Решение лп симплекс методом онлайн. Симплекс-метод решения злп

Симплекс-метод - это итеративный процесс направленного решения системы уравнений по шагам, который начинается с опорного решения и в поисках лучшего варианта движется по угловым точкам области допустимого решения, улучшающих значение целевой функции до тех пор, пока целевая функция не достигнет оптимального значения.

Назначение сервиса . Сервис предназначен для онлайн решения задач линейного программирования (ЗЛП) симплекс-методом в следующих формах записи:

  • в виде симплексной таблицы (метод жордановых преобразований); базовой форме записи;
  • модифицированным симплекс-методом ; в столбцовой форме; в строчечной форме.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word и Excel .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 1 2 3 4 5 6 7 8 9 10
При этом ограничения типа x i ≥ 0 не учитывайте. Если в задании для некоторых x i отсутствуют ограничения, то ЗЛП необходимо привести к КЗЛП, или воспользоваться этим сервисом . При решении автоматически определяется использование М-метода (симплекс-метод с искусственным базисом) и двухэтапного симплекс-метода .

Вместе с этим калькулятором также используют следующие:
Графический метод решения ЗЛП
Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных
Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях) Доход G(X)
1 2 3
0 0 0 0
1 28 30 32
2 41 42 45
3 50 55 48
4 62 64 60
5 76 76 72

Алгоритм симплекс-метода включает следующие этапы:

  1. Составление первого опорного плана . Переход к канонической форме задачи линейного программирования путем введения неотрицательных дополнительных балансовых переменных.
  2. Проверка плана на оптимальность . Если найдется хотя бы один коэффициент индексной строки меньше нуля, то план не оптимальный, и его необходимо улучшить.
  3. Определение ведущих столбца и строки . Из отрицательных коэффициентов индексной строки выбирается наибольший по абсолютной величине. Затем элементы столбца свободных членов симплексной таблицы делит на элементы того же знака ведущего столбца.
  4. Построение нового опорного плана . Переход к новому плану осуществляется в результате пересчета симплексной таблицы методом Жордана-Гаусса .

Если необходимо найти экстремум целевой функции, то речь идет о поиске минимального значения (F(x) → min , см. пример решения минимизации функции) и максимального значения ((F(x) → max , см. пример решения максимизации функции)

Экстремальное решение достигается на границе области допустимых решений в одной из вершин угловых точек многоугольника, либо на отрезке между двумя соседними угловыми точками.

Основная теорема линейного программирования . Если целевая функция ЗЛП достигает экстремального значения в некоторой точке области допустимых решений, то она принимает это значение в угловой точке. Если целевая функция ЗЛП достигает экстремального значения более чем в одной угловой точке, то она принимает это же значение в любой из выпуклой линейной комбинации этих точек.

Суть симплекс-метода . Движение к точке оптимума осуществляется путем перехода от одной угловой точки к соседней, которая ближе и быстрее приближает к X опт. Такую схему перебора точек, называемую симплекс-метод , предложил Р. Данцигом.
Угловые точки характеризуются m базисными переменными, поэтому переход от одной угловой точки к соседней возможно осуществить сменой в базисе только одной базисной переменной на переменную из небазиса.
Реализация симплекс-метода в силу различных особенностей и постановок задач ЛП имеет различные модификации .

Построение симплекс-таблиц продолжается до тех пор, пока не будет получено оптимальное решение. Как с помощью симплекс-таблицы определить, что решение задачи линейного программирования является оптимальным?
Если последняя строка (значения целевой функции) не содержит отрицательных элементов, следовательно, найдет оптимальный план.

Замечание 1. Если одна из базисных переменных равна нулю, то крайняя точка, соответствующая такому базисному решению - вырожденная. Вырожденность возникает, когда имеется неоднозначность в выборе направляющей строки. Можно вообще не заметить вырожденности задачи, если выбрать другую строку в качестве направляющей. В случае неоднозначности нужно выбирать строку с наименьшим индексом, чтобы избежать зацикливания.

Замечание 2. Пусть в некоторой крайней точке все симплексные разности неотрицательные D k ³ 0 (k = 1..n+m),т.е. получено оптимальное решение и существует такой А k - небазисный вектор, у которого D k = 0. Тогда максимум достигается по крайней мере в двух точках, т.е. имеет место альтернативный оптимум. Если ввести в базис эту переменную x k , значение целевой функции не изменится.

Замечание 3. Решение двойственной задачи находится в последней симплексной таблице. Последние m компонент вектора симплексных разностей(в столбцах балансовых переменных) - оптимальное решение двойственной задачи. Значение целевых функций прямой и двойственной задачи в оптимальных точках совпадают.

Замечание 4. При решении задачи минимизации в базис вводится вектор с наибольшей положительной симплексной разностью. Далее применяется тот же алгоритм, что и для задачи максимизации.

Если задано условие «Необходимо, чтобы сырье III вида было израсходовано полностью», то соответствующее условие представляет собой равенство.

11.4. ДВОЙСТВЕННЫЙ СИМПЛЕКС-МЕТОД

Из результатов предыдущих пунктов следует, что для получения решения исходной задачи можно перейти к двойственной и, используя оценки ее оптимального плана, определить оптимальное решение исходной задачи.

Переход к двойственной задаче не обязателен, так как если рассмотреть первую симплексную таблицу с единичным дополнительным базисом, то легко заметить, что в столбцах записана исходная задача, а в строках –двойственная.

Как было показано, при решении прямой задачи на любой итерации разность , т.е. величина -коэффициента при переменной , равна разности между правой и левой частями соответствующего ограничения двойственной задачи. Если при решении прямой задачи с максимизируемой целевой функцией итерация не приводит к оптимальному решению, то по крайней мере для одной переменной и только в оптимуме для всех разность .

Рассматривая это условие с учетом двойственности, можно записать

.

Таким образом, если , то . Это означает, что, когда решение прямой задачи неоптимальное, решение двойственной задачи недопустимое. С другой стороны при . Отсюда следует, что оптимальному решению прямой задачи соответствует допустимое решение двойственной задачи.

Это позволило разработать новый метод решения задач линейного программирования, при использовании которого сначала получается недопустимое, но «лучшее, чем оптимальное» решение (в обычном симплекс-методе сначала находится допустимое , но неоптимальное решение). Новый метод, получивший название двойственного симплекс-метода , обеспечивает выполнение условия оптимальности решения и систематическое «приближение» его к области допустимых решений. Когда полученное решение оказывается допустимым, итерационный процесс вычислений заканчивается, так как это решение является и оптимальным.

Двойственный симплекс-метод позволяет решать задачи линейного программирования, системы ограничений которых при положительном базисе содержат свободные члены любого знака. Этот метод позволяет уменьшить количество преобразований системы ограничений, а также размера симплексной таблицы. Рассмотрим применение двойственного симплекс-метода на примере.

Пример . Найти минимум функции

при ограничениях

.

Перейдем к канонической форме:

при ограничениях

Начальная симплекс-таблица имеет вид

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 4

x 5

–3

–4

–1

–3

–3

–6

–2

–1

Начальное базисное решение оптимальное, но не допустимое.

Как и обычный симплексный метод, рассматриваемый метод решения основан на использовании условий допустимости и оптимальности.

Условие допустимости . В качестве исключаемой переменной выбирается наибольшая по абсолютной величине отрицательная базисная переменная (при наличии альтернатив выбор делается произвольно). Если все базисные переменные неотрицательные, процесс вычислений заканчивается, так как полученное решение допустимое и оптимальное.

Условие оптимальности . Включаемая в базис переменная выбирается из числа небазисных переменных следующим образом. Вычисляются отношения коэффициентов левой части -уравнения к соответствующим коэффициентам уравнения, ассоциированного с исключаемой переменной. Отношения с положительным или нулевым значением знаменателя не учитываются. В задаче минимизации вводимой переменной должно соответствовать наименьшее из указанных отношений, а в задаче максимизации – отношение, наименьшее по абсолютной величине (при наличии альтернатив выбор делается произвольно). Если знаменатели всех отношений равны нулю или положительные, задача не имеет допустимых решений.

После выбора включаемой в базис и исключаемой переменных для получения следующего решения осуществляется обычная операция преобразования строк симплекс-таблицы.

В рассматриваемом примере исключаемой переменной является . Отношения, вычисленные для определения новой базисной переменной, приведены в следующей таблице:

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

–2

–4

–1

–3

Отношение

В качестве включаемой переменной выбирается x 2 . Последующее преобразование строк приводит к новой симплекс-таблице:

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 2

x 5

–1

–1

Новое решение также оптимальное, но все еще недопустимое. В качестве новой исключаемой переменной выберем (произвольно) x 3 . Определим включаемую переменную.

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

отношение

Необходимо решить задачу линейного программирования.

Целевая функция:

2x 1 +5x 2 +3x 3 +8x 4 →min

Ограничивающие условия:

3x 1 +6x 2 -4x 3 +x 4 ≤12
4x 1 -13x 2 +10x 3 +5x 4 ≥6
3x 1 +7x 2 +x 3 ≥1

Приведем систему ограничений к каноническому виду, для этого необходимо перейти от неравенств к равенствам, с добавлением дополнительных переменных.

Так как наша задача - задача минимизации, то нам необходимо преобразовать ее к задаче на поиск максимума. Для этого изменим знаки коэффициентов целевой функции на противоположные. Элементы первого неравенства записываем без изменений, добавив в него дополнительную переменную x 5 и изменив знак "≤" на "=". Т. к. второе и третье неравенства имеют знаки "≥" необходимо поменять знаки их коэффициентов на противоположные и внести в них дополнительные переменные x 6 и x 7 соответственно. В результате получем эквивалентную задачу:

3x 1 +6x 2 -4x 3 +x 4 +x 5 =12
-4x 1 +13x 2 -10x 3 -5x 4 +x 6 =-6
-3x 1 -7x 2 -x 3 +x 7 =-1

Переходим к формированию исходной симплекс таблицы. В строку F таблицы заносятся коэффициенты целевой функции с противоположным знаком.

Своб член

F
X5
X6
X7

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю - это элемент: -6, он задает ведущую строку - X6. В этой строке так же находим максимальный по модулю отрицательный элемент: -10 он находится в столбце X3 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:
X1 X2 X6 X4 Своб член
F 0.8 8.9 0.3 6.5 -1.8
X5 4.6 0.8 -0.4 3 14.4
X3 0.4 -1.3 -0.1 0.5 0.6
X7 -2.6 -8.3 -0.1 0.5 -0.4

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю - это элемент: -0.4, он задает ведущую строку - X7. В этой строке так же находим максимальный по модулю отрицательный элемент: -8.3 он находится в столбце X2 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:
X1 X7 X6 X4 Своб член
F -1.988 1.072 0.193 7.036 -2.229
X5 4.349 0.096 -0.41 3.048 14.361
X3 0.807 -0.157 -0.084 0.422 0.663
X2 0.313 -0.12 0.012 -0.06 0.048

Так как в столбце свободных членов нет отрицательных элементов, то найдено допустимое решение.В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально. Определим ведущий столбец. Для этого найдем в строке F максимальный по модулю отрицательный элемент - это -1.988 Ведущей строкой будет та для которой отношение свободного члена к соответствующему элементу ведущего столбца минимально. Ведущей строкой является X2, а ведущий элемент: 0.313.

X2 X7 X6 X4 Своб член
F 6.351 0.31 0.269 6.655 -1.924
X5 -13.895 1.763 -0.577 3.882 13.694
X3 -2.578 0.152 -0.115 0.577 0.539
X1 3.195 -0.383 0.038 -0.192 0.153

Так как в строке F нет отрицательных элементов, то найдено оптимальное решение. Так как исходной задачей был поиск минимума, то оптимальным решением будет свободный член строки F, взятый с противоположным знаком. F=1.924
при значениях переменных равных: x 3 =0.539, x 1 =0.153. Переменные x 2 и x 4 не входят в базис, поэтому x 2 =0 x 4 =0.

Рассмотрен пример решения задачи симплекс методом, а также пример решения двойственной задачи.

Условие задачи

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве b 1 = 240, b 2 = 200, b 3 = 160 единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве a 11 = 2 единицы, ресурса второго вида в количестве a 21 = 4 единицы, ресурса третьего вида в количестве a 31 = 4 единицы. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве a 12 = 3, a 13 = 6 единицы, ресурса второго вида в количестве a 22 = 2, a 23 = 4 единицы, ресурса третьего вида в количестве a 32 = 6, a 33 = 8 единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно c 1 = 4, c 2 = 5, c 3 = 4 (тыс. руб.). Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.

К прямой задаче планирования товарооборота, решаемой симплекс методом , составить двойственную задачу линейного программирования.
Установить сопряженные пары переменных прямой и двойственной задачи.
Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи , в которой производится оценка ресурсов , затраченных на продажу товаров.

Решение задачи симплекс методом

Пусть x 1 , x 2 , x 3 - количество реализованных товаров, в тыс. руб., 1, 2, 3 - ей групп, соответственно. Тогда математическая модель задачи имеет вид:

F = 4·x 1 + 5·x 2 + 4·x 3 ->max

0}}}{~}" title="delim{lbrace}{matrix{4}{1}{{2x_1 + 3x_2 + 6x_3= 0}}}{~}">

Решаем симплекс методом.

Вводим дополнительные переменные x 4 ≥ 0, x 5 ≥ 0, x 6 ≥ 0, чтобы неравенства преобразовать в равенства.

В качестве базиса возьмем x 4 = 240; x 5 = 200; x 6 = 160.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 240 + 0 · 200 + 0 · 160 = 0

Вычисляем оценки по формуле:

Δ 1 = 0 · 2 + 0 · 4 + 0 · 4 - 4 = - 4
Δ 2 = 0 · 3 + 0 · 2 + 0 · 6 - 5 = - 5
Δ 3 = 0 · 6 + 0 · 4 + 0 · 8 - 4 = - 4
Δ 4 = 0 · 1 + 0 · 0 + 0 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 0 · 0 - 0 = 0
Δ 6 = 0 · 0 + 0 · 0 + 0 · 1 - 0 = 0

Поскольку есть отрицательные оценки, то план не оптимален. Наименьшая оценка:

Вводим переменную x 2 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 2 .

= 26.667

Наименьшее неотрицательное: Q 3 = 26.667. Выводим переменную x 6 из базиса

3-ю строку делим на 6.
Из 1-й строки вычитаем 3-ю строку, умноженную на 3
Из 2-й строки вычитаем 3-ю строку, умноженную на 2


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 2

Целевая функция:

0 · 160 + 0 · 440/3 + 5 · 80/3 = 400/3

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 8/3 + 5 · 2/3 - 4 = - 2/3
Δ 2 = 0 · 0 + 0 · 0 + 5 · 1 - 5 = 0
Δ 3 = 0 · 2 + 0 · 4/3 + 5 · 4/3 - 4 = 8/3
Δ 4 = 0 · 1 + 0 · 0 + 5 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 5 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1)/3 + 5 · 1/6 - 0 = 5/6

Поскольку есть отрицательная оценка Δ 1 = - 2/3, то план не оптимален.

Вводим переменную x 1 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 1 .

Наименьшее неотрицательное: Q 3 = 40. Выводим переменную x 2 из базиса

3-ю строку делим на 2/3.
Из 2-й строки вычитаем 3-ю строку, умноженную на 8/3


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 3

Целевая функция:

0 · 160 + 0 · 40 + 4 · 40 = 160

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 0 + 4 · 1 - 4 = 0
Δ 2 = 0 · 0 + 0 · (-4) + 4 · 3/2 - 5 = 1
Δ 3 = 0 · 2 + 0 · (-4) + 4 · 2 - 4 = 4
Δ 4 = 0 · 1 + 0 · 0 + 4 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 4 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1) + 4 · 1/4 - 0 = 1

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи:

Ответ

x 1 = 40; x 2 = 0; x 3 = 0; x 4 = 160; x 5 = 40; x 6 = 0; F max = 160

То есть необходимо реализовать товар первого вида в объеме 40 тыс. руб. Товар 2-го и 3-го видов реализовывать не надо. При этом максимальная прибыль составит F max = 160 тыс. руб.

Решение двойственной задачи

Двойственная задача имеет вид:

Z = 240·y 1 + 200·y 2 + 160·y 3 ->min

Title="delim{lbrace}{matrix{4}{1}{{2y_1 + 4y_2 + 4y_3>=4} {3y_1 + 2y_2 + 6y_3>=5} {6y_1 + 4y_2 + 8y_3>=4} {y_1, y_2, y_3>= 0}}}{~}">

Вводим дополнительные переменные y 4 ≥ 0, y 5 ≥ 0, y 6 ≥ 0, чтобы неравенства преобразовать в равенства.

Сопряженные пары переменных прямой и двойственной задач имеют вид:

Из последней симплекс таблицы № 3 прямой задачи, находим решение двойственной задачи:

Z min = F max = 160;
y 1 = Δ 4 = 0; y 2 = Δ 5 = 0; y 3 = Δ 6 = 1; y 4 = Δ 1 = 0; y 5 = Δ 2 = 1; y 6 = Δ 3 = 4;

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

Основное содержание симплексного метода заключается в следующем:
  1. Указать способ нахождения оптимального опорного решения
  2. Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения
  3. Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или следать заключение об отсутствии оптимального решения.

Алгоритм симплексного метода решения задач линейного программирования

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:
  1. Привести задачу к каноническому виду
  2. Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение ввиду несовместимости системы ограничений)
  3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода
  4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается
  5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения

Пример решения задачи симплексным методом

Пример 26.1

Решить симплексным методом задачу:

Решение:

Приводим задачу к каноническому виду.

Для этого в левую часть первого ограничения-неравенства вводим дополнительную переменную x 6 с коэффициентом +1. В целевую функцию переменная x 6 входит с коэффицентом ноль (т.е. не входит).

Получаем:

Находим начальное опорное решение. Для этого свободные (неразрешенные) переменные приравниваем к нулю х1 = х2 = х3 = 0.

Получаем опорное решение Х1 = (0,0,0,24,30,6) с единичным базисом Б1 = (А4, А5, А6).

Вычисляем оценки разложений векторов условий по базису опорного решения по формуле:

Δ k = C б X k — c k

  • C б = (с 1 , с 2 , ... , с m) — вектор коэффициентов целевой функции при базисных переменных
  • X k = (x 1k , x 2k , ... , x mk) — вектор разложения соответствующего вектора А к по базису опорного решения
  • С к — коэффициент целевой функции при переменной х к.

Оценки векторов входящих в базис всегда равны нулю. Опорное решение, коэффиценты разложений и оценки разложений векторов условий по базису опорного решения записываются в симплексную таблицу :

Сверху над таблицей для удобства вычислений оценок записываются коэффициенты целевой функции. В первом столбце "Б" записываются векторы, входящие в базис опорного решения. Порядок записи этих векторов соответствует номерам разрешенных неизвестных в уравнениях ограничениях. Во втором столбце таблицы "С б " записываются коэффициенты целевой функции при базисных переменных в том же порядке. При правильном расположении коэффициентов целевой функции в столбце "С б " оценки единичных векторов, входящих в базис, всегда равных нулю.

В последней строке таблицы с оценками Δ k в столбце "А 0 " записываются значения целевой функции на опорном решении Z(X 1).

Начальное опорное решение не является оптимальным, так как в задаче на максимум оценки Δ 1 = -2, Δ 3 = -9 для векторов А 1 и А 3 отрицательные.

По теореме об улучшении опорного решения, если в задаче на максимум хотя бы один вектор имеет отрицательную оценку, то можно найти новое опорное решение, на котором значение целевой функции будет больше.

Определим, введение какого из двух векторов приведет к большему приращению целевой функции.

Приращение целевой функции находится по формуле: .

Вычисляем значения параметра θ 01 для первого и третьего столбцов по формуле:

Получаем θ 01 = 6 при l = 1, θ 03 = 3 при l = 1 (таблица 26.1).

Находим приращение целевой функции при введении в базис первого вектора ΔZ 1 = — 6*(- 2) = 12, и третьего вектора ΔZ 3 = — 3*(- 9) = 27.

Следовательно, для более быстрого приближения к оптимальному решению необходимо ввести в базис опорного решения вектор А3 вместо первого вектора базиса А6, так как минимум параметра θ 03 достигается в первой строке (l = 1).

Производим преобразование Жордана с элементом Х13 = 2, получаем второе опорное решение Х2 = (0,0,3,21,42,0) с базисом Б2 = (А3, А4, А5). (таблица 26.2)

Это решение не является оптимальным, так как вектор А2 имеет отрицательную оценку Δ2 = — 6. Для улучшение решения необходимо ввести вектор А2 в базис опорного решения.

Определяем номер вектора, выводимого из базиса. Для этого вычисляем параметр θ 02 для второго столбца, он равен 7 при l = 2. Следовательно, из базиса выводим второй вектор базиса А4. Производим преобразование Жордана с элементом х 22 = 3, получаем третье опорное решение Х3 = (0,7,10,0,63,0) Б2 = (А3, А2, А5) (таблица 26.3).

Это решение является единственным оптимальным, так как для всех векторов, не входящих в базис оценки положительные

Δ 1 = 7/2, Δ 4 = 2, Δ 6 = 7/2.

Ответ: max Z(X) = 201 при Х = (0,7,10,0,63).

Метод линейного программирования в экономическом анализе

Метод линейного программирования дает возможность обосновать наиболее оптимальное экономическое решение в условиях жестких ограничений, относящихся к используемым в производстве ресурсам (основные фонды, материалы, трудовые ресурсы). Применение этого метода в экономическом анализе позволяет решать задачи, связанные главным образом с планированием деятельности организации. Данный метод помогает определить оптимальные величины выпуска продукции, а также направления наиболее эффективного использования имеющихся в распоряжении организации производственных ресурсов.

При помощи этого метода осуществляется решение так называемых экстремальных задач, которое заключается в нахождении крайних значений, то есть максимума и минимума функций переменных величин.

Этот период базируется на решении системы линейных уравнений в тех случаях, когда анализируемые экономические явления связаны линейной, строго функциональной зависимостью. Метод линейного программирования используется для анализа переменных величин при наличии определенных ограничивающих факторов.

Весьма распространено решение так называемой транспортной задачи с помощью метода линейного программирования. Содержание этой задачи заключается в минимизации затрат, осуществляемых в связи с эксплуатацией транспортных средств в условиях имеющихся ограничений в отношении количества транспортных средств, их грузоподъемности, продолжительности времени их работы, при наличии необходимости обслуживания максимального количества заказчиков.

Кроме этого, данный метод находит широкое применение при решении задачи составления расписания. Эта задача состоит в таком распределении времени функционирования персонала данной организации, которое являлось бы наиболее приемлемым как для членов этого персонала, так и для клиентов организации.

Данная задача заключается в максимизации количества обслуживаемых клиентов в условиях ограничений количества имеющихся членов персонала, а также фонда рабочего времени.

Таким образом, метод линейного программирования весьма распространен в анализе размещения и использования различных видов ресурсов, а также в процессе планирования и прогнозирования деятельности организаций.

Все же математическое программирование может применяться и в отношении тех экономических явлений, зависимость между которыми не является линейной. Для этой цели могут быть использованы методы нелинейного, динамического и выпуклого программирования.

Нелинейное программирование опирается на нелинейный характер целевой функции или ограничений, либо и того и другого. Формы целевой функции и неравенств ограничений в этих условиях могут быть различными.

Нелинейное программирование применяется в экономическом анализе в частности, при установлении взаимосвязи между показателями, выражающими эффективность деятельности организации и объемом этой деятельности, структурой затрат на производство, конъюнктурой рынка, и др.

Динамическое программирование базируется на построении дерева решений. Каждый ярус этого дерева служит стадией для определения последствий предыдущего решения и для устранения малоэффективных вариантов этого решения. Таким образом, динамическое программирование имеет многошаговый, многоэтапный характер. Этот вид программирования применяется в экономическом анализе с целью поиска оптимальных вариантов развития организации как в настоящее время, так и в будущем.

Выпуклое программирование представляет собой разновидность нелинейного программирования. Этот вид программирования выражает нелинейный характер зависимости между результатами деятельности организации и осуществляемыми ей затратами. Выпуклое (иначе вогнутое) программирование анализирует выпуклые целевые функции и выпуклые системы ограничений (точки допустимых значений). Выпуклое программирование применяется в анализе хозяйственной деятельности с целью минимизации затрат, а вогнутое — с целью максимизации доходов в условиях имеющихся ограничений действия факторов, влияющих на анализируемые показатели противоположным образом. Следовательно, при рассматриваемых видах программирования выпуклые целевые функции минимизируются, а вогнутые — максимизируются.