита (3 байта), а под адрес узла – 8 битов (1 байт).

Таблица 2.2. Классы сетей

Диапазон адресов

Максимальное количество сетей

Максимальное количество узлов в одной сети

0Сеть.узел.узел.узел

0.0.0.0 ‑ 0.255.255.255

зарезервировано

1.0.0.0 ‑ 126.255.255.255

127.0.0.0 – 127.255.255.255

зарезервировано

10Сеть.сеть.узел.узел

128.XXX.0.0 – 191.XXX.255.255

110Сеть.сеть.сеть.узел

192.XXX.XXX.0 ‑ 223.XXX.255.255

1110Группа.группа. группа.группа

224.0.0.0 – 239.255.255.255

1111Резерв.резерв. резерв.резерв

240.0.0.0 – 255.255.255.255

зарезервировано

· Адреса класса D – особые, групповые адреса – multicast; могут использоваться для рассылки сообщений определенной группе узлов. Если в пакете указан адрес назначения, принадлежащий классу D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

· Адреса класса Е зарезервированы для будущих применений.

Помимо вышеописанных адресов существуют зарезервированные адреса, которые используются особым образом.

Если в поле номера сети стоят 0

0 0 0 0...................................0 Номер узла,

то по умолчанию считается, что этот узел принадлежит той же самой сети, что и узел, который отправил пакет: если адрес компьютера 128.187.0.0, то указанный в сообщении адрес 0.0.25.31 неявно преобразуется в адрес 128.187.25.31;

Адрес 127.0.0.Х зарезервирован для организации обратной связи при тестировании работы программного обеспечения узла без реальной отправки пакета по сети. Этот адрес имеет название loopback или localhost. Если программа отправит пакет с таким адресом, то этот пакет, не выйдя за пределы компьютера, пройдется по всем уровням сетевой подсистемы и вернется к этой программе. Позволяет разрабатывать и тестировать сетевое программное обеспечение на локальном компьютере, в т. ч. и вообще не имеющем сетевого адаптера.

Если все двоичные разряды IP-адреса равны 1

1 1 1 1...................................1 1,

то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и отправитель. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast);

Если в поле адреса узла назначения стоят сплошные 1

Адрес сети 1111................11,

то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным адресом. Такая рассылка называется широковещательным сообщением (broadcast);

Адреса класса D ‑ форма группового IP-адреса – multicast. Пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения, в отличие от широковещательных, называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.

Символьный адрес, или DNS-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес используется на прикладном уровне, например, в протоколах FTP или telnet.

Числовая адресация удобна для машинной обработки таблиц маршрутов. Для использования человеком она представляет определенные трудности. Для облегчения взаимодействия вначале применялись таблицы соответствия числовых адресов именам машин. Например, в ОС UNIX в каталоге /etc находится файл с именем hosts, который может иметь следующий вид:

IP-адрес Имя машины

127.0.0.1 localhost

144.206.160.32 Polyn

144.206.160.40 Apollo

По мере роста сети была разработана система доменных имен – DNS (Domain Name System), которая позволяет присваивать компьютерам легко запоминаемые имена, например yahoo.com, и отвечает за перевод этих имен обратно в IP-адреса. DNS строится по иерархическому принципу, однако эта иерархия не является строгой. Фактически нет единого корня всех доменов Internet.

Компьютерное имя имеет по меньшей мере два уровня доменов, отделяемых друг от друга точкой (.). Идущие после доменов верхнего уровня домены обычно определяют либо регионы (msk), либо организации (ulstu). Следующие уровни иерархии могут быть закреплены за небольшими организациями, либо за подразделениями больших организаций или частными лицами (например, alvinsoft.h11.ru).

Все, что находится слева, является поддоменом для общего домена. Таким образом, в имени somesite.uln.ru, somesite является поддоменом uln, который в свою очередь является поддоменом ru.

Наиболее популярной программой поддержки DNS является BIND, или Berkeley Internet Name Domain, – сервер доменных имен, который широко применяется в Internet. Он обеспечивает поиск доменных имен и IP-адресов для любого узла сети. BIND обеспечивает также рассылку сообщений электронной почты через узлы Internet.

BIND реализован по схеме «клиент-сервер». Различают четыре вида серверов:

· primary master-сервер поддерживает свою базу данных имен и обслуживает местный домен;

· secondary master-сервер обслуживает свой домен, но данные об адресах части своих машин получает по сети с другого сервера;

· caching-сервер не имеет своего домена. Он получает данные либо с одного из master-серверов, либо из буфера;

· удаленный сервер обычный master-сервер, установленный на удаленной машине, к которому обращаются программы по сети.

Primary или secondary master-серверы устанавливаются обычно на машинах, которые являются шлюзами для локальных сетей.

Шлюз (Gateway) – система, выполняющая преобразование из одного формата в другой.

Сервер имен может быть установлен на любой компьютер локальной сети. При этом необходимо учитывать его производительность, так как многие реализации серверов держат базы данных имен в оперативной памяти. При этом часто подгружается информация и с других серверов. Поэтому это может быть причиной задержек при разрешении запроса на адрес по имени машины.

Протоколы сопоставления адреса ARP и RARP

Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol (ARP) . ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети – протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило, не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу – нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP – RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.

В локальных сетях ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным
IP-адресом.

Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP-запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP-запрос и сравнивают указанный там IP-адрес с собственным адресом. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP-запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета.

Протокол ICMP

Протокол управления сообщениями Интернета (ICMP – Internet Control Message Protocol) используется IP и другими протоколами высокого уровня для отправки и получения отчетов о состоянии переданной информации. Этот протокол используется для контроля скорости передачи информации между двумя системами. Если маршрутизатор, соединяющий две системы, перегружен трафиком, он может отправить специальное сообщение ICMP-ошибку для уменьшения скорости отправления сообщений. Является частью сетевого уровня набора протоколов TCP/IP.

Протокол ICMP для своих целей использует сообщения, два из которых называются эхо-запрос ICMP и эхо-ответ ICMP:

· Эхо-запрос подразумевает, что компьютер, которому он был отправлен, должен ответить на этот пакет.

· Эхо-ответ – это тип ICMP-сообщения, которое используется для ответа на такой запрос.

Эти сообщения отправляются и принимаются с помощью команды ping (Packet Internet Groper).

С помощью специальных пакетов ICMP можно получить информацию:

· о невозможности доставки пакета,

· о превышении времени жизни пакета,

· о превышении продолжительности сборки пакета из фрагментов,

· об аномальных величинах параметров,

· об изменении маршрута пересылки и типа обслуживания,

· о состоянии системы и т. п.

Протокол IGMP

Узлы локальной сети используютпротокол управления группами Интернета (IGMP – Internet Group Management Protocol), чтобы зарегистрировать себя в группе. Информация о группах содержится на маршрутизаторах локальной сети. Маршрутизаторы используют эту информацию для передачи групповых сообщений.

Групповое сообщение, как и широковещательное, используется для отправки данных сразу нескольким узлам.

Network Device Interface Specification (NDIS) – спецификация интерфейса сетевого устройства, программный интерфейс, обеспечивающий взаимодействие между драйверами транспортных протоколов, и соответствующими драйверами сетевых интерфейсов. Позволяет использовать несколько протоколов, даже если установлена только одна сетевая карта.

Уровень сетевого интерфейса

Этот уровень модели TCP/IP отвечает за распределение IP-дейтаграмм. Он работает с ARP для определения информации, которая должна быть помещена в заголовок каждого кадра. Затем на этом уровне создается кадр, подходящий для используемого типа сети, такого как Ethernet, Token Ring или ATM, затем IP-дейтаграмма помещается в область данных этого кадра, и он отправляется в сеть.


Размещено на http://www.сайт/

по дисциплине «Вычислительные системы и сети»

Тема: Основные протоколы стека TCP/IP

Санкт-Петербург - 2015 год

Введение

История развития стека TCP/IP

Структура стека TCP/IP

Прикладной уровень

Транспортный уровень

Сетевой уровень

Канальный уровень

Заключение

Список используемой литературы

Введение

Благодаря возникновению и развитию сетей передачи данных появился новый, высокоэффективный способ взаимодействия между людьми. Сначала сети использовались для научных исследований, но потом они стали проникать во все области человеческой деятельности. Большинство сетей существовало независимо друг от друга, решая конкретные задачи для конкретных групп пользователей. В соответствии с этими задачами выбирались те или иные сетевые технологии, сетевые стандарты и протоколы, а также аппаратное обеспечение. Построить универсальную физическую сеть мирового масштаба из однотипной аппаратуры невозможно, так как такая сеть не могла бы удовлетворять потребности всех ее потенциальных пользователей. Одним нужна высокоскоростная сеть для соединения машин в пределах здания, а другим - надежные коммуникации между компьютерами, находящимися на сотнях километрах друг от друга. И тогда появилась идея объединить множество физических сетей в единую глобальную сеть, в которой использовались бы как соединения на физическом уровне, так и новый набор специальных "соглашений" или протоколов. Эта технология, получившая свое развитие в сети Интернет, позволяет компьютерам взаимодействовать друг с другом независимо от того, к какой сети и каким образом они подсоединены.

Осознав важность идеи массового объединения компьютеров в сети и сетей между собой, несколько правительственных организаций в США стали работать над ее реализацией. В результате был создан стек протоколов TCP/IP.

Стек протоколов TCP/IP тесно связан с сетью Internet, ее историей и современностью. Создан он был в 1969 году, когда для сети ARPANET понадобился ряд стандартов для объединения в единую сеть компьютеров с различными архитектурами и операционными системами. На базе этих стандартов и был разработан набор протоколов, получивших название TCP/IP. Вместе с ростом Internet протокол TCP/IP завоевывал позиции и в других сетях. На сегодняшний день этот сетевой протокол используется как для связи компьютеров всемирной сети, так и в подавляющем большинстве корпоративных сетей. В наши дни используется версия протокола IP, известная как IPv4.

История развития стека TCP/IP

Технология стека TCP/IP сложилась в основном в конце 1970-х годов и с тех пор основные принципы работы базовых протоколов, таких как IP, TCP, UDP и ICMP, практически не изменились. Однако, сам компьютерный мир за эти годы значительно изменился, поэтому долго назревавшие усовершенствования в технологии стека TCP/IP сейчас стали необходимостью.

Основными обстоятельствами, из-за которых требуется модификация базовых протоколов стека TCP/IP, являются следующие.

Повышение производительности компьютеров и коммуникационного оборудования. За время существования стека производительность компьютеров возросла на два порядка, объемы оперативной памяти выросли более чем в 30 раз, пропускная способность магистрали Internet в Соединенных Штатах выросла в 800 раз.

Появление новых приложений. Коммерческий бум вокруг Internet и использование ее технологий при создании intranet привели к появлению в сетях TCP/IP, ранее использовавшихся в основном в научных целях, большого количества приложений нового типа, работающих с мультимедийной информацией. Эти приложения чувствительны к задержкам передачи пакетов, так как такие задержки приводят к искажению передаваемых в реальном времени речевых сообщений и видеоизображений. Особенностью мультимедийных приложений является также передача очень больших объемов информации. Некоторые технологии вычислительных сетей, например, frame relay и ATM, уже имеют в своем арсенале механизмы для резервирования полосы пропускания для определенных приложений. Однако эти технологии еще не скоро вытеснят традиционные технологии локальных сетей, не поддерживающие мультимедийные приложения (например, Ethernet). Следовательно, необходимо компенсировать такой недостаток средствами сетевого уровня, то есть средствами протокола IP.

Бурное расширение сети Internet. В начале 90-х годов сеть Internet расширялась очень быстро, новый узел появлялся в ней каждые 30 секунд, но 95-й год стал переломным - перспективы коммерческого использования Internet стали отчетливыми и сделали ее развитие просто бурным. Первым следствием такого развития стало почти полное истощение адресного пространства Internet, определяемого полем адреса IP в четыре байта.

Новые стратегии администрирования. Расширение Internet связано с его проникновением в новые страны и новые отрасли промышленности. При этом в сети появляются новые органы администрирования, которые начинают использовать новые методы администрирования. Эти методы требуют появления новых средств в базовых протоколах стека TCP/IP.

Сообщество Internet уже несколько лет работает над разработкой новой спецификации для базового протокола стека - протокола IP. Выработано уже достаточно много предложений, от простых, предусматривающих только расширения адресного пространства IP, до очень сложных, приводящих к существенному увеличению стоимости реализации IP в высокопроизводительных (и так недешевых) маршрутизаторах.

Основным предложением по модернизации протокола IP является предложение, разработанное группой IETF. Сейчас принято называть ее предложение версией 6 - IPv6, а все остальные предложения группируются под названием IP Next Generation, IPng.

В предложении IETF протокол IPv6 оставляет основные принципы IPv4 неизменными. К ним относятся дейтаграммный метод работы, фрагментация пакетов, разрешение отправителю задавать максимальное число хопов для своих пакетов. Однако, в деталях реализации протокола IPv6 имеются существенные отличия от IPv4. Эти отличия коротко можно описать следующим образом.

Использование более длинных адресов. Новый размер адреса - наиболее заметное отличие IPv6 от IPv4. Версия 6 использует 128-битные адреса.

Гибкий формат заголовка. Вместо заголовка с фиксированными полями фиксированного размера (за исключением поля Резерв), IPv6 использует базовый заголовок фиксированного формата плюс набор необязательных заголовков различного формата.

Поддержка резервирования пропускной способности. В IPv6 механизм резервирования пропускной способности заменяет механизм классов сервиса версии IPv4.

Поддержка расширяемости протокола. Это одно из наиболее значительных изменений в подходе к построению протокола - от полностью детализированного описания протокола к протоколу, который разрешает поддержку дополнительных функций.

Серия протоколов TCP/IP - яркий пример открытой системы в том смысле, что, в отличие от протоколов, используемых в коммуникационных системах разных поставщиков, все спецификации этого стека протоколов и многие из его реализаций общедоступны (предоставляются бесплатно или за символическую цену). Это позволяет любому разработчику создавать свое программное обеспечение, необходимое для взаимодействия по сети Интернет. TCP/IP привлекает своей масштабируемостью, предоставляя одинаковые возможности глобальным и локальным сетям.

Главной задачей стека TCP/IP является объединение в сеть пакетных подсетей через шлюзы. Каждая сеть работает по своим собственным законам, однако предполагается, что шлюз может принять пакет из другой сети и доставить его по указанному адресу. Реально, пакет из одной сети передается в другую подсеть через последовательность шлюзов, которые обеспечивают сквозную маршрутизацию пакетов по всей сети. В данном случае, под шлюзом понимается точка соединения сетей. При этом соединяться могут как локальные сети, так и глобальные сети. В качестве шлюза могут выступать как специальные устройства, маршрутизаторы, например, так и компьютеры, которые имеют программное обеспечение, выполняющее функции маршрутизации пакетов. Маршрутизация - это процедура определения пути следования пакета из одной сети в другую.

Такой механизм доставки становится возможным благодаря реализации во всех узлах сети протокола межсетевого обмена IP.

Структура стека TCP/IP

Протоколы работают друг с другом в стеке, что означает, что протокол, располагающийся на уровне выше, работает «поверх» нижнего, используя механизмы инкапсуляции. Например, протокол TCP работает поверх протокола IP.

Протоколы TCP/IP соответствуют четырехуровневой модели, известной как модель DARPA. Каждый уровень этой модели соответствует одному или нескольким уровням модели OSI.

Стек протоколов TCP/IP включает в себя четыре уровня:

· прикладной уровень (application layer),

· транспортный уровень (transport layer),

· сетевой уровень (internet layer),

· канальный уровень (link layer).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

При отправке сообщения по сети стек протоколов на узле работает от верхнего уровня к нижнему. В этом примере веб-сервера обозреватель на стороне клиента направляет веб-серверу запрос на веб-страницу через порт назначения 80. Начинается процесс отправки веб-страницы клиенту.

При отправке веб-страницы по стеку протоколов веб-сервера данные приложения разбиваются на TCP-сегменты. Каждому сегменту TCP присваивается заголовок, в котором указывается номера портов источника и назначения.

Сегмент TCP инкапсулирует протокол HTTP и пользовательские данные веб-страницы в формате HTML и передает их на следующий уровень протоколов, то есть в IP. Здесь сегмент TCP инкапсулируется в пакете IP, и к нему добавляется заголовок IP. В заголовке IP указываются IP-адреса источника и назначения.

Далее этот пакет IP передается протоколу Ethernet, где он инкапсулируется в заголовок кадра и в концевую метку. В каждом заголовке кадра Ethernet указываются MAC-адреса источника и назначения. В концевой метке указывается информация для проверки ошибок. Наконец, биты кодируются в среду передачи по Ethernet (медный или оптоволоконный кабель) интерфейсной платой сервера.

Если пакет продвигается по уровню сверху вниз - на каждом уровне добавляется к пакету служебная информация в виде заголовка и возможно трейлера (информации помещенной в конец сообщения). Этот процесс называется инкапсуляция . Служебная информация предназначается для объекта того же уровня на удаленном компьютере. Ее формат и интерпретация определяются протоколами данного уровня.

Если пакет продвигается по уровню снизу вверх - он разделяется на заголовок и данные. Анализируется заголовок пакета, выделяется служебная информация и в соответствии с ней данные перенаправляются к одному из объектов вышестоящего уровня. Вышестоящий уровень, в свою очередь, анализирует эти данные и также их разделяет их на заголовок и данные, далее анализируется заголовок и выделяется служебная информация и данные для вышестоящего уровня. Процедура повторяется заново пока пользовательские данные, освобожденные от всей служебной информации, не дойдут до прикладного уровня.

Не исключено, что пакет так и не дойдет до прикладного уровня. В частности, если компьютер работает в роли промежуточной станции на пути между отправителем и получателем, тогда объект, на соответствующем уровне, при анализе служебной информации определит, что пакет на этом уровня адресован не ему, в следствии чего, объект проведет необходимые мероприятия для перенаправления пакета к пункту назначения или возврата отправителю с сообщением об ошибке. Но так или иначе не будет осуществлять продвижение данных на верхний уровень.

Для правильного взаимодействия компьютеров работающих в сетях разнообразной структуры, с использованием различного программного обеспечения необходимо наличие стандартов. Этих стандартов на данный момент существует также достаточно большое количество. Данные стандарты и протоколы строго определяют нормы и правила технической организации компьютерных сетей и программ, реализующих взаимодействие по сети.

Итак, лидирующая роль стека TCP/IP объясняется следующими его свойствами:

* Это наиболее завершенный стандартный и в то же время популярный стек сетевых протоколов, имеющий многолетнюю историю.

* Почти все большие сети передают основную часть своего трафика с помощью протокола TCP/IP.

* Это метод получения доступа к сети Internet.

* Этот стек служит основой для создания intranet- корпоративной сети, использующей транспортные услуги Internet и гипертекстовую технологию WWW, разработанную в Internet.

* Все современные операционные системы поддерживают стек TCP/IP.

* Это гибкая технология для соединения разнородных систем как на уровне транспортных подсистем, так и на уровне прикладных сервисов.

* Это устойчивая масштабируемая межплатформенная среда для приложений клиент-сервер.

Прикладной уровень

Прикладной уровень - обеспечивает приложениям доступ к сервисам других уровней и определяют протоколы, по которым приложения могут обмениваться данными. В качестве единицы данных протоколов прикладного уровня выступают сообщения (message).

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Остановимся несколько подробнее на некоторых из них.

Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Кроме пересылки файлов протокол FTP предлагает и другие услуги. Так, пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль. Для доступа к публичным каталогам FTP-архивов Internet парольная аутентификация не требуется, и ее обходят за счет использования для такого доступа предопределенного имени пользователя Anonymous.

В стеке TCP/IP протокол FTP предлагает наиболее широкий набор услуг для работы с файлами, однако он является и самым сложным для программирования. Приложения, которым не требуются все возможности FTP, могут использовать другой, более экономичный протокол - простейший протокол пересылки файлов TFTP (Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения - UDP.

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленного компьютера. При использовании сервиса telnet пользователь фактически управляет удаленным компьютером так же, как и локальный пользователь, поэтому такой вид доступа требует хорошей защиты. Поэтому серверы telnet всегда используют как минимум аутентификацию по паролю, а иногда и более мощные средства защиты, например, систему Kerberos.

Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Изначально протокол SNMP был разработан для удаленного контроля и управления маршрутизаторами Internet, которые традиционно часто называют также шлюзами. С ростом популярности протокол SNMP стали применять и для управления любым коммуникационным оборудованием - концентраторами, мостами, сетевыми адаптерами и т.д. и т.п. Проблема управления в протоколе SNMP разделяется на две задачи.

Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия SNMP-агента, работающего в управляемом оборудовании, и SNMP-монитора, работающего на компьютере администратора, который часто называют также консолью управления. Протоколы передачи определяют форматы сообщений, которыми обмениваются агенты и монитор.

Вторая задача связана с контролируемыми переменными, характеризующими состояние управляемого устройства. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в устройствах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые управляемое устройство должно сохранять, и допустимые операции над ними.

На этом уровне предусмотрено много протоколов и постоянно разрабатываются новые.

Протоколы прикладного уровня:

· FTP (File Transfer Protocol - протокол передачи файлов) - предназначен для передачи файлов в сети и доступа к удалённым хостам. FTP функционирует поверх транспортного протокола TCP.

· TFTP (Trivial File Transfer Protocol - простой протокол передачи файлов) - предназначен для первоначальной загрузки бездисковых рабочих станций.

· BGP (Border Gateway Protocol - протокол граничного шлюза) - предназначен для обмена информацией о маршрутах между автономными системами.

· HTTP (Hyper Text Transfer Protocol - протокол передачи гипертекста) - предназначен для передачи данных на основе клиент-серверной технологии. HTTP в настоящее время используется во всемирной паутине для получения информации с веб-сайтов.

· DHCP (Dynamic Host Configuration Protocol - протокол динамической конфигурации узла) - предназначен для автоматического распределения между компьютерами IP-адресов и конфигурационных параметров, необходимых для работы в сети TCP/IP.

· SNMP (Simple Network Management Protocol - протокол простого управления сетями) - предназначен для управления и контроля за сетевыми устройствами и приложениями в сети передачи данных путём обмена управляющей информацией.

· DNS (Domain Name System - система доменных имён) - компьютерная распределённая иерархическая система для получения информации о доменах, чаще всего для получения IP-адреса по символьному имени хоста.

· SIP (Session Initiation Protocol) - протокол установления сеанса, предназначенный для установления и завершения пользовательского интернет-сеанса, включающего обмен мультимедийным содержимым.

· SMTP (Simple Mail Transfer Protocol) - простой протокол передачи почты, предназначенный для передачи электронной почты в сетях TCP/IP.

· POP3 (Post Office Protocol Version 3) - протокол почтового отделения версии 3. Обычно используется почтовым клиентом в паре с SMTP для получения сообщений электронной почты с сервера.

· IMAP (Internet Message Access protocol) - протокол доступа к электронной почте Интернета.

· TELNET (TELetype NETwork) - виртуальный текстовый терминал, предназначенный для реализации текстового интерфейса в сети с использованием транспортного протокола TCP.

· PPTP (Point-to-Point tunneling protocol) - туннельный протокол типа точка-точка, позволяющий компьютеру устанавливать защищённое соединение с сервером за счёт создания специального туннеля в незащищённой сети.

Транспортный уровень

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP, и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами.

Протоколы транспортного уровня (Transport Layer) обеспечивают надежную передачу данных для протоколов более высоких уровней или для приложений. При этом можно выбирать уровень надежности, то есть сложности процедур, который бы обеспечил более высокому уровню достаточный уровень сервиса. К примеру, в качестве приоритетных задач можно выбрать обнаружение и исправление ошибок, или высокую срочность доставки, или восстановление аварийно прерванной связи.

Тип сервиса протокола транспортного уровня для различных сетей может быть разным. Локальная сеть, чьи линии связи надежны, может обойтись методами восстановления потерянных данных более низких уровней, не тратя вычислительные ресурсы на реализацию сложных методов коррекции ошибок на транспортном уровне. С другой стороны, какая-нибудь медленная и ненадежная линия связи глобальной сети может потребовать пристального наблюдения за ошибками именно со стороны протоколов транспортного уровня.

Протоколы транспортного уровня:

· TCP (Transmission Control Protocol) - протокол управления передачей данных с установлением соединения, реализующий обмен данных между двумя узлами на основе некоторого соглашения об управлении потоком данных.

· UDP (User Datagram Protocol) - дейтаграммный протокол передачи данных в виде независимых единиц - дейтаграмм (datagram).

· RTP (Real-time transport Protocol) - предназначен для передачи трафика в реальном времени.

· На четвёртом уровне (Application - прикладной) находятся прикладные задачи, запрашивающие сервис у транспортного уровня.

Сетевой уровень

Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п.

В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом, то есть он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом - источником пакета. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Сетевой уровень, или Network Layer, расположен над канальным уровнем и служит для построения единой транспортной системы, основой которой могут стать сети, использующие различные принципы передачи данных.

Сеть, в терминах сетевого уровня модели OSI - это совокупность компьютеров, объединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенного для этой топологии.

Сетевой уровень заведует доставкой данных между сетями. Ему нет дела до подробностей передачи данных на канальном уровне: ведь протоколы сетевого уровня оперируют адресами, отличными от тех, которые используются протоколами канального уровня. Одним из самых характерных устройств сетевого уровня является маршрутизатор. Руководствуясь адресами этого уровня, он осуществляет маршрутизацию трафика и выбирает самые рациональные пути его прохождения.

Если канальный уровень оперирует кадрами (frame), то сетевой имеет дело с пакетами (packet). Примером протокола сетевого уровня является IP, входящий в стек TCP/IP. К сетевому уровню относится также протокол IPX стека IPX/SPX. Это так называемые маршрутизируемые протоколы (Routed Protocols) - протоколы, которые занимаются доставкой информации в сети. К этому же уровню относятся специфические протоколы, с помощью которых маршрутизаторы управляют трафиком. Эти так называемые протоколы маршрутизации (Routing Protocols) служат для сбора и анализа информации о топологии сети. Они, не перенося по сети данные, которые могут быть полезны пользователю, тем не менее, играют важную роль.

Протоколы сетевого уровня:

· SLIP (Serial Line IP) - первый стандарт канального уровня для выделенных линий. Разработан специально для стека протоколов TCP/IP, который благодаря простоте может использоваться как для коммутируемых, так и для выделенных каналов. SLIP поддерживается только протоколом сетевого уровня IP. Позволяет организовать межсетевое взаимодействие, используя различные физические и канальные протоколы обмена данными.

· HDLC (High-level Data Link Control Procedure) - высокоуровневый протокол управления каналом - стандарт ISO для выделенных линий, представляющий собой семейство протоколов LAP (Link Access Protocol), HDLC относится к бит-ориентированным протоколам.

· PPP (Point-to-Point Protocol) - протокол двухточечного соединения, пришедший на смену протоколу SLIP и построенный на основе формата кадров протоколов семейства HDLC с дополнением собственных полей. PPP является стандартным протоколом интернета и так же, как протокол HDLC, представляет собой семейство протоколов. Назначение - управление передачей данных по выделенным или коммутируемым линиям связи, обеспечивается двунаправленная одновременная передача данных.

Канальный уровень

стек пропускной сетевой управление

Канальный уровень, он же Data Link Layer, - это уровень более «интеллектуальный», чем физический. Канальный уровень оперирует самими данными. Он разбивает поток данных, поступающих с высшего уровня, на куски, которые называются кадрами (frame). Каждый кадр оформляется особым образом. При этом помимо полезных данных передаются контрольные данные, в кадр включаются адреса принимающего и передающего оборудования и так далее. Если получатель получит поврежденный кадр (целостность кадров проверяется путем подсчета контрольной суммы), канальный уровень повторит передачу.

Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции пакетов IP в ее кадры.

Протоколы канального уровня, в случае с использованием разделяемой среды передачи данных, следят за тем, чтобы линия передачи была свободна в момент передачи. Примером протокола канального уровня можно привести протокол Ethernet. На канальном уровне работают, например, мосты, коммутаторы, сетевые адаптеры. Каждое сетевое устройство, так или иначе, работает на всех уровнях OSI, на канальном уровне устройства, наиболее функциональны. Протокол канального уровня - это весьма интеллектуальная система, которая способна эффективно заниматься доставкой сообщений между двумя компьютерами (или между двумя другими устройствами). Технология Ethernet реализует метод множественного доступа с контролем несущей и обнаружением столкновений. Этот метод предполагает, что все устройства взаимодействуют в одной среде. В каждый момент времени передавать может только одно устройство, а все остальные только слушать. Если два или более устройств пытаются передать кадр одновременно, то фиксируется столкновение и каждое устройство возобновляет попытку передачи кадра через случайный промежуток времени. Одним словом, в каждый момент времени в сегменте узла сети находится только один кадр.

Протоколы межсетевого (канального) уровня:

· IP (Internet Protocol) - основной протокол стека TCP/IP, реализующий передачу пакетов по IP-сети от узла к узлу.

Протокол IP:

Не гарантирует: доставку пакетов; целостность пакетов; сохранение порядка потока пакетов.

Не различает логические объекты (процессы), порождающие поток данных.

Эти задачи решают протоколы транспортного уровня TCP и UDP, реализующие различные режимы доставки данных. В отличие от IP протоколы транспортного уровня различают приложения и передают данные от приложения к приложению.

· ICMP (Internet Control Message Protocol) - межсетевой протокол управляющих сообщений, используемый в основном для передачи сообщений об ошибках и исключительных ситуациях, возникших при передаче данных, а также выполняющие некоторые сервисные функции. ICMP является неотъемлемой частью IP, но при этом не делает протокол IP средством надёжной доставки сообщений. Для этих целей существует протокол TCP.

· IGMP (Internet Group Management Protocol) - протокол управления группами Интернета, предназначенный для управления групповой (multicast) передачей данных в IP сетях версии 4. IGMP используется маршрутизаторами и IP-узлами для организации групп сетевых устройств, а также для поддержки потокового видео и онлайн-игр, обеспечивая эффективное использование сетевых ресурсов.

· ADP (Address Resolution Protocol - протокол разрешения адресов) - предназначен для определения физического адреса устройства (MAC-адреса) по его IP-адресу.

· RARP (Reverse Address Resolution Protocol - протокол обратного определения адреса) - предназначен для определения IP-адреса устройства по его физическому адресу (MAC-адресу).

· RIP (Routing Information Protocol) - протокол маршрутизации типа DVA, реализующий алгоритм обмена информацией о доступных сетях и расстояниях до них путём периодической рассылки широковещательных пакетов.

· OSPF (Open Shortest Path First) - протокол маршрутизации типа LSA, реализующий алгоритм обмена информацией о состоянии каналов, путём периодического тестирования состояния каналов с соседними маршрутизаторами. Протокол OSPF разработанный для применения в сети Интернет и используется в других больших сетях (DECNet, NetWare, SNA, XNS).

Заключение

Стек проколов TCP/IP является наиболее завершенным, стандартным и в то же время популярным стеком сетевых протоколов, имеющим многолетнюю историю. Почти все большие сети передают основную часть своего трафика с помощью протокола TCP/IP. Это метод получения доступа к сети Internet. Этот стек служит основой для создания intranet- корпоративной сети, использующей транспортные услуги Internet и гипертекстовую технологию WWW, разработанную в Internet. Все современные операционные системы поддерживают стек TCP/IP. Это гибкая технология для соединения разнородных систем как на уровне транспортных подсистем, так и на уровне прикладных сервисов. Это устойчивая масштабируемая межплатформенная среда для приложений клиент-сервер.

Список используемой литературы

1. Компьютерные сети. Принципы, технологии, протоколы / В.Г. Олифер, Н.А. Олифер.-СПб.: Питер, 2002. - 672с.: ил.

2. Администрирование локальных сетей Windows NT/2000/.NET: Учебное пособие. Назаров С. В. - 2-е изд., перераб. и доп. - М.: Финансы и статистика, 2003. - 480 с.: ил.

3. Администрирование сети на примерах. Поляк-Брагинский А. В. - СПб.: БХВ-Петербург, 2005. - 320 с.: ил.

4. Аппаратные средства локальных сетей. Энциклопедия / М. Гук, - СПб.: Питер, 2004. - 573 с.: ил.

5. Архитектура компьютерных систем и сетей: Учеб. пособие / Т.П. Барановская, В.И. Лойко и др.; под ред. В.И. Лойко. - М.: Финансы и статистика, 2003. - 256 с.: ил.

6. «TCP/IP Архитектура, протоколы, реализация», Фейт С., Лори, 2000г. (http://citforum.ru/book/tcpip/tcpip_vv.shtml)

7. «Принципы маршрутизации в Internet. Второе издание», Сэм Хелеби, 2001 г.,Вильямс, (http://citforum.ru/book/prmarshin/prmarshin_str.shtml)

9. https://ru.wikipedia.org/wiki/TCP/IP#cite_ref-1

10. http://www.servicecall.ru/training/course/course3/lesson39/

11. http://citforum.ru/nets/ip/glava_2.shtml

12. http://bibliofond.ru/view.aspx?id=66415#1

Подобные документы

    Создание сетевой игры "Кости". Протоколы, используемые в сетевой игре: IPX предоставляет возможность программам обмениваться пакетами данных без подтверждения; протоколы SPX и NETBIOS сделаны на базе IPX и поэтому требуют дополнительных ресурсов.

    курсовая работа , добавлен 27.05.2008

    Алгоритмы сети Ethernet/Fast Ethernet: метод управления обменом доступа; вычисления циклической контрольной суммы (помехоустойчивого циклического кода) пакета. Транспортный протокол сетевого уровня, ориентированный на поток. Протокол управления передачей.

    контрольная работа , добавлен 14.01.2013

    Приложение, работающее с Интернет, общается с одним из протоколов. Транспортный уровень. Порт. Протоколы транспортного уровня TCP/IP, управления TCP, пользовательских датаграмм UDP, их использование. Обеспечение надежности передачи информации. Флаги.

    реферат , добавлен 02.06.2008

    Характеристика устройства глобальных сетей с коммутацией каналов. Описание принципа архитектуры "клиент-сервер". Ознакомление со структурой стека TCP\IP. Изучение технологии многопротокольной коммутации по меткам. Функции сетевых команд Windows XP.

    реферат , добавлен 01.02.2011

    Особенности профиля Smart Energy стека протоколов ZigBee. Обзор современных IPS дисплеев. Технология разработки программного обеспечения системы. Создание функциональной и электрической принципиальной схем устройства, описание микроконтроллера и блоков.

    дипломная работа , добавлен 10.01.2013

    Расчет пропускной способности каналов и нагрузки распределенного абонентского коммутатора сетевого оборудования NGN. Характеристики абонентских концентраторов и транспортных шлюзов мультисервисной пакетной сети. Капитальные затраты на модернизацию сети.

    дипломная работа , добавлен 02.12.2013

    Теоретические основы организации локальных компьютерных сетей: определение ЛС, топология, используемые протоколы обмена данными для связи рабочих станций и ЭВМ; программные средства. Сетевое окружение; идентификация компьютера с помощью IP-адреса.

    курсовая работа , добавлен 15.05.2014

    Свойства и характеристики оптических волокон, способы увеличения их пропускной способности. Применение компенсаторов дисперсии и мультиплексирования. Разработка учебно-методических материалов по пропускной способности современных оптических волокон.

    дипломная работа , добавлен 21.09.2012

    Аналитический обзор существующих локально-вычислительных сетей. Определение информационных потоков. Расчет пропускной способности. Разработка структурной схемы сети. Выбор сетевого оборудования. Коммутаторы рабочих групп, этажей. Маршрутизаторы, кабеля.

    дипломная работа , добавлен 20.03.2017

    Характеристика Оренбургского государственного университета, цели и задачи деятельности. Сущность сетевого мониторинга и особенности его осуществления. Описание разрабатываемой методики анализа сетевого трафика, обзор инструментов его проведения.

В современном мире информация распространяется за считанные секунды. Вот только что появилась новость, а через секунду она уже доступна на каком-либо сайте в сети интернет. Интернет считается одной из самых полезных разработок человеческого разума. Чтобы пользоваться всеми благами, которые предоставляет интернет, необходимо подключиться к этой сети.

Мало кто знает, что простой процесс посещения веб-страничек подразумевает незаметную для пользователя, сложную систему действий. Каждый переход по ссылке активирует сотни различных вычислительных операций в сердце компьютера. В их числе передачи запросов, прием ответов и многое другое. За каждое действие в сети отвечают так называемые протоколы TCP/IP. Что они собой представляют?

Любой протокол интернета TCP/IP работает на своем уровне. Иными словами, каждый занимается своим делом. Все семейство TCP/IP протоколов одновременно выполняет колоссальную работу. А пользователь в это время видит только яркие картинки и длинные строки текста.

Понятие стека протоколов

Стек протоколов TCP/IP - это организованный набор основных сетевых протоколов, который иерархическим способом разделен на четыре уровня и представляет собой систему транспортного распределения пакетов по компьютерной сети.

TCP/IP - это наиболее известный стек сетевых протоколов, который используется на данный момент. Принципы стека TCP/IP применяются как в локальных, так и в глобальных сетях.

Принципы использования адресов в стеке протоколов

Стек сетевых протоколов TCP/IP описывает пути и направления отправки пакетов. Это основная задача всего стека, выполняющаяся на четырех уровнях, которые взаимодействуют между собой протоколированным алгоритмом. Для правильной отправки пакета и его доставки ровно в ту точку, которая его запросила, была введена и стандартизирована адресация IP. Этому послужило наличие следующих задач:

  • Адреса различного типа, должны быть согласованы. Например преобразование домена сайта в IP адрес сервера и обратно, или преобразование имени узла в адрес и обратно. Таки образом становится возможен доступ к точке не только с помощью IP адреса, но и по интуитивному названию.
  • Адреса должны быть уникальны. Это вызвано тем, что в некоторых частных случаях пакет должен попасть только в одну конкретную точку.
  • Необходимость конфигурирования локальных вычислительных сетей.

В малых сетях, где используется несколько десятков узлов, все эти задачи выполняются элементарно, с помощью простейших решений: составление таблицы с описанием принадлежности машины и соответствующего ей IP адреса, или можно вручную раздать всем сетевым адаптерам IP адреса. Однако для крупных сетей на тысячу или две тысячи машин задача ручной выдачи адресов не кажется такой выполнимой.

Именно поэтому для сетей TCP/IP был изобретен специальный подход, который и стал отличительной чертой стека протоколов. Было введено понятие - масштабируемость.

Уровни стека протоколов TCP/IP

Здесь существует определенная иерархия. Стек протоколов TCP/IP предусматривает четыре уровня, каждый из которых обрабатывает свой набор протоколов:

Прикладной уровень : создан для обеспечения работы пользователя с сетью На этом уровне обрабатывается все то, что видит и делает пользователь. Уровень позволяет пользователю получить доступ к различным сетевым службам, например: доступ к базам данных, возможность прочитать список файлов и открыть их, отправить электронное сообщение или открыть веб-страницу. Вместе с пользовательскими данными и действиям, на этом уровне передается служебная информация.

Транспортный уровень: это механизм передачи пакетов в чистом виде. На этом уровне совершенно не имеет значения ни содержимое пакета, ни его принадлежность к какому бы то ни было действию. На этом уровне имеет значение только адрес узла отправки пакета и адрес узла, на который пакет должен быть доставлен. Как правило, размер фрагментов, передаваемых с использованием разных протоколов, может изменяться, потому на этом уровне блоки информации могут дробиться на выходе и собираться в единое целое в точке назначения. Этим обусловлена возможная потеря данных, если в момент передачи очередного фрагмента произойдет кратковременный разрыв соединения.

Транспортный уровень включает в себя много протоколов, которые делятся на классы, от простейших, которые просто передают данные, до сложных, которые оснащены функционалом подтверждения приема, или повторного запроса недополученного блока данных.

Данный уровень, предоставляет вышестоящему (прикладному) два типа сервиса:

  • Осуществляет гарантированную доставку, с помощью протокола ТСР.
  • Осуществляет доставку по возможности по протоколу UDP.

Чтобы обеспечить гарантированную доставку, согласно протоколу TCP устанавливается соединение, которое позволяет выставлять на пакетах нумерацию на выходе и подтверждать их прием на входе. Нумерация пакетов и подтверждение приема - это так называемая служебная информация. Этот протокол поддерживает передачу в режиме "Дуплекс". Кроме того, благодаря продуманному регламенту протокола, он считается очень надежным.

Протокол UDP предназначен для моментов, когда невозможно настроить передачу по протоколу TCP, либо приходится экономить на сегменте сетевой передачи данных. Также протокол UDP может взаимодействовать с протоколами более высокого уровня, для повышения надежности передачи пакетов.

Сетевой уровень или "уровень интернета": базовый уровень для всей модели TCP/IP. Основной функционал этого уровня идентичен одноименному уровню модели OSI и описывает перемещение пакетов в составной сети, состоящей из нескольких, более мелких подсетей. Он связывает соседние уровни протокола TCP/IP.

Сетевой уровень является связующим между вышестоящим транспортным уровнем и нижестоящим уровнем сетевых интерфейсов. Сетевой уровень использует протоколы, которые получают запрос от транспортного уровня, и посредством регламентированной адресации передают обработанный запрос на протокол сетевых интерфейсов, указывая, по какому адресу направить данные.

На этом уровне используются следующие сетевые протоколы TCP/IP: ICMP, IP, RIP, OSPF. Основным, и наиболее популярным на сетевом уровне, конечно же является протокол IP (Internet Protocol). Основной его задачей является передача пакетов от одного роутера к другому до тех пор, пока единица данных не попадет на сетевой интерфейс узла назначения. Протокол IP разворачивается не только на хостах, но и на сетевом оборудовании: маршрутизаторах и управляемых коммутаторах. Протокол IP работает по принципу негарантированной доставки с максимальными усилиями. Т. е., для отправки пакета нет необходимости заранее устанавливать соединение. Такой вариант приводит к экономии трафика и времени на движении лишних служебных пакетов. Пакет направляется в сторону назначения, и вполне возможно, что узел останется недоступным. В таком случае возвращается сообщение об ошибке.

Уровень сетевых интерфейсов: отвечает за то, чтобы подсети с разными технологиями могли взаимодействовать друг с другом и передавать информацию в том же режиме. Реализовано это двумя простыми шагами:

  • Кодирование пакета в единицу данных промежуточной сети.
  • Преобразование информации о месте назначения в стандарты необходимой подсети и отправка единицы данных.

Этот подход позволяет постоянно расширять количество поддерживаемых технологий построения сетей. Как только появляется новая технология, она сразу попадает в стек проколов TCP/IP и позволяет сетям со старыми технологиями передавать данные в сети, построенные с применением более современных стандартов и способов.

Единицы передаваемых данных

За время существования такого явления, как протоколы TCP/IP, установились стандартные термины по части единиц передаваемых данных. Данные при передаче могут дробиться по-разному, в зависимости от технологий, используемых сетью назначения.

Чтобы иметь представление о том, что и в какой момент времени происходит с данными, нужно было придумать следующую терминологию:

  • Поток данных - данные, которые поступают на транспортный уровень от протоколов вышестоящего прикладного уровня.
  • Сегмент - фрагмент данных, на которые дробится поток по стандартам протокола TCP.
  • Датаграмма (особо безграмотные произносят как "Дейтаграмма") - единицы данных, которые получаются путем дробления потока с помощью протоколов, работающих без установления соединения (UDP).
  • Пакет - единица данных, производимая посредством протокола IP.
  • Протоколы TCP/IP упаковывают IP-пакеты в передаваемые по составным сетям блоки данных, которые называются кадрами или фреймами .

Типы адресов стека протоколов TCP/IP

Любой протокол передачи данных TCP/IP для идентификации узлов использует один из следующих типов адресов:

  • Локальные (аппаратные) адреса.
  • Сетевые адреса (IP адреса).
  • Доменные имена.

Локальные адреса (MAC-адреса) - используются в большинстве технологий локальных вычислительных сетей, для идентификации сетевых интерфейсов. Под словом локальный, говоря о TCP/IP, следует понимать интерфейс, который действует не в составной сети, а в пределах отдельно взятой подсети. Например, подсеть интерфейса, подключенного к интернет - будет локальной, а сеть интернет - составной. Локальная сеть может быть построена на любой технологии, и независимо от этого, с точки зрения составной сети машина, находящаяся в отдельно выделенной подсети, будет называться локальной. Таким образом, когда пакет попадает в локальную сеть, дальше его IP адрес ассоциируется с локальным адресом, и пакет направляется уже на MAC-адрес сетевого интерфейса.

Сетевые адреса (IP-адреса). В технологии TCP/IP предусмотрена собственная глобальная адресация узлов, для решения простой задачи - объединения сетей с разной технологией в одну большую структуру передачи данных. IP-адресация совершенно не зависит от технологии, которая используется в локальной сети, однако IP адрес позволяет сетевому интерфейсу представлять машину в составной сети.

В итоге была разработана система, при которой узлам назначается IP адрес и маска подсети. Маска подсети показывает, какое количество бит отводится под номер сети, а какое количество под номер узла. IP адрес состоит из 32 бит, разделенных на блоки по 8 бит.

При передаче пакета ему назначается информация о номере сети и номере узла, в который пакет должен быть направлен. Сначала маршрутизатор направляет пакет в нужную подсеть, а потом выбирается узел, который его ждет. Этот процесс осуществляется протоколом разрешения адресов (ARP).

Доменные адреса в сетях TCP/IP управляются специально разработанной системой доменных имен (DNS). Для этого существуют серверы, которые сопоставляют доменное имя, представленное в виде строки текста, с IP адресом, и отправляет пакет уже в соответствии с глобальной адресацией. Между именем компьютера и IP адресом не предусмотрено соответствий, поэтому, чтобы преобразовать доменное имя в IP адрес, передающему устройству необходимо обратиться к таблице маршрутизации, которая создается на DNS сервере. Например, мы пишем в браузере адрес сайта, DNS сервер сопоставляет его с IP адресом сервера, на котором сайт расположен, и браузер считывает информацию, получая ответ.

Кроме сети интернет, есть возможность выдавать компьютерам доменные имена. Таким образом, упрощается процесс работы в локальной сети. Пропадает необходимость запоминать все IP-адреса. Вместо них можно придумать каждому компьютеру любое имя и использовать его.

IP-адрес. Формат. Составляющие. Маска подсети

IP адрес - 32-битное число, которое в традиционном представлении записывается в виде чисел, от 1 до 255, разделенных между собой точками.

Вид IP адреса в различных форматах записи:

  • Десятичный вид IP адреса: 192.168.0.10.
  • Двоичный вид того же IP адреса: 11000000.10101000.00000000.00001010.
  • Запись адреса в шестнадцатеричной системе счисления: C0.A8.00.0A.

Между ID сети и номером точки в записи нет разделительного знака, но компьютер способен их разделять. Для этого существует три способа:

  1. Фиксированная граница. При этом способе весь адрес условно делится на две части фиксированной длины побайтно. Таким образом, если под номер сети отдать один байт, тогда мы получим 2 8 сетей по 2 24 узлов. Если границу сдвинуть еще на байт вправо, тогда сетей станет больше - 2 16 , а узлов станет меньше - 2 16 . На сегодняшний день подход считается устаревшим и не используется.
  2. Маска подсети. Маска идет в паре с IP адресом. Маска имеет последовательность значений "1" в тех разрядах, которые отведены под номер сети, и определенное количество нулей в тех местах IP адреса, которые отведены на номер узла. Граница между единицами и нулями в маске - это граница между идентификатором сети и ID узла в IP-адресе.
  3. Метод классов адресов. Компромиссный метод. При его использовании размеры сетей не могут быть выбраны пользователем, однако есть пять классов - А, В, С, D, Е. Три класса - А, В и С - предназначены для различных сетей, а D и Е - зарезервированы для сетей специального назначения. В классовой системе каждый класс имеет свою границу номера сети и ID узла.

Классы IP адресов

К классу А относятся сети, в которых сеть идентифицируется по первому байту, а три оставшихся являются номером узла. Все IP адреса, которые имеют в своем диапазоне значение первого байта от 1 до 126 - это сети класса А. Количественно сетей класса А получается совсем мало, зато в каждой из них может быть до 2 24 точек.

Класс В - сети, в которых два высших бита равны 10. В них под номер сети и идентификатор точки отводится по 16 бит. В результате получается, что количество сетей класса В в большую сторону отличается от количества сетей класса А количественно, но они имеют меньшее количество узлов - до 65 536 (2 16) шт.

В сетях класса С - совсем мало узлов - 2 8 в каждой, но количество сетей огромно, благодаря тому, что идентификатор сети в таких структурах занимает целых три байта.

Сети класса D - уже относятся к особым сетям. Он начинается с последовательности 1110 и называется групповым адресом (Multicast adress). Интерфейсы, имеющие адреса класса А, В и С, могут входить в группу и получать вдобавок к индивидуальному еще и групповой адрес.

Адреса класса Е - в резерве на будущее. Такие адреса начинаются с последовательности 11110. Скорее всего, эти адреса будут применяться в качестве групповых, когда наступит нехватка IP адресов в глобальной сети.

Настройка протокола TCP/IP

Настройка протокола TCP/IP доступна на всех операционных системах. Это - Linux, CentOS, Mac OS X, Free BSD, Windows 7. Протокол TCP/IP требует только наличия сетевого адаптера. Разумеется, серверные операционные системы способны на большее. Очень широко, с помощью серверных служб, настраивается протокол TCP/IP. IP адреса в в обычных настольных компьютерах задаются в настройках сетевых подключений. Там настраивается сетевой адрес, шлюз - IP адрес точки, имеющий выход в глобальную сеть, и адреса точек, на которых располагается DNS сервер.

Протокол интернета TCP/IP может настраиваться в ручном режиме. Хотя не всегда в этом есть необходимость. Можно получать параметры протокола TCP/IP с динамически-раздающего адреса сервера в автоматическом режиме. Такой способ используют в больших корпоративных сетях. На DHCP сервер можно сопоставить локальный адрес к сетевому, и как только в сети появится машина с заданным IP адресом, сервер сразу даст ему заранее подготовленный IP адрес. Этот процесс называется резервирование.

TCP/IP Протокол разрешения адресов

Единственный способ установить связь между MAC-адресом и IP адресом - ведение таблицы. При наличии таблицы маршрутизации каждый сетевой интерфейс осведомлен о своих адресах (локальном и сетевом), однако встает вопрос, как правильно организовать обмен пакетами между узлами, применяя протокол TCP/IP 4.

Для чего был придуман протокол разрешения адресов (ARP)? Для того, чтобы связывать семейство TCP/IP протоколов и других систем адресации. На каждом узле создается таблица соответствия ARP, которая заполняется путем опроса всей сети. Происходит это после каждого выключения компьютера.

ARP таблица

Так выглядит пример составленной ARP таблицы.

Лекция 3. Стек TCP/IP. Базовые протоколы TCP/IP

Протокол TCP/IP является базовым транспортным сетевым прото- колом. Термин "TCP/IP" обычно обозначает все, что связано с протоколами TCP и IP. Он охватывает целое семейство протоколов, прикладные программы и даже саму сеть. В состав семейства входят протоколы UDP, ARP, ICMP, TELNET, FTP и многие другие.

Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети, могут обмениваться пакетами.

Стек протоколов TCP/IP имеет четыре уровня (рисунок 3.1).

Рисунок 3.1 – Стек TCP/IP

Уровень IV соответствует уровню доступа к сети, который работает на основе стандартных протоколах физического и канального уровня, таких, как Ethernet, Token Ring, SLIP, PPP и других. Протоколы этого уровня отвечают за пакетную передачу данных в сети на уровне аппаратных средств.

Уровень III обеспечивает межсетевое взаимодействие при передаче пакетов данных из одной подсети в другую. При этом работает протокол IP.

Уровень II является основным и работает на базе протокола управления передачей TCP. Этот протокол необходим для надежной передачи сообщений между размещенными на разных машинах прикладными программами за счет образования виртуальных соединений между ними.

Уровень I – прикладной. Стек TCP/IP существует давно и он включает в себя большое количество протоколов и сервисов прикладного уровня (протокол передачи файлов FTP, протокол Telnet, протокол Gopher для доступа к ресурсам всемирного пространства GopherSpace, самый известный протокол HTTP для доступа к удаленным гипертекстовым базам данных во всемирный паутине и др.).

Все протоколы стека можно разделить на две группы: протоколы передачи данных, передающие полезные данные между двумя сторонами; служебные протоколы, необходимые для корректной работы сети.

Служебные протоколы обязательно используют какой-либо протокол передачи данных. Например, служебный протокол ICMP использует протокол IP. Интернет – совокупность всех связных компьютерных сетей, использующих протоколы стека TCP/IP.

Функции транспортного уровня. Протоколы TCP, UDP.

Четвертый уровень модели, предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом неважно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Транспортным уровнем предоставляются следующие виды услуг:

– установление транспортного соединения;

– передача данных;

– разрыв транспортного соединения.

Функции, выполняемые транспортным уровнем:

– преобразование транспортного адреса в сетевой;

– мультиплексирование транспортных соединений в сетевые;

– установление и разрыв транспортных соединений;

– упорядочивание блоков данных по отдельным соединениям;

– обнаружение ошибок и необходимый контроль за качеством услуг;

– восстановление после ошибок;

– сегментирование, объединение и сцепление;

– управление потоком данных по отдельным соединениям;

– супервизорные функции;

– передача срочных транспортных блоков данных.

Протокол управления передачей TCP предоставляет надежную службу доставки пакетов, ориентированную на установление соединения.

Протокол TCP:

– гарантирует доставку IP-датаграмм;

– выполняет разбиение на сегменты и сборку больших блоков данных, отправляемых программами;

– обеспечивает доставку сегментов данных в нужном порядке;

– выполняет проверку целостности переданных данных с помощью контрольной суммы;

– посылает положительные подтверждения, если данные получены успешно. Используя избирательные подтверждения, можно также посылать отрицательные подтверждения для данных, которые не были получены;

– предлагает предпочтительный транспорт для программ, которым требуется надежная передача данных с установлением сеанса связи, например для баз данных «клиент-сервер» и программ электронной почты.

TCP основан на связи «точка – точка» между двумя узлами сети. TCP получает данные от программ и обрабатывает их как поток байтов. Байты группируются в сегменты, которым TCP присваивает последовательные номера, необходимые для правильной сборки сегментов на узле-приемнике.

Чтобы два узла TCP могли обмениваться данными, им нужно сначала установить сеанс связи друг с другом. Сеанс TCP инициализируется с помощью процесса, называемого трехэтапным установлением связи, котором синхронизируются номера последовательности и передается управляющая информация, необходимая для установления виртуального соединения между узлами. По завершении этого процесса установления связи начинается пересылка и подтверждение пакетов в последовательном порядке между этими узлами. Аналогичный процесс используется TCP перед прекращением соединения для того, чтобы убедиться, что оба узла закончили передачу и прием данных (рисунок 3.2).


Рисунок 3.2 – Формат заголовка сегмента TCP

Поля порт источника и порт получателя занимают по 2 байта и идентифицируют процесс-отправитель процесс-получатель. Поля порядковый номер и номер подтверждения (длины по 4 байта) нумеруют каждый отправленный или полученный байт данных. Реализуются как целые числа без знака, которые сбрасываются, когда достигают максимального значения. Каждая сторона ведет собственную порядковую нумерацию. Поле длина заголовка занимает 4 бита и представляет собой длину заголовка TCP-сегмента, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле параметры. Поле резерв занимает 6 бит. Поле флаги занимает 6 бит и содержит шесть 1-битовых флагов:

– флаг URG (Urgent Pointer – указатель точности) устанавливается в 1 в случае использования поля указатель на срочные данные;

– флаг ACK (Acknowledgment – подтверждение) устанавливается в 1 в случае, если поле номер подтверждения содержит данные. В противном случае это поле игнорируется;



– флаг PSH (Push – выталкивание) означает, что принимающий стек TCP должен немедленно информировать приложение о поступивших данных, а не ждать пока буфер заполнится;

– флаг RST (Reset – сброс) используется для отмены соединения: из-за ошибки приложения, отказа от неверного сегмента, попытки создать соединение при отсутствии затребованного сервиса;

– флаг SYN (Synchronize – синхронизация) устанавливается при инициировании соединения и синхронизации порядкового номера;

– флаг FIN (Finished – завершение) используется для разрыва соединения. Он указывает, что отправитель закончил передачу данных.

Поле размер окна (длина 2 байта) содержит количество байт, которое может быть послано после байта, получение которого уже подтверждено. Поле контрольная сумма (длина 2 байта) служит для повышения надежности. Оно содержит контрольную сумму заголовка, данных и псевдозаголовка. При выполнении вычислений поле контрольная сумма устанавливается равным нулю, а поле данных дополняется нулевым байтом, если его длина представляет собой нечетное число. Алгоритм вычисления контрольной суммы просто складывает все 16-разрядные слова в дополнительном коде, а затем вычисляет дополнение для всей суммы.

Протокол UDP, являясь дейтаграммным протоколом, реализует сервис по возможности, то есть не гарантирует доставку своих сообщений, а, следовательно, никоим образом не компенсирует ненадежность дейтаграммного протокола IP. Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой. Каждая дейтаграмма переносит отдельное пользовательское сообщение. Это приводит к ограничению: длина дейтаграммы UDP не может превышать длины поля данных протокола IP, которое, в свою очередь, ограничено размером кадра технологии нижнего уровня. Поэтому если UDP-буфер переполняется, то данные приложения отбрасываются. Заголовок UDP-пакета, состоящий из четырех 2-байтовых полей, содержит поля порт источника, порт получателя, длина UDP и контрольная сумма (рисунок 3.3).

Поля порт источника и порт получателя идентифицируют передающий и получающий процессы. Поле длина UDP содержит длину пакета UDP в байтах. Поле контрольная сумма содержит контрольную сумму пакета UDP, вычисляемую по всему пакету UDP с добавленным псевдозаголовком.

Рисунок 3.3 – Формат заголовка пакета UDP

Основная литература: 2

Дополнительная литература: 7

Контрольные вопросы:

1. Каким протоколом в OSI является TCP/IP?

2. Для чего предназначена архитектура протоколов TCP/IP?

3. Какие уровни имеет стек TCP/IP?

4. Какие функции выполняет протокол управления передачей TCP?

5. Какие отличия существуют между протоколами TCP и UDP?