Роль лимфоидных клеток в противовирусном иммунитете (характеристика Т и В лимфоцитов). Противовирусный иммунитет Противовирусный иммунитет и его особенности

Ответ

Репродукция вирусов человека: этапы репродукции, особенности репродукции ДНК-содержащих вирусов. Приведите примеры таких вирусов. Эффект интерференции между вирусами. Типы взаимодействия вирусов с клеткой: продуктивный, абортивный, интегративный. Типы вирусных инфекций: литическая, персистирующая, латентная, иннапаратная, медленная вирусная инфекция, трансформация клетки.

Диагностические сыворотки, их подразделение, получение и практическое применение. Моноклональные антитела. Гибридомы, их использование для получения моноклональных антител.

Анатоксины: свойства, принцип получения, единицы измерения. Ассоциированные вакцины, их свойства, примеры. Охарактеризуйте иммунитет, формируемый в результате введения ассоциированных вакцин.

Серологические реакции, используемые в инфекционной иммунологии(см.20).Реакция иммунофлюоресценции. Ингредиенты,механизм прямой и непрямой РИФ.Значение для экспресс диагностики инфекционных заболеваний.

Иммунофлюоресцентный метод (РИФ, реакция иммунофлюоресценции, реакция Кунса) - метод выявления специфических АГ с помощью АТ, конъюгированных с флюорохромом. Обладает высокой чувствительностью и специфичностью.

Применяется для экспресс-диагностики инфекционных заболеваний (идентификация возбудителя в исследуемом материале), а также для определения АТ и поверхностных рецепторов и маркеров лейкоцитов (иммунофенотипирование) и др. клеток.

Обнаружение бактериальных и вирусных антигенов в инфекционных материалах, тканях животных и культурах клеток при помощи флюоресцирующих антител (сывороток) получило широкое применение в диагностической практике. Приготовление флюоресцирующих сывороток основано на способности некоторых флюорохромов (например, изотиоцианата флюоресцеина) вступать в химическую связь с сывороточными белками, не нарушая их иммунологической специфичности.

Различают три разновидности метода: прямой, непрямой, с комплементом. Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФ-лучах люминесцентного микроскопа. Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.
Непрямой метод РИФ заключается в выявлении комплекса антиген - антитело с помощью антиглобулиновой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобулиновой (антикроличьей) сывороткой, меченной флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела + антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе.



Механизм. На предметном стекле готовят мазок из исследуемого материала, фиксируют на пламени и обрабатывают иммунной кроличьей сывороткой, содержащей антитела против антигенов возбудителя. Для образования комплекса антиген - антитело препарат помещают во влажную камеру и инкубируют при 37 °С в течение 15 мин, после чего тщательно промывают изотоническим раствором хлорида натрия для удаления не связавшихся с антигеном антител. Затем на препарат наносят флюоресцирующую антиглобулиновую сыворотку против глобулинов кролика, выдерживают в течение 15 мин при 37 °С, а затем препарат тщательно промывают изотоническим раствором хлорида натрия. В результате связывания флюоресцирующей антиглобулиновой сыворотки с фиксированными на антигене специфическими антителами образуются светящиеся комплексы антиген - антитело, которые обнаруживаются при люминесцентной микроскопии.

25.Серологические реакции,применяемые в инфекционной иммунологии.(см.20)Иммуноблотинг, радиоиммунологический анализ:спецефичность,чувствительность,механизмы реакции.Практическое использование.

Иммуноблоттинг - высокочувствительный метод выявления белков, основанный на сочетании электрофореза и ИФА или РИА. Иммуноблоттинг используют как диагностический метод при ВИЧ-инфекции и др.

Антигены возбудителя разделяют с помощью электрофореза в полиакриламидном геле, затем переносят их из геля на активированную бумагуили нитроцеллюлозную мембрану и проявляют с помощью ИФА. Фирмы выпускают такие полоски с «блотами» антигенов. На эти полоски наносят сыворотку больного. Затем, после инкубации, отмывают от несвязавшихся антител больного и наносят сыворотку против иммуноглобулинов человека, меченную ферментом. Образовавшийся на полоске комплекс [антиген + антитело больного + антитело против Ig человека] выявляют добавлением хромогенного субстрата, изменяющего окраску под действием фермента.

С помощью РИА в биологических жидкостях определяют концентрации гормонов, факторов роста, ферментов, аутоантител, маркеров злокачественных новообразований и других веществ (например, лекарственных средств и наркотиков).

В основе РИА лежит феномен конкуренции: связывание антител с антигеном, меченным радиоактивным изотопом, подавляется в присутствии немеченого антигена.

Методика РИА проста и включает следующие основные этапы:

1. К антителам добавляют меченый антиген и пробу (содержащую неизвестное количество немеченого антигена). Концентрацию антител в реакционной смеси подбирают так, чтобы число мест связывания было намного меньше общего числа антигенов. Концентрация меченого антигена должна превышать максимально возможную концентрацию антигена в пробе.

2. Реакционную смесь инкубируют при определенной температуре заданное время. Меченный и немеченый антигены конкурентно связываются с антителами, при этом образуются иммунные комплексы, содержащие либо меченный, либо немеченый антиген. Таким образом, к концу инкубации в реакционной смеси присутствуют меченные и немеченые иммунные комплексы, а также свободные меченные и немеченые антигены. Количество меченных иммунных комплексов обратно пропорционально количеству немеченого антигена в пробе.

3. Чтобы оценить количество образовавшихся меченных иммунных комплексов, их отделяют от оставшегося несвязанным свободного меченого антигена.

4. Определяют концентрацию антигена в пробе по калибровочной кривой. Для ее построения используют несколько стандартных калибровочных растворов с известными концентрациями немеченого антигена.

26. Вакцины: их подразделение, основные требования, предъявляемые к вакцинам. Принципы получения инактивированных вакцин. Приведите примеры вакцин, применяемых для плановой вакцинации детей. Охарактеризуйте поствакцинальный иммунитет.

ОТВЕТ:
Вакцины - иммунобиологические препараты, изготовляемые из живых аттенуированных или инактивированных микроорганизмов, токсинов, микробных антигенов и используемые для создания специфического активного искусственного иммунитета.
В основном вакцины применяют с профилактической целью, значительно реже- с лечебной(при хронических затяжных инфекционных заболеваниях)

Подразделение вакцинных препаратов:
По составу на корпускулярные (живые и инактивированные), растворимые (химические и анатоксины) и генно-инженерные; по назначению на профилактические и лечебные.
Различаются несколько поколений вакцин:
-вакцины первого поколения - корпускулярные вакцины состоящие из целых микроорганизмов живых или убитых
-вакцины второго поколения- препараты состоящие из отдельных фракций возбудителя или продуктов их жизнедеятельности -химические вакцины и анатоксины
-вакцины третьего поколения -рекомбинатные вакцины, полученные генно-инженерными методами

Основные требования к вакцинных препаратам:
-высокая иммуногенность и создание достаточно стойкого иммунитета
-остаточная вирулентность для аттенуированных штампов и стабильность их свойств
-безвредность
-ареактивность (отсутствие выраденных побочных реакций)
-гипоаллергенность (минимальное сенсибилизирующее действие)
- отсутствие в препарате контаминирующиз микроорганизмов
-доступность стоимости производства

Инактивированные (убитые) корпускулярные клетки содержат микробные клетки или вирионы (корпускулярные бактериальные и цельновирионные вакцины). Для их приготовления используют вирулентные микроорганизмы, содержащие протективные антигены, активность которых должна сохраняться после воздействия инактивирующих факторов физической (нагревание, ультрафиолетовое излучение) или химической природы (спирт, фенол, ацетон, глутаровый альдегид, формальдегид) или комбинацией обоих факторов.
Инактивированные вакцины вызывают иммунный ответ гуморального типа, менее напряженной иммунитет с меньшей длительностью, чем живые вакцины, не индуцируют местный иммунитет, требуется их 2-3х кратное введение, частое проведение повторный курсов иммунизации. Убитые корпускулярные вакцины обладают выраженной токсичностью и аллергенностью. Их важнейшее преимущество по сравнению с живыми -они никогда не вызывают инфекционных заболеваний.

Вакцины для плановой вакцинации детей: АКДС, БЦЖ, АКаДС, ИПВ (инактивированная полиомиелитная вакцина).

После вакцинации развивается искусственный активный иммунитет. Возникает после контакта с антигеном. Это предусматривает реализацию всех этапов иммунной реакции с формированием антиген-специфических Т-лимфоцитов и антител, а также сохранением иммунной памяти. Преимуществами активного иммунитета является более высокая эффективность, так как наработанные иммунные факторы наиболее соответствуют конкретному антигенному раздражителю, а также длительный, а порой и пожизненный, эффект последействия, связанный с формированием клеток памяти и поддержанием защитного титра специфических антител в сыворотке крови и других биологических жидкостях организма. К недостаткам активного иммунитета следует отнести значительную энергозатратность и сравнительно длительный срок развития. Не передается по наследству.

27. Вакцины. Основные требования, предъявляемые к вакцинам. Живые вакцины: аттенуированные, дивергентные (БЦЖ, вакцина против натуральной оспы), рекомбинантные. Принципы получения, примеры. Характеристика поствакцинального иммунитета. ОТВЕТ: Живые вакцины готовят из вакцинных штаммов бактерий, риккетсий, вирусов, полученных различными методами селекции. Вакцинные штаммы являются аттенуированными, сохранившими незначительную остаточную вирулентность и не способны вызывать клинически выраженную инфекцию. Их получают путем снижения вирулентности при культивировании в неблагоприятных условиях (при пониженной или повышенной температуре, на питательных средах с определенными добавками) или путем пассажей на маловосприимчивых животных, в куриных эмбрионах и клеточных культурах, выделением аттенуированных мутантов от больных или из внешней среды, воздействием мутагенов. В аттенуированных штаммах инактивированы или репрессированы гены отвечающие за вирулентность. В связи с тем, что живые вакцины способны вызывать вакцинную инфекцию (живые аттенуированные микробы размножаются в организме, вызывая воспалительный процесс проходящий без клинических проявлений), они всегда вызывают перестройку иммунобиологического статуса организма и образование специфических антител. Это так же может являться недостатком, т. к. живые вакцины чаще вызывают аллергические реакции. Вакцины данного типа, как правило, вводятся однократно. Примеры: сибиреязвенная вакцина, чумная вакцина, бруцеллёзная вакцина, БЦЖ вакцина, оспенная дермальная вакцина. - аттенуированные - препараты, действующим началом которых являются ослабленные тем или иным способом, потерявшие вирулентность, но сохра- нившие специфическую антигенность штаммы патогенных микроорганиз- мов (бактерий, вирусов), получившие название аттенуированных штаммов. - дивергентные - получают на основе непатогенных штаммов микроорга- низмов, имеющие общие протективные антигены с патогенными для чело- века возбудителями инфекционных болезней (вакцина против натуральной оспы человека - используется вирус оспы коровы, вакцина БЦЖ - использу- ются микобактерии бычьего типа). - рекомбинантные - на основе получения непатогенных для человека ре- комбинантных штаммов, несущих гены протективных антигенов патоген- ных микробов и способных при введении в организм человека размножать- ся, синтезировать специфический антиген и создавать иммунитет к патоген- ному возбудителю. Поствакционный иммунитет (искусственный активный) клеточный или гуморальный по своей напряженности приближается к постинфекционному.

28. Вакцинация. Эффективность вакцинации. Национальный календарь прививок РФ: цель проведения вакцинации детей и подростков, характеристика вакцин.

ОТВЕТ:
Эффективность вакцинации зависит от биологических свойств возбудителей и изготовленных из них препаратов, способов введения вакцин и иммунореактивности макроорганизма.
Вакцинных препараты могут вводиться в организм человека парэнтерально (внутримышечно, подкожно, в скарифицированную кожу), перорально, интраназально, а также в свечах и клизмах.
Для выработки прочного и длительного иммунитета необходим достаточным контакт макроорганизма и антигена, поэтому во многих случаях применяется повторенная вакцинация, сроки очередного введения вакцины зависят от свойств данного биопрепарата. Требуется определенный период времени для развития гуморального или клеточного иммунитета. Не у всех вакцинированных лиц возникает достаточная степень невосприимчивости, у некоторых людей иммунореактивности снижена, может развиваться иммунодефицитное состояние. Эффективность вакцинации зависит от типа и качества применяемой вакцины и способности возбудителя вызывать стойкий иммунный ответ. Согласно национальному календарю прививок РФ всем детям в обязательном порядке проводится вакцинация против 10 но нозологических форм -туберкулез, вирусный гепатит В, дифтерия, коклюш, столбняк, полиомиелит, корь, краснуха, эпидемический паратит, грипп. Против 13 нозологических форм только по эпидемическим показаниям- туляремия, чума, бруцеллез, сибирская язва, бешенство, лептоспироз, клещевой энцефалит, лихорадка Ку, желтая лихорадка, брюшной тиф, менингококковая инфекция, вирусный гепатит А, холера.

ОТВЕТ:
Анатоксины нередко относят к молекулярным вакцинам. Получают из бактериальных экзотоксинов путем 3-5 недельного воздействия 0,3-0,4% формалина при температуре 37-40 С. При совместном воздействии этих факторов экзотоксин теряет свою ядовитость, сохраняет антигене и иммуногенные свойства. Полученные анатоксины подвергают очистке от балластных веществ(питательной среды, продуктов метаболизма), концентрируют и адсорбируют на гидроксиде алюминия, что повышает иммуногенность. У анатоксинов относительно низкая реактогенность, поэтому мало противнопоказаний к применению. Очищенные адсорбированные анатоксины выпускают в жидком виде, применяют для создания анти токсического иммунитета при таких инфекциях как дифтерия, столбняк, газовая анаэробная инфекция, ботулизм, стафилококковая и синегнойная инфекция и др. , возбудители которых выделяют экзотоксины, играющие первостепенную роль в патогенезе заболевания.

АНТИГЕННАЯ ЕДИНИЦА (АЕ), единица измерения антигенных и антитоксич. свойств токсинов и анатоксинов. По Рамону, характеризуется величиной I/Lf, к-рая соответствует кол-ву антитоксич. единиц, полностью связывающих 1 мл токсина или анатоксина. По Гленни, АЕ измеряется Lf-limes floculation (порогом флоккуляции), т. е. миним. дозой анатоксина, полностью связывающей одну антитоксич. единицу антитоксина.

АССОЦИИРОВАННЫЕ ВАКЦИНЫ (живые + инактивированные) комплексные вакцины представляют собой комплекс различных типов вакцин и предназначены для одновременной иммунизации против разных инфекций. Отдельные компоненты такой вакцины должны быть взяты в дозировках не создающих конкуренции, чтобы иммунитет формировался ко всем антигенам с одинаковой интенсивностью.
-поливакцина - содержит однородные антигены (полиомиелитная - типы I, П, III; полианатоксины).
- комбинированные - состоят из разнородных антигенов (АКДС-вакцина).

Возникает искусственный активный иммунитет

30. Диагностические сыворотки: подразделение, состав, принципы получения. Агглютинирующие сыворотки. Отличия адсорбированных и неадсорбированных агглютинирующих сывороток. Практическое применение. Примеры.

ОТВЕТ:
Диагностические сыворотки содержат известные антитела, их применяют в серологических реакциях для определения выделенного возбудителя инфекционного заболевания или его токсина, а также доя выявления неизвестных антигенов непосредственно в исследуемом материале или из объектов окружающей среды. Их получают путем многократной иммунизации (гипериммунизации) животных (кроликов, баранов) различными антигенами -взвесью микробов или выделенными из них и очищенными микробными антигенами, анатоксинами, чужеродными сывороточными белками и другими корпускулярными и растворенными антигенами.
Диагностические сыворотки под разделяют в зависимости от реакции на агглютинирующие (адсорбированные и неадсорбированные), преципитирующие, гемолитические и антитоксические.
Агглютинирующая сыворотка - сыворотка крови животных, способная вызывать реакцию агглютинации, получаемая при иммунизации животного определённой бактериальной культурой.
Неадсорбированные и адсорбированные агглютинирующие сыворотки.
Неадсорбированные (видовые, нативные) сыворотки обладают высоким титром, но недостаточно специфичны. Видовые сыворотки содержат несколько типов антител соответственно набору антигенов того вида бактерий, которым проводилась иммунизация животного. Могут содержать групповые антитела за счет которых происходит агглютинация не только с гомологичными бактериями но и с родственными бактериями. Часто групповых агглютинация встречается у представителей рода Salmonella. Для того чтобы избежать групповой агглютинации применяют адсорбированные монореципторные сыворотки. Они характеризуется низким титром, их применяют в реакциях агглютинации на стекле. Для устранения всех групповых антител сыворотку последовательно инкубируют с разными видами родственных микроорганизмов.
Адсорбированные сыворотки применяют при идентифика ции выделенных возбудителей в реакции агглютинации на стекле (пластинчатый метод).

Агглютинирующие сыворотки наиболее широко применя ются при диагностике заболеваний, вызываемых бактериями семейства Enterobacteriaceae. Так, при идентификации эшерихий используются поливалентные и типовые ОК-сыворотки; при дифференциации сальмонелл - набор сывороток: агглю тинирующая адсорбированная поливалентная сальмонеллезная О-сыворотка (групп А, В, С, Д, Е) - для определения принадлежности к роду Salmonella, при положительном ре зультате - определяют отдельно с каждой сывороткой (входя щей в смесь) серологическую группу и в заключение опреде ляется серологический тип выделенного возбудителя с моно-рецепторными Н-сыворотками сальмонелл, входящих в данную группу.

Раздел Вирусология. Вопрос 4

Репродукция вирусов в клетке (продуктивная инфекция ) – единый процесс, который условно подразделяют ан несколько этапов. Начальный 3 этапа являются подготовительными. Собственно репродукция начинается с 4 этапа. Процессы репродукции у разных семейств и родов вирусов имеют существенные отличия. Но в общих чертах происходят следующие закономерности:

1. Адсорбция вирионов на клетке осуществляется при наличии специфических рецепторов. У простых вирусов это прикрепительные белки на поверхности капсида, а у сложных – гликопротеины, образующие шипики на поверхности суперкапсида. Со способностью вирусов прикрепляться к различным клеточным рецепторам связан тропизм вирусов.

2. Проникновение вириона в клетку

Путем рецепторного эндоцитоза – в месте адсорбции вируса образуется эндосома, содержащая вирус. Она объединяется с клеточной лизосомой и вакуолью, образуя рецептосомому. (простые и сложные вирусы)

Слияния мембран суперкапсида вируса и клетки. Нуклеокапсид оказывается в цитоплазме (сложные вирусы)

Возможно сочетание этих двух процессов.

3. Депротеинизация («раздевание») вирусов с целью высвобождения нуклеиновой кислоты, которая приобретает способность индуцировать репродукцию вирусов.

4. Экспрессия вирусного генома. Начинается с транскрипции (образование комплементарных и-РНК). Затем идет трансляция (синтез белка) на клеточных рибосомах. Моноцистронные и-РНК кодируют отдельный белок, полицицистронные и-РНК длинный общий белок, который нарезается клеточными протеазами на отдельные белки.

А) У вирусов с двунитевой ДНК: геномная ДНК – транскрипция – и-РНК- трансляция – белок. Если происходит в ядре, то работает клеточная ДНК-зависимая-РНК-полимераза, если в цитоплазме, то вирусная транскриптаза. Последовательно кодируются ранние и-РНК, затем поздние и-РНК, следовательно, сначала происходит трансляция сначала ранних неструктурных белков, затем поздних структурных. Такими вирусами является вирус гепатита В, вирус герпеса, вирус папилломы.

Б) У плюс-РНК геномная РНК является сразу информационной РНК, поэтому: Геномная плюс-РНК - трансляция – белок.

В) У минус- РНК6 Геномная минус-РНК-транскрипция-и-РНК-трансляция-белок.

Г) у ретровирусов: Геномная РНК-комплементарная ДНК-транскрипция-и-РНК-трансляция-белок.

Затем идет репликация вирусного генома (синтез множестав копий нуклеиновой кислоты)

А)ДНК-геномы клеточной ДНК-зависимой ДНК-полимеразы

Б) Плюс-РНК вирусиндуцированной РНК-полимеразы

В)Минус-РНК с помощью РНК-зависимой РНК-полимеразы.

Г) у ретровирусов клеточной ДНК-зависимой РНК-полимеразы. Для них необходима интеграция ДНК провируса в хромосому клетки, а также сочитание интегративной и продуктивной инфекции.

Дизъюктивный (разобщенный) способ репродукции- синтез нуклеиновых кислот и белков вирусов в разных частях клетки и неодновременно.

5. Формирование вирионов (в цитоплазме). Простые вирусы путем самосборки, образуя нуклеокапсид. Сложные вирусы сначала образуют нуклеокапсид, затем взаимодействуют с модифицированной клеточной мембраной, одеваясь суперкапсидом и формируя М-слой.

6. Выход вирионов из клетки при разрушении, лизисе или путем почкования(для сложных вирусов, которые при этом одеваются суперкапсидом)

Суть механизма РНК-интнрференции заключается в том, что при введении в клетки короткой двунитевой РНК, она способна вызывать специфическое разрушение той мРНК, с которой имеет гомологию. Двухцепочная РНК при этом распадается на короткое фрагменты, обозначаемые как малые интерферирующие РНК. Это используется для подавления распространения инфекций.

Инфекционность вирусов способна реализоваться в восприимчивых клетках, обладающих пермиссивностью. Только пермиссивные клетки способны обеспечить все этапы репродукции(продуктивная инфекция ). Существуют непермисссивные и полупермиссивные клеточные системы, способные воспринять вирус, но не обладающие всеми факторами, обеспечивающими их репродукцию. В этом случае возникает абортивна я инфекция без образования вирусного потомства.

Вирусная инфекция на уровне клетки бывает автономной или интегративной. Автономная- продуктивная инфекция, при которой вирусный и клеточный гномы, находясь в одной клетке взаимодействуют друг с другом, но при этом остаются обособленными. В противоположность этому, при интегративной инфекции вирусный геном объединяется с клеточным геномом, становясь его частью(для ДНК-вирусов). Это может привести к нарушению синтеза белка в клетке, к неконтролируемому делению клеток-трансформаци и и развитию опухоли.

Инаппарантная форма инфекции - острая бессимптомная инфекция, протекающая при полном отсутствии клинических и биохимических признаков. Обнаруживается лишь закономерное динамикой маркеров острой вирусной инфекции.

Для сохранения вируса как биологического вида очень важной является способность многих вирусов персистировать в клетках организма, тоесть сохраняться в организме длительное время, иногда пожизненно, периодически выделяясь в окружающую среду. Активируясь, вирусы могут вызывать эндогенную инфекцию (при недостаточности иммунитета) . в результате может развиться хроническая инфекцию.

Вирусная инфекция может быть цитолитической (клетка погибает, лизируетсяпосле 1-го цикла репродукции) и нецитолитической (клетка продолжает функционировать какое-то время и осуществлять репродукции вирусов в несколько циклов, образуя симпласты; внутриклеточные включения; возможна латентная инфекция , когда имеются только функциональные нарушения, а их видимое проявление отсутствует; возможна трансформация клеток и опухолевой рост.

Для медленных вирусных инфекций характерны особенности: длительный инкубационный период (от нескольких месяцев до десятилетий; медленное развитие заболевания(без ремиссий); преимущественное поражение ЦНС; неизбежный смертельный исход. Группы медленных инфекций:

1. Вызываемые при определенных условиях обычными, «каноническими» вирусам после перенесенных вирусных инфекций(корь, краснуха, клещевой энцефалит)

2. Прионные вирусные инфекции. Прионы - инфекционные вирусные белки, которые являются видоизмененными клеточными белками, образовавшимися вследствие мутаций в кодирующем эти белки гене.

Раздел Вирусология Вопрос 5

Учебник состоит из семи частей. Часть первая – «Общая микробиология» – содержит сведения о морфологии и физиологии бактерий. Часть вторая посвящена генетике бактерий. В части третьей – «Микрофлора биосферы» – рассматривается микрофлора окружающей среды, ее роль в круговороте веществ в природе, а также микрофлора человека и ее значение. Часть четвертая – «Учение об инфекции» – посвящена патогенным свойствам микроорганизмов, их роли в инфекционном процессе, а также содержит сведения об антибиотиках и механизмах их действия. Часть пятая – «Учение об иммунитете» – содержит современные представления об иммунитете. В шестой части – «Вирусы и вызываемые ими заболевания» – представлены сведения об основных биологических свойствах вирусов и о тех заболеваниях, которые они вызывают. Часть седьмая – «Частная медицинская микробиология» – содержит сведения о морфологии, физиологии, патогенных свойствах возбудителей многих инфекционных заболеваний, а также о современных методах их диагностики, специфической профилактики и терапии.

Учебник предназначен для студентов, аспирантов и преподавателей высших медицинских учебных заведений, университетов, микробиологов всех специальностей и практических врачей.

5-е издание, исправленное и дополненное

Книга:

Глава 49 Особенности противовирусного иммунитета

Особенности противовирусного иммунитета

В основе некоторых существенных различий механизмов защиты организма от вирусов и бактерий лежат особенности биологии этих возбудителей.

В защите организма от вирусов участвуют все системы иммунитета, однако противовирусный иммунитет имеет существенные специфические черты. Они определяются тем, что в первую очередь на проникновение вируса в организм реагируют не системы комплемента и макрофагов, а системы интерферонов и Т-киллерных клеток. Другая особенность формирования иммунитета связана с тем, что вирусы оказывают слабое антигенное воздействие на В-лимфоциты и для их активирования, пролиферации и дифференцировки необходимо участие Т-хелперов и соответственно представление последним процессированного вирусного антигена (пептидных фрагментов) при участии молекул МНС класса II. Поэтому роль макрофагов и других антигенпредставляющих клеток заключается не столько в самом фагоцитозе, сколько в процессировании и представлении антигена.

Еще одна особенность противовирусного иммунитета обусловлена структурной организацией некоторых вирионов. Вирусы могут вызвать заболение лишь в том случае, если проникают в клетку. Для прикрепления к ней они используют клеточные рецепторы, которые клетка использует для собственных физиологических целей. Все идентифицированные вирусспецифические рецепторы – гликопротеиды или сиалогликолипиды. Вирус «узнает» специфические рецепторы и прикрепляется к ним с помощью своих прикрепительных белков VAP (англ. virion attachment proteins ). Именно они играют роль своеобразных лоцманов, направляющих движение вируса в клетку. У некоторых вирусов молекулы этих белков-лоцманов расположены в скрытых местах – «щелях», «каньонах», т. е. углублениях на поверхности вириона. Их диаметр (глубина) у вирусов гриппа, полиомиелита, ВИЧ не превышает 2,5 нм. Диаметр же активного центра молекулы антитела составляет 3,5 нм, поэтому антитело не может связаться с белком-лоцманом вируса и блокировать его. В результате вируснейтрализующая активность антител ослабляется. На проникновение вируса раньше всего реагирует система интерферонов, которые подавляют внутриклеточное размножение вирусов. Кроме того, противовирусное действие оказывают находящиеся в сыворотке крови?– и?-ингибиторы. Альфа-ингибитор – термостабильный субстрат, входит в состав?-глобулинов, препятствует адсорбции вирусов на клетке, разрушается нейраминидазой орто– и парамиксовирусов. Бета-ингибитор – термолабильный мукопептид, входит в состав?-глобулинов, подавляет размножение орто– и парамиксовирусов.

Однако интерферонов и ингибиторов оказалось недостаточно для защиты от вирусов, поэтому природа создала против вирусов другой, очень мощный механизм защиты на уровне организма. Он представлен прежде всего Т-цитотоксическими лимфоцитами и другими киллерными клетками. Эти клетки распознают все чужеродные антигены, в том числе и вирусные, предсталяемые им молекулами МНС класса I. Главное биологическое значение Т-киллерных клеток и заключается в обнаружении и уничтожении любых клеток, инфицированных чужеродными антигенами.

Синтез антител связан, в свою очередь, с системой фагоцитов, В– и Т-лимфоцитов и МНС. В-лимфоциты с помощью иммуноглобулиновых рецепторов распознают соответствующий антиген и отвечают на него синтезом рецепторов, необходимых для распознавания сигналов от Т-хелперов. Активированные Т-хелперы синтезируют и секретируют факторы активации, пролиферации и дифференциации В-лимфоцитов. В результате их действия из активированных В-лимфоцитов формируются клоны антителообразующих клеток и клеток памяти (соответственно возникают и клоны клеток памяти Т-лимфоцитов).

Защитная роль антител в противовирусном иммунитете состоит главным образом в том, что они, взаимодействуя с вирусными рецепторами, исключают возможность адсорбции вирусов на мембране клеток и таким образом нейтрализуют их активность, делают невозможным проникновение вируса в клетку. Только таким путем, т. е. исключая возможность проникновения вируса в клетку, антитела обеспечивают формирование приобретенного иммунитета. Приобретенный противовирусный иммунитет при наличии постоянных клонов клеток памяти может сохраняться пожизненно. Помимо способности нейтрализовать вирусы, антитела выполняют большую роль в освобождении организма от вирусов и вирусных антигенов. Связываясь с ними, антитела образуют иммунные комплексы, которые выводят эти антигены из организма. Эффективность антител в формировании приобретенного иммунитета против вирусных инфекций подтверждена многолетней практикой специфической профилактики полиомиелита, кори, желтой лихорадки, других инфекций и полной ликвидацией на Земле натуральной оспы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности противовирусного иммунитета

Иммунную защиту макроорганизма при вирусных инфекциях осуществляет противовирусный иммунитет. Его особенности обусловлены двумя формами существования вируса: внеклеточной и внутриклеточной. Основными факторами, обеспечивающими противовирусный иммунитет, являются специфические антитела, Т-киллеры, интерферон и сывороточные ингибиторы вирусных частиц. Специфические противовирусные антитела способны взаимодействовать только с внеклеточным вирусом, внутриклеточные структуры прижизненно для них недоступны. Антитела нейтрализуют вирусную частицу, препятствуя ее адсорбции на клетке-мишени, инфицированию и генерализации процесса, и обеспечивают иммунный фагоцитоз «маркированных» вирусных частиц. Специфические антитела также связывают вирусные белки и нуклеиновые кислоты, которые попадают в межклеточную среду и секреты после разрушения зараженных вирусами клеток.

Клетки, инфицированные вирусом и приступившие к его репликации, экспрессируют (представляют) вирусные белки на поверхности цитоплазматической мембраны в составе молекул антигенов гистосовместимости -- HLA I класса. Изменение структуры этих антигенов гистосовместимости служит сигналом для активации Т-киллеров. Последние специфически распознают клетки макроорганизма, зараженные вирусом и приступившие к биосинтезу его компонентов, и уничтожают их. Мощным противовирусным действием обладает интерферон. Он не влияет непосредственно на внеклеточный и внутриклеточный вирус, а адсорбируется на мембране клеток и индуцирует ферментные системы, подавляющие синтез компонентов вируса. Сывороточные ингибиторы неспецифически связываются с вирусной частицей и нейтрализуют ее, тем самым препятствуя адсорбции вируса на клетках-мишенях. Напряженность противовирусного иммунитета оценивают преимущественно в серологических тестах -- по нарастанию титра специфических антител в парных сыворотках в процессе болезни. Иногда определяют концентрацию интерферона в сыворотке крови. Трансплантационным иммунитетом называют иммунную реакцию макроорганизма, направленную против пересаженной в него чужеродной ткани (трансплантата). Знание механизмов трансплантационного иммунитета необходимо для решения одной из важнейших проблем современной медицины -- пересадки органов и тканей. Многолетний опыт показал, что успех операции по пересадке чужеродных органов и тканей в подавляющем большинстве случаев зависит от иммунологической совместимости тканей донора и реципиента. Иммунная реакция на чужеродные клетки и ткани обусловлена тем, что в их составе содержатся генетически чужеродные для организма антигены. Эти антигены получили название трансплантационных, или антигенов гистосовместимости. Комплекс антигенов гистосовместимости наиболее полно представлен на цитоплазматической мембране лейкоцитов крови -- в системе HLA.

Реакция отторжения не возникает в случае полной совместимости донора и реципиента по антигенам гистосовместимости -- такое возможно лишь у однояйцовых близнецов. Выраженность реакции отторжения во многом зависит от степени чуже-родности и объема трансплантируемого материала. При контакте с чужеродными трансплантационными антигенами организм реагирует факторами клеточного и гуморального звеньев иммунитета. Основным фактором трансплантационного иммунитета являются Г-киллеры. Эти клетки после сенсибилизации антигенами донора мигрируют в пересаженную ткань (трансплантат) и оказывают на нее цитолитическое действие. Механизм иммунного отторжения пересаженных клеток и тканей имеет две фазы. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетентных клеток (лимфоидная инфильтрация), в том числе сенсибилизированных Т-киллеров.

Во второй фазе клетки трансплантата разрушаются Т-киллерами, возникают воспаление и тромбоз кровеносных сосудов, нарушается питание трансплантата и последний гибнет. Погибшие клетки утилизируются фагоцитами. Формируется клон Т-клеток иммунологической памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный ответ, который протекает очень бурно и быстро заканчивается реакцией отторжения трансплантата. Этот феномен назван кризом отторжения.

Особенности иммунитета при вирусных инфекциях

О напряженности противовирусного иммунитета судят преимущественно по нарастанию титра специфических антител в сыворотке крови больного в динамике заболевания или после специфической вакцинации. Защитные механизмы специфического, противовирусного иммунитета обеспечиваются также клетками-эффекторами (Т-киллеры, NK-клетки и другие клетки, участвующие в АЗЦТ). Специфические антитела против различных вирусных антигенов нередко присутствуют в сыворотках здоровых людей, что объясняется всеобщей иммунизацией населения против ряда вирусных инфекций (полиомиелит, корь, грипп и др.), а также возможностью скрытого (латентного) течения некоторых из них (герпес, гепатит и др.).

Неспецифические факторы иммунитета

Они защищают организм человека от всех заболеваний и обусловлены врожденными свойствами организма, которые способствуют уничтожению самых различных микроорганизмов на поверхности тела и его полостях К. неспецифическим факторам иммунитета относят:

Тканевые (клеточные) факторы. Среди тканевых факторов важную роль выполняют:

Иммунологические барьеры, к которым относят защитные свойства кожи, слизистых и лимфоузлов. Кожа и слизистые являются механическим барьером, секрет потовых, сальных желез и секрет слизистых угнетают многие виды патогенных микроорганизмов. Лимфоузлы препятствуют распространению микроорганизмов в макроорганизме, являясь мощным естественным барьером

Фагоцитоз - процесс активного поглощения клетками макроорганизма попавших в него чужеродных веществ (в т.ч. микроорганизмов) с последующим их перевариваем с помощью внутриклеточных ферментов. Стадии фагоцитоза: 1) приближение фагоцита к объекту - положительный хемотаксис; 2) прилипание микроорганизма к фагоцитам - адгезия; 3) поглощение (инвагинация) микроорганизмов фагоцитами и образование фагосомы; 4) образование фаголизосомы, переваривание и гибель микроорганизма - киллинг-инактивация. Различают завершенный фагоцитоз (заканчивается полным разрушением и гибелью микроорганизма) и незавершенный (микроорганизмы внутри фагоцита не только не гибнут, но даже размножаются). Фагоцитарной активностью обладают микрофаги (это гранулярные лейкоциты - нейтрофилы, эозинофилы, базофилы) и макрофаги (подвижные - моноциты крови, фиксированные - гистиоциты, эндотелиальные и ретикулярные клетки внутренних органов и костного мозга)

Видовая реактивность клеток - отсутствие рецепторов на поверхности клеток делает невозможным адсорбцию и проникновение инфекционного агента или яда в клетку

Нормальные киллеры (клетки убийцы, NK) - это большие лимфоциты с относительно рыхлым почковидным крупным ядром и обильной цитоплазмой с содержанием большого количества цитотоксических веществ, узнающие с помощью специальных рецепторов клетки-мишени, инфицированные вирусами, онкогенные клетки и разрушающие их.

Гуморальные факторы неспецифической защиты. Многочисленны, содержатся в крови и других жидкостях организма человека, вырабатываются Т-лимфоцитами и макрофагами. К ним относят:

Комплемент - неспецифическая ферментная система крови, состоящая из 9 различных протеиновых фракций, адсорбирующихся в процессе каскадного присоединения на комплексе антиген + антитело и оказывающих лизирующее действие на связанные антителами клеточные антигены

Лизоцим - белок, содержащийся в слюне, крови, слезной и тканевой жидкости, активен в отношении грамположительных бактерий, т.к. нарушает синтез муреина в клеточной стенке.

в-лизины - освобождаются из лейкоцитов и более активны по отношению к грамотрицательным бактериям

лейкины - протеолитические ферменты, освобождающиеся при разрушении лейкоцитов и нарушающие целостность поверхностных белков микробных клеток

интерферон - б и в, продуцируются соответственно мононуклеарными фагоцитами и фибробластами и обладают противовирусной активностью

пропердин - комплекс белков, обладающих противовирусной, антибактериальной активностью в присутствии солей магния, вызывая лизис микроорганизмов и усиливая фагоцитарную реакцию и воспалительный процесс

эритрин - обладает ингибирующим действием на коринебактерии дифтерии и высвобождается при разрушении эритроцитов

нормальные антитела - обнаруживаются в крови новорожденных в очень низких титрах, обладают цитофильным действием, уровень их возрастает под действием микроорганизма как пускового сигнала. Образование нормальных антител генетически запрограммировано, они экспрессируются на поверхностных мембранах незрелых В-лимфоцитов в виде рецепторов

Факторы саморегуляции: В основе антиинфекционного иммунитета лежит также способность организма к саморегуляции. Эта форма иммунитета, прежде всего, проявляются повышением температуры тела, губительно сказывающейся на жизнедеятельности многих бактерий и, особенно, вирусов в результате непосредственного влияния или изменения рН и окислительно-восстановительного потенциала (rН2) пораженных тканей. Большое значение в обеспечении естественного иммунитета имеет усиление выделительных функций организма, выведение микроорганизмов и их токсинов с мочой, испражнениями, мокротой и другими экскретами.

Неспецифический иммунитет

Во главу своей системы И. И. Мечников ставил фагоцит, или клетку. Против такой трактовки яростно выступали сторонники “гуморального” иммунитета Э. Беринг, Р. Кох, П. Эрлих (Нобелевские премии 1901, 1905 и 1908 гг.). Латинское “гумор” или “юмор” означает жидкость, в данном случае имелась в виду кровь и лимфа. Все трое считали, что организм защищается от микробов с помощью особых веществ, плавающих в гуморах. Их назвали “а н т и т о к с и н ы” и “а н т и т е л а”.

Нужно отметить прозорливость членов Нобелевского комитета, которые еще в 1908 г. попытались примирить две противоборствующие теории иммунитета, наградив И. И. Мечникова и немца Пауля Эрлиха. Потом премии иммунологам посыпались как из рога изобилия (см. Приложение).

Ученик Мечникова бельгиец Ж. Борде открыл в крови особое вещество.Оно оказалось белком, который помогает антителам распознать антиген.

А н т и г е н а м и называют вещества, которые при попадании в организм стимулируют выработку а н т и т е л. В свою очередь, антитела представляют собой высокоспецифические белки. Связываясь с антигенами (например бактериальными токсинами), они нейтрализуют их, не давая разрушать клетки. А н т и т е л а синтезируются в организме лимфоцитами или клетками лимфы. Л и м ф о й греки называли чистую и прозрачную воду подземных ключей и источников. Лимфа, в отличие от крови, прозрачная желтоватая жидкость. Лимфоциты находятся не только в лимфе, но и в крови. Однако попадания антигена в кровь еще не достаточно для того, чтобы начался синтез антител. Необходимо, чтобы антиген был поглощен и переработан фагоцитом, или макрофагом. Таким образом, мечниковский макрофаг стоит в самом начале иммунного ответа организма. Схема этого ответа может выглядеть следующим образом:

Антиген - Макрофаг - ? - Лимфоцит - Антитела - Инфекционный агент

Можно сказать, что вокруг этой простенькой схемки вот уже столетие кипят страсти. Иммунология стала теорией медицины и важной биологической проблемой. Здесь завязываются молекулярная и клеточная биология, генетика, эволюция и многие другие дисциплины. Неудивительно, что именно иммунологи получили львиную долю биомедицинских Нобелевских премий.

Воспаление как механизм неспецифического иммунитета

Воспаление - реакция организма на чужеродные микроорганизмы и продукты тканевого распада. Это основной механизм е с т е с т в е н н о г о (врожденного, или неспецифического) иммунитета, равно как начальный и заключительный этапы иммунитета п р и о б р е т е н н о г о. Как и всякая защитная реакция, оно должно сочетать способность распознавать чужеродную для организма частицу с действенным способом ее обезвреживания и удаления из организма. Классический пример - воспаление, вызванное занозой, прошедшей под кожу и загрязненной бактериями.

В норме стенки кровеносных сосудов непроницаемы для компонентов крови - плазмы и форменных элементов (эритроцитов и лейкоцитов). Повышенная проницаемость для плазмы крови -следствие изменения стенки сосудов, образования "щелей" между плотно прилегающими друг к другу клетками эндотелия. В районе занозы наблюдается торможение движения эритроцитов и лейкоцитов (клеток белой крови), которые начинают как бы липнуть к стенкам капилляров, образуя “пробки”. Два типа лейкоцитов - моноциты и нейтрофилы - начинают активно “протискиваться” из крови в окружающую ткань между клетками эндотелия в районе формирующегося воспаления.

Моноциты и нейтрофилы предназначены для фагоцитоза - поглощения и разрушения посторонних частиц. Целенаправленное активное движение к очагу воспаления носит название х е м о т а к с и с а. Придя к месту воспаления, моноциты превращаются в макрофаги. Это клетки с тканевой локализацией, активно фагоцитирующие, с “липкой” поверхностью, подвижные, как бы ощупывающие все, что находится в ближайшем окружении. Нейтрофилы также приходят в очаг воспаления, и их фагоцитирующая активность возрастает. Фагоцитирующие клетки накапливаются, активно поглощают и разрушают (внутриклеточно) бактерии и обломки клеток.

Активизация трех главных систем, участвующих в воспалении, определяет состав и динамику “действующих лиц”. Они включают систему образования кининов, систему комплемента и систему активированных фагоцитирующих клеток.

Образование кининов

Каким образом защитные клетки, циркулирующие в крови или осевшие в органах и тканях иммунной системы, получают и воспринимают сигналы опасности микробной агрессии? Как обеспечивается строгая последовательность включения отдельных типов клеток в борьбе с инфекцией?

Среди продуктов, нарабатываемых макрофагами в очаге инфекции, есть особые молекулы, получившие название фактор некроза опухолей (ФНО). Название связано с цитотоксичностью этих молекул, то есть с их способностью убивать клетки-мишени, в том числе опухолевые клетки. Рецепторы для этого фактора обнаружены на поверхности всех ядерных клеток организма, он способен вмешиваться в самые разные процессы. ФНО имеет непосредственное отношение к мобилизации клеток макрофагов в очагах инфекции.

Роль Т-лимфоцитов в иммунном ответе

Хотя иммунный ответ запускает макрофаг, только лимфоциты имеют специальные рецепторы для распознавания чужеродных молекул “антигенов” и обеспечивают иммунный ответ. Одновременно два сигнала активации идут с поверхности Т-лимфоцитов к ядру: от антиген-распознающего рецептора и от рецептора, связавшего ИЛ-1. Под действием этого двойного сигнала в геноме Т-лимфоцитов активируются гены как самого ИЛ-2, так и гены рецепторов, специфичных для ИЛ-2. После этого продукт Т-лимфоцитов ИЛ-2 начинает воздействовать на клетки, в которых он и был синтезирован: в этих клетках активируется процесс деления. В результате усиливаются функции всей популяции Т-лимфоцитов, участвующих в специфическом иммунном ответе на данный антиген (рис.8).

Характер иммунного ответа зависит от присутствия определенных цитокинов в микроокружении Т-лимфоцитов в момент распознавания антигена и активации. Если в этот момент в окружающей среде преобладает интерлейкин-4, клетки Т-лимфоцитов превращаются в активированных Т-хелперов (помощников) и начинают синтезировать тот же ИЛ-4, а также ИЛ-5,6,7,10. Эти интерлейкины активируют через соответствующие рецепторы деление В-лимфоцитов, их созревание в плазматические клетки, а также начинающийся синтез специфических для данного антигена антител-иммуноглобулинов. Это объясняет, почему в данном случае Т-лимфоциты выступают в роли Т-хелперов, то есть помощников В-лимфоцитов в их основном деле - наработке запаса защитных молекул - антител (см. рис. 8).

Но и этим не исчерпываются возможные функции Т-лимфоцитов. Они держат весь иммунный ответ под контролем, не допуская чрезмерной активации отдельных иммунокомпетентных клеток, которая чревата осложнениями. Инструментами такого контроля служат цитокины, способные не только активировать (усиливать), но и подавлять (ингибировать) функции других клеток.

Между Т-лимфоцитами и макрофагами существует двухсторонняя связь. Первые получают от макрофагов сигнал активации в виде молекулы интерлейкина-1, для восприятия которого имеют на поверхности соответствующие рецепторы (рис. 9). От рецепторов идет сигнал активации генов Т-лимфоцитов, заведующих синтезом ИЛ-2 и гамма-интерферона. Рецепторы Т-лимфоцитов распознают ИЛ-2. После того, как последний садится на рецептор, от него поступает сигнал дальнейшей активации синтезов в клетках Т-лимфоцитов и начала деления клетки. Что касается гамма-интерферона, то эти молекулы направляются в виде ответного послания макрофагу, на поверхности которого их ждут соответствующие рецепторы. Гамма-интерферон не зря называют макрофаг-активирующим фактором. Связавшись со своим рецептором на внешней поверхности клетки-макрофага, он посылает к ядру этой клетки сигналы активации нескольких десятков генов, в том числе гена, ответственного за синтез интерлейкина-1. В результате Т - лимфоциты получают от активированного макрофага новую порцию активирующих их молекул ИЛ-1 (рис. 9).

Система образования кининов обнаруживает чужеродное тело по его отрицательно заряженной поверхности. На ней адсорбируется так называемый фактор Хагемана (ФХ) - один из начальных компонентов системы свертывания крови. Этот белок присутствует в крови и имеет сродство к отрицательно заряженным поверхностям. Поверхности же собственных клеток устроены так, что они не адсорбируют ФХ и не индуцируют тем самым дальнейшую цепь событий. Это самый простой и примитивный способ отличать “свое” от “не своего”, используемый организмом в естественном иммунитете. Вторая особенность системы образования кининов - ряд каскадных усилений начальной реакции, резко повышающих эффект первичных взаимодействий.

Таким образом, “точечная” начальная реакция на чужеродной поверхности порождает макроскопические, видимые простым глазом физиологические изменения в формирующемся очаге воспаления.

иммунитет вирусный инфекция клетка

Система комплемента и ее активация

Комплементом называются сложный комплекс белков (около 20), которые, так же как и белки, участвующих в процессе свертывания крови, фибринолиза и образования кининов, формирует каскадные системы, обнаруженные в плазме крови. Для этих систем характерно формирование быстрого, многократно усиленного ответа на первичный сигнал за счет каскадного процесса. В этом случае продукт одной реакции служит катализатором последующей.

Ряд компонентов системы комплемента обозначают символом “С” и цифрой. В наибольшей концентрации в сыворотке крови присутствует компонент С3 (1,2 мг/мл). Система комплемента представлена, главным образом, неактивными предшественниками протеаз, действующих на белки. Активация системы в е с т е с т в е н н о м, то есть врожденном, иммунитете начинается с его третьего компонента С3 (рис. 10).

Конечный компонент системы комплемента (С9) включается в комплекс, атакующий мембрану бактерий. Присоединяя к себе несколько таких же, как и он сам, молекул, он погружается в мембрану и полимеризуется в кольцо. Образуются поры, “продырявливающие” оболочку бактерии, что ведет к ее гибели. Таким образом система комплемента распознает чужеродную клетку и запускает цепную реакцию активации биологически активных белков. Это ведет к приобретению комплексом токсической активности и гибели бактериальной клетки.

Т у ч н ы е к л е т к и активно синтезируют и хранят большие запасы мощного медиатора воспаления - гистамина. Тучные клетки рассеяны повсеместно в соединительной ткани и особенно вдоль кровеносных сосудов.

Когда к ним присоединяются пептиды, тучные клетки секретируют гистамин в окружающую среду. Эндотелий капилляров под его воздействием выделяет сосудорасширяющие вещества, и поток крови через очаг воспаления существенно возрастает. Между клетками эндотелия образуются “щели”, плазма выходит из капилляров в зону воспаления, свертывается и изолирует тем самым распространение инфекции из очага. По градиенту концентрации гистамина фагоциты “поднимаются” к источнику воспаления. Гистамин действует активно и быстро, благодаря чему и является медиатором острой фазы воспаления.

Возвращаясь к комплементу, следует еще раз подчеркнуть многонаправленность его действия (токсичность для микроорганизмов, усиление фагоцитоза, генерация медиаторов воспаления) и каскадное усиление всех направлений его активности.

Система комплемента стоит в центре формирования воспаления и прямо ведет к его важнейшему компоненту - фагоцитозу.

Фагоцитоз

Громадная роль фагоцитоза не только во врожденном, но и в приобретенном иммунитете становится все более очевидной благодаря работам последнего десятилетия. Фагоцитоз начинается с накопления фагоцитов в очаге воспаления. Главную роль в этом процессе играют моноциты и нейтрофилы. Моноциты, придя в очаг воспаления, превращаются в макрофаги - тканевые фагоцитирующие клетки. Фагоциты, взаимодействуя с бактериями, активируются, их мембрана становится “липкой”, в цитоплазме накапливаются гранулы, наполненные мощными протеазами. Возрастают поглощение кислорода и генерация активных форм кислорода (кислородный взрыв), включая перекиси водорода и гипохлорита, а также окись азота

В дополнение к перечисленным признакам активации, макрофаги начинают выделять в среду мощные медиаторы воспаления, среди которых особой активностью отличаются фактор некроза опухолей (ФНО), гамма-интерферон (Int-y) и интерлейкин-8 (ИЛ-8). Все они являются биологически активными пептидами.

Какова же их роль в воспалении? Начнем с ФНО. Этот небольшой белок, синтезируемый и секретируемый макрофагами, обладает множественной активностью. Он активирует сами же макрофаги и нейтрофилы, а также индуцирует синтез и появление на мембране клеток сосудистого эндотелия особых белков, специфически взаимодействующих с клеточной поверхностью моноцитов и нейтрофилов. Поверхность эндотелия благодаря этому становится “липкой” для этих клеток.

ИЛ-8 вызывает появление в клетках эндотелия рецепторов, реагирующих с моноцитами и нейтрофилами с высоким сродством, так что эти клетки останавливаются в капиллярах в районе воспаления. Именно IL-8, наряду с другими факторами воспаления, стимулирует моноциты и нейтрофилы к миграции по его градиенту в очаг воспаления. Фагоциты имеют рецепторы к интерлекину-8, которые “чувствуют” разницу в его концентрации и направляют свое движение по оси максимального отличия

Гамма-интерферон также “многоцелевой” медиатор воспаления. Одна из главных его функций - аутоактивация макрофагов и активация нейтрофилов. В этих клетках резко усиливается синтез протеаз, которые накапливаются в специальных цитоплазматических органеллах - лизосомах. В них происходит “кислородный взрыв” - продукция активных форм кислорода и окиси азота, высокотоксичных для микроорганизмов. Поверхность фагоцитов становится “липкой”, т.к. количество различных рецепторов на ней резко увеличивается, как увеличивается и “ощупывающая” подвижность цитоплазмы этих клеток. Когда такая клетка встречается с бактерией, то она "прилипает" к поверхности фагоцита, обволакивается его псевдоподиями и оказывается внутри клетки (где и разрушается протеазами).

Так заканчивается цикл “воспаление - фагоцитоз”. Мы видим, насколько мощный и многогранный защитный механизм действует в этом случае. Однако его слабость в его однообразии, как бы в монотонности механизма, срабатывающего одинаково при встрече с различными врагами. Естественно, что многообразные и многочисленные популяции микроорганизмов вырабатывают обходные пути для проникновения в организм.

Специфический иммунитет

А. Гуморальный и клеточный иммунитет

В зависимости от функций лимфоцитов, специфический иммунитет принято делить также на г у м о р а л ь н ы й и к л е т о ч н ы й. В-лимфоциты в данном случае ответственны за гуморальный, а Т-лимфоциты - за клеточный иммунитет. Гуморальный иммунитет назван так потому, что его иммуноциты (В-клетки) вырабатывают антитела, способные отделяться от клеточной поверхности. Продвигаясь по кровяному или лимфатическому руслу - гумору (от. лат. humor - жидкость), антитела поражают чужеродные тела на любой дистанции от лимфоцита. К л е т о ч н ы м иммунитет именуют потому, что Т-лимфоциты (преимущественно Т-киллеры) вырабатывают рецепторы, жестко фиксированные на клеточной мембране, и служат Т-киллерам эффективным оружием для поражения чужеродных клеток при непосредственном контакте с ними.

На периферии зрелые Т- и В-клетки располагаются в одних и тех же лимфоидных органах - частично изолированно, частично в смеси. Но что касается Т-лимфоцитов, то их пребывание в органах непродолжительно. “Вечные странники” постоянно в движении. Срок их жизни (месяцы и годы) способствует им в этом. Т-лимфоциты многократно покидают лимфоидные органы, попадая сначала в лимфу, затем в кровь, а из крови снова возвращаются в органы. За свою жизнь лимфоцит проходит поразительно большие расстояния - от 100 до 1 млн. км. Благодаря циркуляции лимфоциты удивительно быстро появляются в “горячих точках”. Без такой способности лимфоцитов были бы невозможны своевременное их развитие, взаимодействие и эффективное участие в и м м у н н о м о т в е т е при вторжении чужеродных молекул и клеток.

Полноценное развитие г у м о р а л ь н о г о иммунного ответа требует не двух, а по крайней мере трех типов клеток. Функция каждого клеточного типа в антителопродукции строго предопределена. Макрофаги и другие фагоцитирующие клетки поглощают, перерабатывают и экспрессируют антиген в иммуногенной, доступной для Т- и В- лимфоцитов форме. Т-хелперы после распознавания антигена начинают продукцию цитокинов, обеспечивающих помощь В-клеткам. Эти последние клетки, получив специфический стимул от антигена и неспецифический от Т-клеток, начинают продукцию антител (рис. 13).

При формировании к л е т о ч н о г о типа иммунного ответа также необходима кооперация различных типов клеток.

Б. Характерные черты специфического иммунитета

Рассмотрим реакцию с п е ц и ф и ч е с к г о иммунитета на двух внешне совершенно непохожих моделях - выведении чужеродного белка и отторжении чужеродной ткани.

Чужеродный белок не вызывает ни воспаления, ни фагоцитоза. Он беспрепятственно минует первую линию защиты и непосредственно встречается со второй. Организм отличает “свое” от “не своего”, это первая особенность реакции специфического иммунитета. Так называемая иммунологическая память - вторая характерная черта реакции специфического иммунитета. Память специфична, запоминается контакт лишь с определенным белком. Специфичность запоминания очень высока, и это третья особенность реакции приобретенного иммунитета.

Иммунный ответ на чужеродную макромолекулу можно избирательно подавить, если ввести ее в развивающийся организм внутриутробно или в первые часы после рождения. Способность отличать введенный чужеродный белок от собственного у такого животного утрачивается после рождения. Подавление реакции строго специфично - оно распространяется только на белок, введенный в процессе развития. Это явление носит название т о л е р а н т н о с т и (терпимости). Оно составляет четвертую неотъемлемую особенность элементарной реакции п р и о б р е т е н н о г о, или с п е ц и ф и ч е с к о г о, иммунитета. Четыре признака реакции неразделимы, они всегда вместе.

Приобретенный иммунитет широко используется для вакцинации. Введение ослабленных или убитых микробов (или выделенных из них макромолекул) вызывает иммунологическую реакцию. Вакцинация является основным способом предупреждения таких страшных заболеваний как оспа, туберкулез, полиомиелит, сибирская язва и многих других. Приобретенный иммунитет составляет основное препятствие для пересадок органов (сердце, почки, печень) и ткани (кожа) от одного человека к другому. Для преодоления этого барьера несовместимости пользуются препаратами, подавляющими иммунную систему.

В. Антитела и антиген-распознающие рецепторы лимфоцитов

Вещество, способное вызывать реакцию приобретенного иммунитета, носит название а н т и г е н а. Антигеном может быть не всякое вещество. Оно должно быть чужеродным, макромолекулярным и иметь устойчивую химическую структуру. К типичным антигенам относятся белки и полисахариды.

Когда свободный антиген циркулирует в крови, в ответ на него появляются защитные белки - антитела, которые специфически распознают его и образуют с ним комплекс. Антитела обезвреживают антиген, если он токсичен (бактериальный токсин, змеиный яд или болезнетворный вирус), и способствуют выведению его из организма.

При отторжении трансплантата главная роль принадлежит особой разновидности лимфоцитов Т - к и л л е р а м, “убийцам”. Эти лимфоциты несут на своей наружной мембране антителоподобные рецепторы - рецепторы Т-клеток (РТК). РТК специфически распознают антиген, находящийся на мембране чужеродных клеток, и обеспечивают прикрепление Т-киллера к клетке-мишени. Это необходимо для осуществления киллером своей смертоносной функции. Прикрепившись, они выделяют в просвет между собой и мишенью особый белок, “продырявливающий” мембрану клетки-мишени, в результате чего клетка гибнет. Затем они открепляются от мишени и переходят на другую клетку, и так несколько раз. При повторной встрече организма с антигеном образуется больше антител и киллеров, они появляются в более короткие сроки, чем при первой встрече. В этом и проявляется иммулогическая память, и на этом основан эффект вакцинации

Как устроены антитела и рецепторы лимфоцитов? Очевидно, что их структура должна быть необычной, так как они строго специфически распознают громадное множество различных антигенов - любой чужеродный белок, полисахарид или синтетическую молекулу, вообще в природе не встречающиеся. При этом антитела и Т-лимфоциты, как правило, не реагируют с белками и клетками собственного организма. Как природа решает эту задачу?

Принцип строения антитела и РТК представлен на рис. 15. Часть молекулы антитела, которая связывается с антигеном, очень изменчива, поэтому ее называют в а - р и а б е л ь но й (V). V-часть концентрируется на самом кончике антитела, поэтому защитную молекулу можно сравнить с пинцетом, ухватывающим с помощью острых концов мельчайшие детали самого замысловатого часового механизма. Активный центр распознает в молекуле антигена небольшие участки, состоящие из 4 - 8 аминокислот. Эти участки антигена подходят к структуре активного центра, “как ключ к замку”.

Разнообразие активных центров очень велико, не менее 107 -10 8. Этого вполне достаточно для специфического распознавания любого произвольно взятого антигена антителами и РТК (а точнее, их активными центрами).

Следует подчеркнуть, что весь репертуар антител или РТК. он возникает до встречи с антигеном и независимо от антигена, а большая часть антител не потребуется в течение всей жизни особи.

Г. Клеточные механизмы иммунитета

Как сказано, в организме предсуществуют антитела и РТК к любому произвольно взятому антигену. Эти антитела и РТК присутствуют на поверхности лимфоцитов, образуя там антигенраспознающие рецепторы. Чрезвычайно важно, что один лимфоцит может синтезировать антитела (или РТК) только одной специфичности, не отличающиеся друг от друга по структуре активного центра. Это формулируется как принцип “один лимфоцит - одно и антитело”.

Каким же образом антиген, попадая в организм, вызывает усиленный синтез именно тех антител, которые специфично реагируют только с ними? Ответ на этот вопрос дала теория селекции клонов австралийского исследователя Ф.М. Бернета. Согласно этой теории, одна клетка синтезирует лишь один тип антител, которые локализуются на ее поверхности. Репертуар антител формируется до и независимо от встречи с антигеном. Роль антигена заключатся лишь в том, чтобы найти клетку, несущую на своей мембране антитело, реагирующее именно с ним, и активировать эту клетку. Активированный лимфоцит вступает в деление и дифференцировку. В результате из одной клетки возникает 500 - 1000 генетически идентичных клеток (клон). Клон синтезирует один и тот же тип антител, способных специфически распознавать антиген и соединяться с ним (рис. 16). В этом и заключается суть иммунного ответа: селекции нужных клонов и их стимуляции к делению.

В основе образования лимфоцитов-киллеров тот же принцип: селекция антигенов Т-лимфоцита, несущего на своей поверхности РТК нужной специфичности, и стимуляция его деления и дифференцировки. В результате образуется клон однотипных Т-киллеров. Они несут на своей поверхности большое количество РТК. Последние взаимодействуют с антигеном, входящим в состав чужеродной клетки, и способных убивают эти клетки.

Киллер ничего не может сделать с растворимым антигеном - ни обезвредить его, ни удалить из организма. Но лимфоцит-киллер очень активно убивает клетки, содержащие чужеродный антиген. Поэтому он проходит мимо растворимого антигена, но не пропускает антиген, находящийся на поверхности “чужой” клетки.

Детальное изучение реакции иммунитета показало, что для образования клона клеток, продуцирующих антитела, или клона Т-киллеров необходимо участие специальных лимфоцитов-помощников (Т-хэлперов). Сами по себе они не способны ни вырабатывать антитела, ни убивать клетки-мишени. Но, распознавая чужеродный антиген, они реагируют на него выработкой ростовых и дифференцированных факторов. Данные факторы необходимы для размножения и созревания антителообразующих и киллерных лимфоцитов. В этой связи интересно вспомнить о вирусе СПИДа, вызывающем сильное поражение иммунной системы. Вирус ВИЧ поражает именно Т-хэлперы, делая иммунную систему не способной ни к выработке антител, ни к образованию Т-киллеров.

Д. Эффекторные механизмы иммунитета

Как антитела или Т-киллеры удаляют из организма чужеродные вещества или клетки? В случае киллеров РТК выполняют лишь функцию “наводчика” - они распознают соответствующие мишени и прикрепляют к ним клетку-убийцу. Так распознаются клетки, зараженные вирусом. Сам по себе РТК не опасен для клетки-мишени, но “идущие за ним” Т-клетки представляют огромный разрушительный потенциал. В случае антител мы встречаемся со сходной ситуацией. Сами по себе антитела безвредны для клеток, несущих антиген, но при встрече с антигенами, циркулирующими или входящими в состав клеточной стенки микроорганизма, к антителам подключается с и с т е м а к о м п л е м е н т а. Она резко усиливает действие антител. Комплемент сообщает образующемуся комплексу антиген - антитело биологическую активность: токсичность, сродство с фагоцитирующим клеткам и способность вызывать воспаление.

Первый компонент этой системы (С3) распознает комплекс антиген - антитело. Распознавание ведет к появлению у него ферментативной активности к последующему компоненту. Последовательная активация всех компонентов системы комплемента имеет ряд последствий. Во-первых, происходит каскадное усиление реакции. При этом продуктов реакции образуется несравнимо больше, чем исходных реагирующие веществ. Во-вторых, на поверхности бактерии фиксируются компоненты (С9) комплемента, резко усиливающих фагоцитоз этих клеток. В-третьих, при ферментативном расщеплении белков системы комплемента образуются фрагменты, обладающие мощной воспалительной активностью. И, наконец, при включении в комплекс антиген-антитело последнего компонента комплемента этот комплекс приобретает способность “продырявливать” клеточную мембрану и тем самым убивать чужеродные клетки. Таким образом, система комплемента - важнейшее звено в защитных реакциях организма.

Однако комплемент активируется любым комплексом антиген-антитело, вредным или безвредным для организма. Воспалительная реакция на безвредные антигены, регулярно попадающие в организм, может вести к аллергическим, то есть извращенным, реакциям иммунитета. Аллергия развивается при повторном попадания антигена в организм. Например, при повторном введении антитоксичных сывороток, или у мукомолов на белки муки, или при многократной инъекции фармацевтических препаратов (в частности, некоторых антибиотиков). Борьба с аллергическими болезнями состоит в подавлении либо самой реакции иммунитета, либо в нейтрализации образующихся при аллергии веществ, вызывающих воспаление.

Размещено на Allbest.ru

...

Подобные документы

    Обзор механизмов лимфоидного аппарата адаптивного иммунитета. Система образования кининов. Рецепторы клеток врожденной иммунной системы. Характеристика сигналов и их реализации. Особенности взаимодействия плазменных белков, их участие в иммунных реакциях.

    курсовая работа , добавлен 02.03.2013

    Исследование иммунной системы человека. Изучение особенностей формирования неспецифического иммунитета. Анализ естественной, врожденной и приобретенной форм иммунитета. Описания функций клеток памяти и эффекторов, системы комплемента, структуры антигена.

    презентация , добавлен 13.12.2012

    Иммунитет – способ защиты организма от болезнетворных микроорганизмов за счет выработки антител. Обзор схемы клеточного и гуморального иммунитета. Нарушения фагоцитарной системы. Методы оценки иммунитета. Реакция иммунного гемолиза и цитотоксический тест.

    презентация , добавлен 11.11.2014

    Понятие и виды иммунитета, назначение иммунной системы. Факторы и признаки ослабления иммунитета, методы его повышения. Механизм действия иммунитета: макрофаги, Т-хэлперы, В-лимфоциты, выработка иммуноглобулинов (антител), Т-супрессоры, клетки-киллеры.

    реферат , добавлен 09.02.2009

    Формы, механизмы, органы, регуляция иммунитета. Субпопуляции Т-лимфоцитов, их функции. История открытия регуляторных Т-клеток. Эффективность микробиологической диагностики. Иммунная регуляторная система. Будущее трансплантологии, технические трудности.

    контрольная работа , добавлен 11.05.2016

    Система иммунитета организма и ее функции. Виды клеток иммунной системы (лимфоциты, фагоциты, гранулярные лейкоциты, тучные клетки, некоторые эпителиальные и ретикулярные клетки). Селезенка как фильтр крови. Клетки-убийцы как мощное оружие иммунитета.

    презентация , добавлен 13.12.2015

    Исследование роли микроорганизмов в процессах аммонификации, нитрофикации, денитрификации. Виды иммунитета - реакции организма, направленной на его защиту от внедрения чужеродного материала. Разложение пектиновых веществ. Анаэробное брожение клетчатки.

    контрольная работа , добавлен 19.05.2012

    Жизненный и творческий путь Ильи Ильича Мечникова – выдающегося русского ученого-биолога. Вклад Мечникова в развитие иммунологии. Фагоцитарная теория иммунитета. Развитие идей И.И. Мечникова в России и за рубежом, их практическое воплощение в жизнь.

    реферат , добавлен 25.05.2017

    Специфические факторы противовирусного иммунитета и синтез антител к определенному антигену. Клетки памяти и выдача иммунного ответа в форме биосинтеза антител. Распространение инфекционного бронхита птиц и ящера. Культивирование вирусов в клетках.

    контрольная работа , добавлен 17.11.2010

    Общая характеристика B-лимфоцитов. Характеристика субпопуляций, рецепторы и маркеры В-лимфоцитов. Антигенраспознающие рецепторы B-клеток: общая характеристика. Субпопуляции В-лимфоцитов, распознание антигенов рецепторами иммуноглобулиновой природы.

В процессе эволюции сформировалась сложная система защиты организма от внедрения чужеродных и патогенных агентов, состоящая из центральных и периферических органов и тканей, и названная иммунной системой. Главная задача этой системы – уничтожение проникшего в организм инородного агента или клеток организма, приобретших признаки «чужого».

Основными звеньями этой системы являются иммунокомпетентные клетки – Т- и В-лимфоциты, моноциты, , полиморфноядерные , NK-клетки, дендритные клетки и др.

Координация функционирования различных звеньев иммунной системы осуществляется с помощью цитокинов – полипептидов, продуцируемых клетками и являющихся средством коммуникации между ними.

– это единый процесс взаимодействия клеточных, гуморальных, общефизиологических реакций организма на чужеродный (в т.ч. вирусный) агент.

Различают неспецифический (естественный, врожденный) и специфический (адаптивный, приобретенный). Защита организма является результатом совместного действия многих звеньев неспецифического и специфического иммунитета.

Начальной реакцией организма на внедрение вирусного агента, является экспрессия антивирусных цитокинов, таких как?- ИФН и?-ИФН, которые оказывают прямой антивирусный эффект. Эти ИФН взаимодействуют со своими рецепторами и передают сигнал ядру клетки. Включаются гены белков, ингибирующих репликацию вируса в клетке.

ИФН также играют доминирующую роль в активации клеток естественного иммунитета (NK-клеток и макрофагов) и адаптивного иммунного ответа (CD8 + -Т-лимфоцитов).

При этом происходит активация хемокинов, привлекающих к входным воротам инфекции гранулоциты и ; синтез макрофагами ИЛ-1 (интерлейкин-1) и ФНО (), усиление адгезии циркулирующих лейкоцитов к эндотелию сосудов с выходом из сосудов и миграцией в очаг инфекции. ИЛ-1 с током крови попадает в мозг и воздействует на центр терморегуляции, приводя к повышению температуры тела, что также является одним из механизмов защиты организма.

Кроме того ИЛ-1 служит сигналом к активации CD4 + -Т-лимфоцитов, которые, в свою очередь, секретируют ИЛ-2 и?-ИФН. Эти активируют NK-клетки и CD8 + -Т-лимфоциты, которые с помощью цитотоксина перфорина вводят в инфицированную вирусом клетку растворимые белки (протеолитические и липолитические ферменты), приводящие к гибели клетки-мишени. Причем антивирусный потенциал NK-клеток и цитотоксических лимфоцитов (ЦТЛ) обусловлен не только цитолитическими свойствами этих эффекторных клеток, но и их способностью продуцировать?-ИФН и ФНО с подключением механизмов опосредованного апоптоза.

НЕСПЕЦИФИЧЕСКИЙ ПРОТИВОВИРУСНЫЙ ИММУНИТЕТ

Главной задачей неспецифического иммунитета является быстрое реагирование на внедрение чужеродного патогенного агента.

Для неспецифического иммунитета характерно наличие следующих звеньев.

(а также моноциты, полиморфноядерные лейкоциты-гранулоциты) играют самостоятельную роль в противовирусном иммунитете: они имеют значение в фагоцитозе вирусов и, особенно, комплексов вирусных () со специфическими антителами (). Помимо этого макрофаги вовлечены в кооперацию с Т-клетками (посредством секретируемого ими ИЛ-1), обеспечивающими специфический адаптивный иммунитет. При этом макрофаги наряду с дендритными клетками образуют группу антигенпрезентирующих клеток (АПК).

Дендритные клетки – это популяция клеток, которые, как и макрофаги, обладают способностью презентировать Т- и В-лимфоцитам. Незрелые дендритные клетки – это многоядерные подвижные клетки, больше всего их содержится в коже и эпителии (клетки Лангерганса), которые, после захвата вируса и расщепления его до пептидов, начинают синтезировать?-ИФН и перемещаются в лимфатические узлы, где оседают и становятся неподвижными АПК. Дендритные клетки повышают продукцию?-ИФН и усиливают цитотоксические функции NK-клеток.

Система ИФН состоит из двух классов: в первый входят?-ИФН (по старой терминологии – лейкоцитарный; около 20 подтипов) и?-ИФН (фибробластный; 1 подтип); второй класс ИФН представлен?-ИФН. ИФН система является первой линией обороны при внедрении вируса и активируется в считанные минуты и часы. Интерфероны являются частью цитокиновой сети и выделение их в отдельную систему обусловлено их ролью в защите от вирусов. Гены ИФН 1-го класса имеются в геноме всех клеток (в 9 хромосоме) и, как и гены других цитокинов, активируются лишь при поступлении соответствующего сигнала. ИФН обладают паракринным свойством, т.е. действуют не на свою клетку, а на соседние. ИФН 1-го класса обладают выраженным противовирусным действием. ?-ИФН, ген которого имеется в иммуннокомпетентных клетках (CD4 + , CD8 +) и локализуется в хромосоме 12, играет существенную роль в иммунных процессах, в частности в развитии клеточного иммунитета. Под влиянием?-ИФН Т-хелперы приобретают способность синтезировать (кроме?-ИФН) еще ИЛ-2, ИЛ-12 и ряд других цитокинов, потенцирующих клеточный иммунитет. ?-ИФН повышает способность макрофагов фагоцитировать вирусы.

Кроме того, оба класса интерферонов повышают уровень экспрессии антигенов главного комплекса гистосовместимости I класса (МНС I), принимающих участие в презентации захваченного вирусного пептида на поверхности инфицированной клетки, тем самым делая ее узнаваемой для цитотоксических CD8 + -Т-лимфоцитов.

Система цитокинов . Профиль цитокинов определяется двумя субпопуляциями CD4 + -Т-хелперов (Th1 и Th2), образование которых происходит из так называемых Th0-лимфоцитов. , продуцируемые Th1-лимфоцитами – ?-ИФН, ИЛ-2, ИЛ-12 – усиливают клеточный иммунитет, при котором клетки с рецепторами CD8 + играют важную роль в борьбе с инфекцией: ингибируют гуморальный иммунитет, в результате чего оказывают защитный эффект при инфекционных агентах, которые инактивируются в основном благодаря реакциям клеточного иммунитета.

Продуцируемые Th2-лимфоцитами – ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-10, ИЛ-13, усиливают гуморальный иммунитет, т.е. они больше связаны с участием антител, и ингибируют клеточный иммунитете, в результате чего оказывают защитный эффект при патогенных агентах, удаляемых с помощью реакций гуморального иммунитета.

Естественные киллеры (NK -клетки) – это особая субпопуляция лимфоидных клеток, у которых отсутствуют антигенспецифические поверхностные рецепторы и нет узкой специализации, характерной для CD4 + — и CD8 + -Т-лимфоцитов.

До сих пор остается не вполне ясным, какие молекулярные механизмы и структуры важны для распознавания NK-клетками вирус-инфицированных клеток-мишеней. Рецепторы, отвечающие за индукцию NK-цитотоксичности, распознают на клетках-мишенях лиганды, которые, очевидно, отличаются от молекул МНС I, а активация NK-клеток в основном не является МНС-рестриктированным процессом.

NK-клетки реагируют на чужеродные структурные компоненты вирусов и эффективно лизируют инфицированные вирусом клетки и клетки опухолей. Главным преимуществом этих клеток является их способность действовать без промедления в качестве эффекторных клеток и ограничивать распространение вирусной инфекции на ранних этапах. Механизм цитотоксического действия NK-клеток связан с синтезом цитокина, белки которого относятся к классу перфоринов. После связывания перфорина с рецептором клетки-мишени через образующиеся каналы в клетку поступают гранзимы, приводящие клетку-мишень к гибели. Кроме того, NK-клетки продуцируют ряд цитокинов, принимающих участие в иммунных процессах (?-ИФН, хемокины и др.).

СПЕЦИФИЧЕСКИЙ ПРОТИВОВИРУСНЫЙ ИММУНИТЕТ

Специфический, или адаптивный, противовирусный иммунитет (в отличие от естественного, врожденного, иммунитета) определяется уникальными свойствами иммунных Т- и В-лимфоцитов избирательно отвечать на чужеродные, в т.ч. вирусные, антигены и формировать специфическую иммунную память, выражающуюся в усиленной и ускоренной реакции на повторную встречу с этим же инфекционным агентом.

На поверхности лимфоцитов имеются индивидуальные антигенсвязывающие рецепторы, благодаря которым они способны избирательно распознавать и специфически взаимодействовать с чужеродным антигеном (антигенными детерминантами, или эпитопами) в силу комплементарности (стерического соответствия, сродства). Сродство пространственных конфигураций обусловливает взаимодействие антигенных детерминант вируса с рецепторами Т- и В-лимфоцитов. В результате этого в лимфоцитах активируются метаболические процессы и лимфоциты приобретают способность пролиферировать в клоны абсолютно идентичных клеток, дифференцироваться в более зрелые клетки, выполняющие определенные эффекторные функции. Согласно клонально-селекционной теории Бернетта (1971), каждому клону иммунокомпетентных лимфоцитов присущ свой уникальный по специфичности рецептор, способный взаимодействовать только с определенной антигенной детерминантой.

Основными звеньями специфического иммунитета являются две популяции лимфоцитов: Т- и В-клетки. В свою очередь, Т-лимфоциты подразделяются на несколько функционально неоднородных субпопуляций.

Иммунокомпетентные В-лимфоциты реагируют, прежде всего, на внеклеточный вирус с последующей нейтрализацией антителами его инфекционных свойств, тогда как Т-лимфоциты элиминируют инфицированные вирусом клетки организма хозяина.

В вязи с этим различают: 1) опосредованный антителами гуморальный иммунитет, зависящий от В-клеток лимфоидной системы; 2) клеточный иммунитет, опосредованный Т-лимфоцитами.

Иммунные реакции как опосредованные Т-клетками, так и гуморальными антителами играют большую роль в противовирусной защите организма.

Клеточно-опосредованный специфический иммунитет. Механизмы клеточного противовирусного иммунного ответа организма в целом очень сложны и основаны на кооперации различных типов клеток – АПК (макрофагов и дендритных клеток), NK, Th, ЦТЛ – с гуморальными факторами: специфическими антителами и неспецифическими медиаторами (ИФН, цитокины, комплемент, ингибиторы и др.).

Кооперация клеток в иммунном ответе может быть как позитивной, так и негативной.

К основным субпопуляциям специфического иммунитета относятся эффекторы цитотоксических реакций: Т-лимфоциты (CD8 + и CD4 + ЦТЛ) и уже упоминавшиеся регуляторные CD4 + типа Th1 и Th2. Известно также существование множества других субпопуляций, выполняющих самые разнообразные функции.

CD8 + ЦТЛ несут на своей поверхностной мембране комплекса молекул: Т-клеточный АГ-связывающий рецептор, CD4 и CD8 (корецепторы). Именно с помощью трех этих видов молекул ЦТЛ специфически распознают процессированные до коротких пептидов (эпитопов) вирусные антигены на поверхности клеток-мишеней, представленные в ассоциации с антигенами МНС I. Т-клеточный АГ-связывающий рецептор сходен по своей структуре с таковым В-лимфоцитов и гуморальными антителами; он также относится к рецепторным молекулам суперсемейства .

Т-лимфоциты избирательно распознают чужеродные вирусные антигены лишь в сочетании со «своими», т.е. гомологичными (генетически однородными) антигенами МНС. Этот феномен получил название МНС-рестрикции.

Антигены МНС I имеются на поверхности всех клеток, которые играют существенную роль в распознавании вирусных антигенов Т-клеточными рецепторами ЦТЛ. Функция МНС I заключается в связывании мелких вирусспецифических пептидов внутри клетки и презентировании их CD8 + -Т-лимфоцитам на поверхности клетки.

CD8 + ЦТЛ, будучи эффекторными клетками, способны осуществлять прямой цитолитический эффект с деструкцией инфицированных вирусом гомологичных клеток (МНС I-рестриктированных) посредством секретируемого ими лимфотоксина перфорина.

CD4 + -Th-клетки играют важную роль в регуляции всех иммунных противовирусных реакций, опосредованных как ЦТЛ, так и В-клетками. В результате специфической антигенной стимуляции при участии АПК Th1- либо Th2-клетки активируются и пролиферируют в клоны, необходимые для дифференцировки других клеток, способных иммунно реагировать на этот антиген.

Кроме того, установлено, что CD4 + -лимфоциты могут действовать как прямые эффекторные клетки (CD4 + ЦТЛ), экспрессирующие перфорин. Перфорин, очевидно, играет основную роль в антиген-специфической цитотоксичности, опосредованной как CD8 + , так и CD4 + ЦТЛ.

Специфический гуморальный противовирусный иммунитет. Доказана огромная роль гуморального звена иммунного ответа, обусловленного антителами, наряду с Т-клеточными факторами иммунитета в противовирусной защите. Гуморальные представляют представляют собой не что иное, как иммуноглобулиновые АГ-связывающие рецепторы В-лимфоцитов. В основе специфичности лежит соответствие, взаимная комплементарность активного центра АТ пространственной конфигурации АГ-детерминанты.

Различают тимусзависимые и тимуснезависимые антигены. В-клеточный ответ на тимуснезависимые АГ начинается с того, что АПК транспортируют вирус для прямой индукции В-лимфоцитов. Последние избирательно распознают и взаимодействуют с чужеродным АГ, после чего начинают активно пролиферировать с образованием клонов идентичных клеток с дальнейшей дифференцировкой в АТ-продуцирующие плазматические клетки, секретирующие специфические гуморальные АТ.

Большинство вирусных АГ являются тимусзависимыми, а это значит, что В-клеточный иммунный ответ на такие АГ нуждается в помощи медиаторов, продуцируемых Th2-клетками. В этом случае АПК сначала презентируют АГ-детерминанты, ассоциированные с МНС II, Т-хелперам, которые активируют В-клетки.

Несмотря на существование тимуснезависимого гуморального ответа, есть основания полагать, что тимусзависимый АТ-ответ наиболее эффективен.

Мономер молекулы иммуноглобулина (Ig) состоит из 2 идентичных тяжелых и 2 легких цепей, соединенных в определенную структуру дисульфидными связями. Каждая цепь содержит вариабельные и константные области.

Ввиду различий в константных областях тяжелых цепей подразделяются на пять классов: IgM, IgG, , IgE и IgD, значение которых в противовирусном иммунитете неодинаково. Наибольшую роль играют IgG, IgM и .

Антитела класса IgM возникают в результате первичной реакции организма на антиген. Они появляются первыми на ранних стадиях инфекции. Полагают, что они эффективны в виролизе и агглютинации вируса. IgM синтезируются без помощи CD4 + -T-клеток, но секретируемые этими клетками цитокины необходимы, как правило, для переключения с IgM на IgG.

IgG образуются в более поздние сроки, чем IgM. Они составляют 70-80 % сыворотки крови. Различают системный и локальный IgG-ответ. Гуморальные IgG играют важную роль в протективном иммунитете при острых и хронических инфекциях, они участвуют в элиминации вирусов, контролировании репликации вирусов и защите от реинфекции. IgG особенно эффективны в нейтрализации вирусов. Существенно, что антитела IgG могут проникать через плаценту от матери к плоду и обеспечивать трансплацентарный иммунитет.

Секреторные наряду с IgG определяют локальный иммунитет. Поступая из сыворотки или синтезируясь в слизистых оболочках, они важны для формирования местного иммунитета при вирусных инфекциях респираторного, кишечного, генитального трактов. Полагают, что сывороточные АТ и ЦТЛ являются основными факторами, от которых зависит исход инфекционного процесса и выздоровление организма, тогда как перекрестно реагирующие секреторные IgА имеют существенное превентивное значение: они предупреждают возникновение инфекций, вызываемых разными вирусными вариантами.

Антитела действуют как на свободный внеклеточный вирус путем его нейтрализации, виролизиса, агглютинирующего, опсонизирующего эффектов и др., так и на внутриклеточный вирус, участвуя в разрушении инфицированных клеток-мишеней с помощью эффекторных клеток или комплемента.

Нейтрализующая активность антител зависит от их аффинности и авидности. Аффинитет – это степень сродства АТ и АГ, выражающаяся константой равновесия и определяющая прочность их взаимодействия под влиянием межмолекулярных нековалентных связей. Авидность АТ характеризует прочность связи АГ с АТ.

На ранних стадиях инфекции образуются менее авидные АТ, легко диссоциирующие из комплексов с вирусами. Вторичный иммунный ответ развивается быстрее и проявляется более эффективно, нежели реакция на АГ. Это объясняется тем, что в организме сохраняются В-клетки памяти, стимулирующие синтез высокоафинных АТ. Установлена прямая зависимость между титрами специфических АТ в крови переболевших или вакцинированных лиц и резистентностью к вирусным инфекциям.

Гуморальный ответ организма формируется по отношению к определенным типам вирусов, к отдельным белкам и АГ-детерминантам вирусных белков. Но наряду с этим также имеет место индукция перекрестно реагирующих АТ, возникающих на общие АГ гетерологичных вирусов, что немаловажно для предупреждения инфекций, обусловленных разными вирусными вариантами, в т.ч. при вакцинации.

Неодинакова защитная роль АТ и при различных вирусных инфекциях, что зависит, прежде всего, от природы и свойств самого возбудителя и механизмов патогенеза инфекционного процесса. Взаимоотношения отдельных звеньев иммунитета при острых инфекциях отличаются от таковых при хронических и латентных вирусных инфекциях.

МЕХАНИЗМЫ УХОДА ВИРУСОВ ОТ ИММУННОГО КОНТРОЛЯ

Иммунная система не всегда обеспечивает надежную противовирусную защиту. Это объясняется тем, что многие вирусы имеют в своем арсенале средства, которые позволяют им более или менее успешно преодолевать иммунную защиту организма. Причем те или иные вирусы используют различные стратегии ухода от иммунного надзора. Одни вирусы обходят иммунный контроль со стороны организма хозяина за счет генерации мутантных вариантов, что приводит к нарушению презентации вирусных антигенов МНС I и позволяет этим вирусам избежать распознавания ЦТЛ. Другие вирусы непосредственно поражают лимфоидные клетки. Инфицирование вирусами лимфоцитов угнетает активность ЦТЛ и способствует становлению персистентной инфекции и латенции. Иммунные реакции оказываются не в состоянии полностью ликвидировать инфекцию, и вирус длительно персистирует в организме, не вызывая деструкции клеток.

ВИРУСНАЯ МИМИКРИЯ

Некоторые вирусы имеют гены, сходные с генами клетки-хозяина. Установлено, что эти гены кодируют белки, используемые вирусом для противодействия иммунным реакциям организма. Генетическое картирование их и установление гомологичных последовательностей с клеточными генами позволили считать, что они были захвачены вирусами в процессе эволюции и модифицированы в пользу вируса. Это могут быть гены цитокинов, их рецепторов, ростовых факторов, белков МНС I и др. Многие из них очень похожи на соответствующие клеточные гены, другие, имея незначительную долю гомологии, тем не менее, имеют функциональное сходство. Функционирование таких генов может вести к ингибированию синтеза или процессинга клеточных белков, важных для иммунитета; блокированию связывания антивирусных цитокинов с клеточными рецепторами; блокированию передачи внутриклеточных сигналов, что оказывает влияние на природу иммунного ответа.

Основой противовирусного иммунитета является клеточный иммунитет. Клетки-мишени, инфицированные вирусом, уничтожаются цитотоксическими лимфоцитами, а также NK-клетками и фагоцитами, взаимодействующими с Fc-фрагментами антител, прикрепленных к вирусспецифическим белкам инфицированной клетки. Противовирусные антитела способны нейтрализовать только внеклеточно расположенные вирусы, как и факторы неспецифического иммунитета -- сывороточные противовирусные ингибиторы. Такие вирусы, окруженные и блокированные белками организма, поглощаются фагоцитами или выводятся с мочой, потом и др. (так называемый «выделительный иммунитет»). Интерфероны усиливают противовирусную резистентность, индуцируя в клетках синтез ферментов, подавляющих образование нуклеиновых кислот и белков вирусов. Кроме этого, интерфероны оказывают иммуномодулирующее действие, усиливают в клетках экспрессию антигенов главного комплекса гистосовместимости (МНС). Противовирусная защита слизистых оболочек обусловлена секреторными IgA, которые, взаимодействуя с вирусами, препятствуют их адгезии на эпителиоцитах.

Принципиальных различий между иммунитетом противобактериальным и противовирусным нет, однако в защите организма от вирусов имеются некоторые особенности, обусловленные своеобразием их существования -- внутриклеточной и внеклеточной формами жизни. Защитные механизмы организма направлены на обе формы существования вирусов. Механизмы обезвреживания внеклеточной (покоящейся) формы вирионов имеют большое сходство с реакциями на бактерии: вирионы, как и бактерии, подвергаются действию специфических и неспецифических клеточных и гуморальных факторов иммунитета.

Естественный противовирусный иммунитет, связанный с биологическими особенностями вирусов, характеризуется:

1) отсутствием чувствительных к вирусам клеток в организме определенного вида животного;

2) повышением устойчивости клеток к вирусам;

3) инактивацией вирусов при действии неспецифических ингибиторов;

4) действием некоторых физиологических факторов организма (например, повышение температуры, участие фагоцитарных факторов и др.).

Приобретенный иммунитет против вирусов характеризуется действием как специфических, так и неспецифических факторов защиты. К неспецифическим факторам относятся вирусные ингибиторы и интерферон.

Ингибиторы, способные нейтрализовать активность вирусов, содержатся в плазме крови, секретах, тканях животных и человека; они действуют как на ДНК, так и на РНК-содержащие вирусы. Наряду с качественными и количественными различиями в содержании сывороточных ингибиторов у различных видов животных существуют индивидуальные, а также колебания в количестве ингибиторов у одного и того же животного в разные периоды жизни. Ингибиторы делятся на:

1) термолабильные (рингибиторы), разрушающиеся при температуре 62--65 °С в течение часа,

2) термостабильные: умеренно термостабильные (аингибиторы), разрушающиеся при температуре 75 °С, и высокотермостабильные (уингибиторы), выдерживающие нагревание до 100 °С.

Термолабильные рингибиторы, являющиеся липопротеинами, обычно очень активны и способны нейтрализовать инфекционную активность ряда вирусов: гриппа (типов А и В), парагриппозных, аденовирусов, энтеровирусов, вируса кори и др.

Умеренно термостабильные «ингибиторы (ингибитор Френсиса) являются мукопротеинами. Высокотермостабильный уингибитор обнаружен в сыворотке крови многих животных и человека. Активность его очень велика: он способен нейтрализовать сотни и тысячи инфекционных доз вируса гриппа. По химическому составу ингибитор является нерастворимым эйглобулином, соединенным с белком. Количество ингибиторов в организме животных при заболевании или иммунизации изменяется.

Механизм действия вирусных ингибиторов и антител сходен. При взаимодействии с вирусами ингибиторы оседают на поверхности вириона, блокируя его, в результате чего вирус теряет способность адсорбироваться чувствительной клеткой, не может в нее проникнуть и репродуцироваться. Поскольку ингибиторы обладают довольно широким спектром активности в отношении различных вирусов, их можно считать факторами неспецифического иммунитета. Однако некоторая специфичность действия ингибиторов все же имеется. Она связана с общими химическими группами у вирусных частиц, которые и взаимодействуют с ингибиторами. Так, ингибиторы, относящиеся к категории мукополисахаридов и имеющие в составе нейраминовую кислоту, нейтрализуют миксовирусы, а ингибиторы, относящиеся к категории липопротеинов, подавляют активность вирусов полиомиелита, клещевого энцефалита и др.

Одним из основных факторов неспецифического иммунитета является интерферон, открытый в 1957 г. Айзексом и Линдеманом, которые обнаружили его в клетках хорион-аллантоисной оболочки (ХАО) куриного эмбриона, зараженного вирусом гриппа. Интерферон -- низкомолекулярный белок, продуцируемый клетками в ответ на введение вирусов или нуклеиновых кислот невирусного происхождения. Действие интерферона в отношении вирусов неспецифично, однако большое значение имеет тканевая видоспецифичность. Интерферон, полученный на клетках человеческого происхождения, проявляет свое действие только на этих же клетках. Интерферон куриного происхождения активен только в клетках, полученных от куриных эмбрионов. Все клетки организма способны вырабатывать интерферон, но у лейкоцитов и клеток ретикулоэндотелиальной системы (РЭС) эта способность наиболее выражена.

Основными свойствами интерферона являются видовая специфичность, нечувствительность к действию вируснейтрализующих антител, устойчивость к действию кислой среды, относительная термостабильность (разрушается при 56 °С), чувствительность к протеолитическим ферментам, способность подавлять размножение разнообразных вирусов в тканевых культурах, т. е. отсутствие вирусной специфичности.

Образование интерферона у человека происходит как при естественной вирусной инфекции, так и при искусственном введении в организм вирусных и невирусных агентов.

Человеческий интерферон выделяют из лейкоцитов (ИФа) или из клеток соединительной ткани -- фибробластов (ИФр) и используют его для лечения и профилактики ряда вирусных инфекций.

Очищенные препараты человеческого интерферона значительно активнее многих биологических препаратов.

Роль температуры.

В защите организма от некоторых вирусов имеет значение температурный фактор. На месте внедрения вирусов в воспалительном очаге повышается температура, наблюдаются ацидоз и гипоксия, губительно влияющая на вирусы. По мнению некоторых зарубежных и отечественных вирусологов, лихорадка -- один из факторов, благоприятствующих выздоровлению от вирусной инфекции. Повышенная температура тела человека способствует более активной продукции интерферона, усилению специфических реакций иммунитета. Однако некоторые вирусы, например вирус герпеса, могут вызвать обострение у больных с гипертермической реакцией.

В освобождении организма животного от вирусов большую роль играет непосредственное выделение вирусов с мочой, фекалиями, слюной, секретом дыхательных органов, молоком. Эти реакции, направленные на освобождение организма от вирусов, можно рассматривать как один из общефизиологических механизмов противовирусного иммунитета.

Роль иммуноглобулинов в противовирусном иммунитете

Иммуноглобулины классов G, М, А являются главными факторами специфического гуморального противовирусного иммунитета. Большое значение принадлежит секреторным иммуноглобулинам -- IgA, обеспечивающим местный иммунитет. Особенно велика роль IgA при гриппе, полиомиелите и других вирусных инфекциях, локализованных в дыхательных путях, кишечном тракте. Сывороточные иммуноглобулины имеют большое значение в защите организма при генерализованных вирусных инфекциях (арбовирусные, корь, и др.).

В противовирусном приобретенном иммунитете определенную роль играет специфический клеточный иммунитет: сенсибилизированные Т-лимфоциты способны разрушать клетки, зараженные вирусами. Сенсибилизированные лимфоциты при взаимодействии с вирусом выделяют особое вещество -- лимфотоксин, который и разрушает клетки, зараженные вирусом, а сенсибилизированные макрофаги поглощают зараженные клетки и разрушают их. Специфические клеточные факторы защиты играют важную роль в предупреждении рецидивов при таких вирусных заболеваниях, когда сывороточные антитела не могут контактировать с вирионом, который локализуется в чувствительных нервных клетках, например при опоясывающем герпесе.