Стандарты цифрового телевидения DVB (DVB-T, DVB-T2, DVB-C, DVB-C2, DVB-S, DVB-S2). Цифровое телевидение DVB в России

Покупая новый телевизор, вы можете увидеть на упаковке или на наклейке на телевизоре обозначения типа DVB-T, DVB-T2, DVB-C и подобные. Многие думают, что это просто очередные дополнительные функции у телевизора, типа улучшение качество изображения, звука и т.п.. Более осведомленные из сокращения DVB (Digital Video Broadcasting) поймут, что это как то связанно с цифровым телевидением. Но что же означают эти сокращения и так ли они важны? На самом деле они очень важны и нужны, поскольку делают возможным просмотр цифрового телевидения без лишних приставок и лишних затрат. В этой статье я расскажу, что такое цифровое телевидение, DVB, какие стандарты DVB бывают и способы подключения цифрового телевидения.

Начнем с начала, и ответим на вопрос что такое цифровое телевидение и в чем плюсы его использования?

Цифровое телевидение (от англ. Digital Television, DTV) - технология передачи телевизионного изображения и звука при помощи кодирования видеосигнала и сигнала звука с использованием цифровых каналов (Википедия). Привычное нам телевидение называется "аналоговым". Его основной недостаток в том, что телесигнал при передаче может сильно терять в качестве из-за различных помех. Я думаю всем знакомо при просмотре телеканала- рябь, проблемы со звуком, зависимость качества (а иногда и количества) каналов от погодных условий и т.д. Цифровой сигнал защищен от этого, и на телеэкране мы видим изображение очень хорошего качества. Помимо качественной картинки вы получаете пятиканальный звук, думаю знатоки оценят. Плюс к этому, вы получаете дополнительную информацию EPG (электронная телепрограмма)- дает информацию о текущей программе, и теле-гид на неделю или две. Вообщем это следующий виток в развитии телевидения и грех им не воспользоваться.

DVB (Digital Video Broadcasting) - это семейство стандартов цифрового телевидения, разработанных международным консорциумом DVB Project. Первоначально появилось DVB-S (спутниковое телевидение, более подробно об этом речь пойдет ниже), но со временем цифровой сигнал стали распространять не только со спутника, но и через телевизионные кабели и эфирное телевидение. Поскольку все эти три направления: со спутника, телевизионного кабеля и эфирного сигнала отличались частотными каналами, способами модуляции и т.д., их решено было разделить на стандарты, так появились сокращенияDVB-T, DVB-C, DVB-S .

ИЛИ

DVB-C (более новый DVB-C2 ) - Цифровое кабельное телевидение . Данный стандарт цифрового телевидения позволяет вам просматривать цифровые каналы, предоставляемые кабельным провайдером. Т.е. помимо аналоговых каналов ваш провайдер может параллельно предоставлять вам каналы в цифровом качестве и для их просмотра вовсе не обязательно покупать дополнительные приставки, поскольку большинство телевизоров поддерживает стандарт DVB-C. Стоит учесть, что у некоторых кабельных провайдеров цифровые каналы зашифрованы и для того, что бы их смотреть, необходимо приобрести карту доступа. Эта карта доступа вставляется либо в телевизор через CAM модуль (если таковая возможность есть в телевизоре), либо в приставку DVB-C.

ИЛИ

ИЛИ

Как вы можете заметить все стандарты подверглись модификации и появились следующие поколения (обозначается цифрой 2 на конце, например DVB-T, второе поколение DVB-T2). Это связано с тем, что прогресс не стоит на месте и мы хотим не просто цифровое телевидение, а цифровое телевидение в высоком качестве (высоком разрешение изображения). Следует учитывать поколение DVB используемое вашим телевизором, поскольку цифровое вещание работает в основном на втором поколении DVB. Т.е. если ваш телевизор поддерживает DVB-T, но не поддерживает DVB-T2, то вы не сможете просматривать эфирные цифровые каналы.

В чем основной плюс, наличия у телевизора поддержки различных цифровых стандартов?! Первое- это позволяет экономить деньги, поскольку, как я говорил ранее, не требуется покупка дополнительного оборудования или покупка будет стоит значительно дешевле, в случае с DVB-S, DVB-S2. Помимо этого вы будете пользоваться одним пультом от телевизора, что согласитесь значительно удобней чем двумя- от телевизора и цифровой приставки/ ресивера. Экономия места, поскольку нет необходимости использовать дополнительное оборудования.

Как вы можете заметить теперь цифровое телевидение доступно не только в крупных мегаполисах (для них доступны все три способа получить цифровое телевидение - DVB-T2, DVB-C, DVB-S2), но и удаленных деревнях (можно воспользоваться стандартами DVB-T2 или DVB-S2).

Новый стандарт цифрового телевидения DVB-T2 в простых ответах на волнующие жителей области вопросы.

Что такое DVB-T2 ?

Это второе поколение европейского стандарта эфирного цифрового телевидения. Он существенно отличается от первого поколения DVB-T физическими характеристиками. Именно по этой причине приставки и телевизоры с приёмником DVB-T несовместимы с DVB-T2 . Стандарт второго поколения применяется в ряде стран Европейского cоюза, на Украине, в Белоруссии, Киргизии, Таджикистане и Армении.

В России DVB-T2 выбран в качестве стандарта цифрового эфирного телевидения в рамках Федеральной целевой программы «Развитие телерадиовещания в Российской Федерации на 2009–2015 годы». ФГУП «Российская телевизионная и радиовещательная сеть», исполнитель программы, сформировало два бесплатных пакета (мультиплекса) из двух десятков каналов.

Чем отличается новый стандарт цифрового эфирного телевидения от старого?

За счет возможностей современного оборудования и более сложной математической обработки сигнала в новом стандарте, существенно увеличивается ёмкость сетей вещания, позволяя передавать больше информации в цифровом пакете. Стандарт предусматривает перспективы организации «местного» вещания. Поток DVB-T2 лучше защищён от помех. При условии освобождения частотного ресурса появляется возможность получать больше каналов в режимах высокой и сверхвысокой чёткости и даже смотреть 3d-телевидение.

Кроме того, уже сейчас при трансляции первого и второго мультиплексов телезрителям доступен новый сервис: «ТелеГид». В целом, DVB-T2 телевизор более приспособлен к реализации SMART-функций.

Зачем вообще нужны эти изменения, если меня всё устраивало и раньше?

Во-первых - чтобы быть уверенным в будущем. Цифровое телевидение уже пришло на смену аналоговому практически во всём мире. Стандарт DVB-T2 выбран в качестве основного для использования в России на самом высоком федеральном уровне, это означает, что в дальнейшем всё телевещание будет осуществляться именно на его основе.

Кроме того, современная жизнь напрямую зависит от информационных потоков, и не стоит игнорировать возможности передачи данных, предусмотренные стандартом DVB-T2 . Если раньше телевизор был лишь средством для просмотра нескольких телеканалов, то уже сегодня он объединяет в себе массу функций, от записи пропущенных программ до работы с интернетом.

В конце концов, несмотря на то, что аналоговое вещание каналов пока что доступно в полном объеме, окончательный переход на цифровое телевидение - лишь вопрос времени. Содержать устаревшие технологии аналогового телевещания слишком дорого, а новые технологии дают массу возможностей для улучшения качества жизни россиян.

Кого коснулся переход на новый стандарт вещания DVB-T2 ?

Перемены коснулись исключительно тех жителей региона, кто уже являлся абонентами цифрового телевидения и использовал оборудование предыдущего стандарта DVB-T . Телевизионные приставки, телевизоры со встроенными декодерами и компьютерные ТВ-тюнеры DVB-T несовместимы с новым стандартом, а трансляция мультиплексов в старом стандарте на территории Калининградской области была прекращена с середины января.

Однако, по статистике большинство жителей региона сегодня пользуются услугами кабельного либо спутникового телевидения, а также IP-TV . Этих абонентов переход на новый стандарт никак не коснулся. Лишь абоненты кабельных сетей в течение нескольких дней могли наблюдать редкие перебои в трансляции отдельных программ.

Какое оборудование требуется для просмотра каналов в новом стандарте?

Во-первых вам понадобится антенна - либо общедомовая на крыше, либо собственная комнатная.

Весьма вероятно, что ваш телевизор уже поддерживает принятые в России стандарты цифрового телевидения (стандарт DVB-T2 , сжатие MPEG-4 , режим Multiple PLP). Большинство ведущих мировых производителей поставляют в нашу страну такие телевизоры. Если вы только собираетесь покупать новый телевизор, обязательно убедитесь, что он поддерживает эти стандарты.

Если по какой-то причине ваш телевизор не совместим со стандартами цифрового телевидения, то вам необходимо приобрести приставку для приёма приема цифрового сигнала. Она также может называться цифровым эфирным ресивером или SetTopBox (STB). Стандарт приставки обычно написан на её передней части, убедитесь, что приставка поддерживает стандарт DVB-T2 .

Если вы хотите принимать одновременно сигнал цифрового телевидения и кабельные телеканалы, то вам понадобится так называемый сумматор ТВ-сигнала.
Важно знать, что ваша спутниковая антенна не позволяет пользоваться цифровым телевещанием, так как работает в совершенно ином стандарте. Кроме того, нужно отметить, что одна приставка не позволяет смотреть различные каналы цифрового телевидения на разных телевизорах.

Новый стандарт вещания - это дорого?

Нет, сейчас телевизоры и приставки DVB-T2 не дороже, чем оборудование старого стандарта. Кроме того, помните - федеральные мультиплексы гарантированно бесплатны для населения России, в отличие от кабельного, спутникового или интернет-телевидения. Стоимость необходимой приставки начинается от 1300 рублей.

Как настроить телевизор для приёма сигнала в стандарте DVB-T2 ?

Прежде всего стоит прочитать инструкцию к вашему телевизору и/или цифровой приставке, чтобы подключить оборудование. Также, возможно, вам понадобится активировать цифровой тюнер вашего телевизора (выбрав в соответствующем разделе меню настроек страну - Польша, Литва или Германия). Затем стоит запустить автоматический поиск каналов - в большинстве случаев встроенный индикатор уровня и качества сигнала позволит оптимально настроит вашу антенну для приёма цифрового телевидения.

Если вам потребуется ручная настройка цифровых телеканалов, то используйте следующие настройки: первый мультиплекс транслируется на 47 ТВК, частота 682 МГц, второй мультиплекс - на 30 ТВК, частота 546 МГц (РТПС Калининград).

Какие каналы можно смотреть в стандарте DVB-T2 ?

Сейчас в Калининградской области транслируются два мультиплекса (пакета): РТРС-1 и РТРС-2 .

Первый мультиплекс, транслируемый одновременно с пяти передающих станций на частоте 682 МГц, включает в себя каналы: «Первый канал», «Россия» (Россия-1), «Россия-2» (Россия-2 , спортивный канал), «НТВ», «Петербург - 5 канал», «Россия - Культура» (Россия-К), «Россия-24» (Россия-24), «Карусель», «Общественное телевидение России», «ТВ Центр».

Второй мультиплекс, транслируемый с передающей станции в Калининграде на частоте 546 МГц, включает каналы: «Рен-ТВ» , «Спас», «СТС», «Домашний», «ТВ3», «НТВ Плюс Спорт», «Звезда», «Мир», «ТНТ», «Муз ТВ».

(Корейское мобильное ТВ)

T-DMB (эфирное) S-DMB (спутниковое) MediaFLO Кодеки Видеокодеки
  • H.264 (MPEG-4 AVC)
Аудиокодеки Диапазон частот

DVB-T2 является последним в семействе стандартов DVB цифрового эфирного (наземного) телевидения, так как физически невозможно реализовать более высокую «скорость передачи информации в единице спектра».

Стандарт

Для стандарта DVB-T2 были разработаны следующие характеристики:

  • Модуляция COFDM с группами QPSK , 16-QAM , 64-QAM или 256-QAM.
  • OFDM режимы 1k, 2k, 4k, 8k, 16k и 32k. Длина символа для режима 32k составляет около 4 мс.
  • Относительные длины защитных интервалов: 1/128, 1/32, 1/16, 19/256, 1/8, 19/128 и 1/4. (Для режима 32k максимум 1/8)
  • FEC с каскадным применением корректирующих кодов LDPC и БЧХ .
  • DVB-T2 поддерживает частотные полосы пропускания канала: 1.7, 5, 6, 7, 8 и 10 МГц. Причем, 1,7 Мгц предназначена для мобильного телевидения
  • передача в режиме MISO (англ. Multiple-Input Single-Output ) с использованием схемы Аламоути, то есть приёмник обрабатывает сигнал от двух передающих антенн

Сравнение DVB-T и DVB-T2

В следующей таблице приведено сравнение доступных режимов в DVB-T и DVB-T2.

DVB-T DVB-T2
Коррекция ошибок (FEC) Свёрточный код + Код Рида - Соломона
1/2, 2/3, 3/4, 5/6, 7/8
LDPC + БЧХ
1/2, 3/5 , 2/3, 3/4, 4/5 , 5/6
Режимы модуляции QPSK, 16QAM, 64QAM QPSK, 16QAM, 64QAM, 256QAM
Защитный интервал 1/4, 1/8, 1/16, 1/32 1/4, 19/256 , 1/8, 19/128 , 1/16, 1/32, 1/128
Размерность ДПФ 2k, 8k 1k , 2k, 4k , 8k, 16k , 32k
Рассредоточенные пилот-сигналы 8 % от общего числа 1 % , 2 % , 4 % , 8 % от общего числа
Непрерывные пилот-сигналы 2,6 % от общего числа 0,35 % от общего числа
Полоса пропускания 6; 7; 8 МГц 1,7; 5; 6; 7; 8; 10 МГц
Макс. скорость передачи данных (при ОСШ 20 дБ) 31,7 Мбит/с 45,5 Мбит/с
Требуемое ОСШ (для 24 Мбит/с) 16,7 дБ 10,8 дБ

Максимальная скорость передачи данных при ширине полосы 8 МГц, 32K поднесущих, с защитным интервалом 1/128, схема размещения поднесущих PP7:

Модуляция Скорость кода Максимальная
скорость цифрового
потока, Мбит/с
Длина Т2-кадра,
OFDM-символов
Число кодовых
слов в кадре
QPSK 1/2 7.4442731 62 52
3/5 8.9457325
2/3 9.9541201
3/4 11.197922
4/5 11.948651
5/6 12.456553
16-QAM 1/2 15.037432 60 101
3/5 18.07038
2/3 20.107323
3/4 22.619802
4/5 24.136276
5/6 25.162236
64-QAM 1/2 22.481705 46 116
3/5 27.016112
2/3 30.061443
3/4 33.817724
4/5 36.084927
5/6 37.618789
256-QAM 1/2 30.074863 68 229
3/5 36.140759
2/3 40.214645
3/4 45.239604
4/5 48.272552
5/6 50.324472

Структура системы DVB-T2

Обобщенная схема обработки передаваемых сигналов в системе DVB-T2.

Сервисные возможности

Стандарт DVB-T2 позволяет предоставлять различные цифровые сервисы и услуги:

  • 3D-телевидение в стандарте DVB 3D-TV ;
  • интерактивное гибридное телевидение в стандарте Hbb TV ;
  • мультизвук (выбор языка вещания);
  • доступ к государственным услугам в электронном виде (в России);
  • система оповещения о чрезвычайных ситуациях (в России).

Приём сигнала DVB-T2

Приём сигнала DVB-T2 осуществляется эфирной коллективной, индивидуальной или комнатной антенной подключенной к телевизору со встроенным тюнером (декодером) DVB-T2 или к ресиверу (тв-приставке) DVB-T2.

Также приём сигнала DVB-T2 можно осуществлять на любой компьютер со встроенным цифровым тв-тюнером DVB-T2.

Использование

Европа

  • Великобритания: один мультиплекс, пробный запуск в декабре 2009 года, полностью запущен в апреле 2010 года.
  • Италия: один мультиплекс, пробный запуск в октябре 2010 года.
  • Швеция: два мультиплекса, полный запуск в ноябре 2010 года.
  • Финляндия: пять мультиплексов, пробный запуск в январе 2011 года, полностью - в феврале 2011 года.
  • Испания: два мультиплекса, полный запуск в 2010 году.

Россия

Распоряжением Правительства РФ от 3 марта 2012 года № 287-р единственным для России стандартом цифрового эфирного телевидения является только стандарт DVB-T2 . Распоряжением Правительства РФ от 24 мая 2010 года № 830-р исполнителем работ в рамках мероприятий федеральной целевой программы «Развитие телерадиовещания в Российской Федерации на 2009-2015 годы» определена «Российская телевизионная и радиовещательная сеть » .

Украина

  • Тестовое вещание цифрового телевидения в стандарте DVB-T2 с киевской телевышки началось 18 августа 2011 года.
  • 1 ноября 2011 года на территории Украины началось вещание в стандарте DVB-T2.
  • С февраля 2012 года сигнал DVB-T2 кодируется по всей территории Украины

Сегодня ребят решил рассказать, что такое DVB-T2, один мой читатель задал вопрос в . Многие не понимают, что это такое и не видят плюсы от использования этого цифрового формата вещания, а ЗРЯ! Ведь используя этот формат, вы можете бесплатно смотреть цифровое телевидение России. У нас в городе это 20 каналов + 3 радио. По слухам количество каналов будет только расти, в ближайшем будущем. В общем формат нужный читайте дальше все расскажу…


Как обычно начнем с определения.

DVB- T2 ( Digital Video Broadcasting - Second Generation Terrestrial) это наземный формат цифрового эфирного телевидения. Приставка T2 означает второе поколение этого формата, призванное увеличить пропускную способность сигнала в 30 – 50 % при той же мощности оборудования.

Теперь простыми словами. Ребята это реально новый формат вещания. Раньше телевидение работало по аналоговым сетям, то есть была телевышка и она передавала аналоговый сигнал до потребителя (телевизора). И чем дальше вы находились от вышки, тем хуже был прием каналов, шли помехи и т.д.

Сейчас все по-другому. Также есть вышка, только она передает цифровой сигнал. Что-то похоже на сотовую вышку, у потребителя либо есть сигнал, либо его нет (также как на сотовом телефоне)! Причем если сигнал на телевизоре есть, то изображение очень четкое и без помех. Даже на дальних расстояния. Если сигнала нет, то телевизор просто не будет показывать, тут нужно брать антенну мощнее, или же использовать усилитель телевизионного сигнала.

Нужно отметить, что сейчас почти все новые телевизоры ловят формат DVB-T2. Просто подключаете антенну, включаете телевизор, выбираете формат DVB-T2 (или цифровой формат, может быть еще цифровой прием сигнала) и все, телевизор сам найдет цифровые каналы. Все легко и просто. А вот старые телевизоры не «заточены» на прием таких каналов, поэтому они не могут ловить DVB-T2, но выход есть.

Как ловить цифровое телевидение на старых телевизорах

НА старых телевизорах или LEDтелевизорах, которые не ловят формат DVB-T2 нужно устанавливать специальную цифровую приставку. Она ловит цифровой формат, а дальше передает на телевизор. Подключается она либо HDMIразъемы, либо в аналоговые разъемы (всем известные «тюльпаны»). Стоимость таких приставок сейчас от 1000 до 2500 рублей. НА приставку имеется отдельный пульт, именно им вы будете переключать цифровые каналы.

Таким образом, можно даже старый телевизор превратить в приемник нового цифрового сигнала (DVB-T2).

Ребята, а самое главное, что это телевидение бесплатное, то есть не нужно тратиться на кабельное или спутниковое ТВ. Также качество изображения на высоком уровне, да и прием в разы лучше!

Сейчас небольшое видео как раз о таких приставках для цифрового ТВ

В общем, это реально скачек вперед, подключайте не пожалеете.

магистрант

Аннотация:

В статье произведен обзор основных особенностей и преимуществ стандарта цифрового эфирного телевидения DVB-T2. Приведены количественные показатели выигрыша в производительности тех или иных параметров нового стандарта относительно старой версии DVB-T.

The article describes the main features and benefits of digital terrestrial television standard DVB-T2. Quantitative indicators of performance gain of certain parameters of the new standard with respect to the old version of DVB-T.

Ключевые слова:

эфирное телевидение, сигнал, информация.

terrestrial TV, signal, information

УДК 001.08

Современные цифровые технологии открывают обществу качественно новые возможности получения и передачи информации. Эфирное телевидение является одним из основных способов получения информации в настоящее время. Эфирное цифровое телевидение, в отличие от других видов цифрового телевидения, осуществляет доставку сигнала к потребителю без лишних проводов. Однако тут же возникает вопрос качественной доставки сигнала к потребителю в условиях жесткой ограниченности спектра и большого количества помех. Именно для решения данных проблем и был разработан стандарт DVB-T2.

У DVB-T2 есть несколько основных отличий от DVB-T. В частности, для инкапсуляции информации может применяться не только транспортный поток (ТП) MPEG-2, но и транспортный поток общего на-значения (generic transport stream). В ТП общего наз-начения используется переменный размер пакета, а не фиксированный, как в MPEG-2. Это позволяет сни-зить объем передаваемых служебных данных и сде-лать адаптацию транспорта к сети более гибкой. Кро-ме транспортных потоков могут также передаваться любые другие цифровые потоки. Таким образом, по сравнению с DVB-T привязки к какой-либо структуре данных на уровне транспорта более не существует.

Далее, введено распределение несущих COFDM меж-ду логическими потоками информации, так называемы-ми PLP (physical layer pipes - каналы физического уров-ня). В DVB-T вся полоса отдавалась для передачи одного транспортного потока. В DVB-T2 возможна одновре-менная передача нескольких транспортных потоков, каждый из которых помещается в свой PLP. Воз-можны два режима работы: с передачей одного PLP -"Режим А" и с передачей нескольких PLP - "Режим В".

Использование такого механизма может, в частнос-ти, позволить уменьшить энергопотребление абонен-тского устройства, поскольку оно может выключаться в тот момент, когда передаются PLP, не нужные або-ненту.

Для одночастотных сетей введен режим MISO (mul-tiple input single output - много входов, один выход), который позволяет достичь до 70% выигрыша в поло-се пропускания. Опыт эксплуатации одночастотных сетей показал, что даже при сложении синхронизиро-ванных сигналов результирующий спектр COFDM претерпевает искажения (в форме "провалов" огиба-ющей несущих COFDM). В результате, для компенса-ции этих "провалов", то есть сохранения требуемого отношения сигнал/шум, необходима более высокая мощность передатчиков. Режим MISO позволяет избе-жать этой неприятности. Основная идея здесь состо-ит в том, что передатчики в одночастотной сети в режиме MISО излучают не в точности один и тот же сигнал. Благодаря этому при сложении сигналов с разных передатчиков "провалов" огибающей не воз-никает и увеличение мощности передатчиков не требуется.

Еще одно новшество состоит во введении режима модуляции 256QAM - передачи 8 бит на несущей. Это позволяет увеличить емкость канала на треть. Казалось бы, такой режим приведет к гораздо более жес-тким требованиям к отношению сигнал/шум. Однако помехоустойчивость LDPC-кодов настолько высока, что они справляются с компенсацией ошибок, возни-кающих при использовании 256QAM, без увеличения отношения сигнал/шум.

Введен расширенный режим для количества несущих 8k, l6k и 32k. Он заключается в том, что в случае, когда нет строгих требований по совместимости со станци-ями в соседнем канале, можно добавить дополнитель-ные несущие с краев спектра COFDM. При увеличенном количестве несущих спектр имеет более крутой спад на краях, и добавление несущих не приводит к выходу за пределы допустимой маски формы спектра. Добавление несущих позволяет выиграть 1...2% емкости канала.

Также была реализована функция многоканального приема. Т2 включает факультативную возможность приема от двух передатчиков. В тех случаях, когда ресивер «видит» сигнал сразу от двух передатчиков, например, при приеме на ненаправленную антенну в небольшой одночастотной сети, его применение может значительно улучшить работу системы. Это кодирование совместно с изменением формата пилот-сигналов дает возможность без потерь разделить и отдельно декодировать сигналы, принятые из двух разных эфирных каналов. Причем наложение кода не ухудшает приема, если антенне доступен только один канал. Предварительные расчеты показали, что эта техника позволяет увеличить зону покрытия небольших одночастотных сетей до 30%.

Для защиты сигналов, то есть каждой несущей, используемой для передачи данного символа, от искажения в условиях многолучевого распространения введено дублирование конца каждого символа в защитном интервале, предшествующем передаче этого символа.

Длина защитного интервала выбирается в зависимости от расчетной протяженности эфирного тракта и других параметров сети передачи. Более длинные защитные интервалы требуются в одночастотных сетях, где сигналы с соседних передатчиков могут приходить на приемник со значительным запаздыванием относительно основного сигнала. Защитный интервал представляет собой надстройку, съедающую долю транспортного ресурса. В DVB-T эта надстройка может занимать до 1/4 общего объема передаваемых данных. Для возможности удлинить защитный интервал без увеличения его доли в общем объеме данных в Т2 были введены два новых режима - 16k и 32k - с соответствующем увеличением числа ортогональных несущих. То есть абсолютная величина защитного интервала сохраняется, но его доля в общем объеме снижается. Например в FFT равном 8k защитная надбавка составляет 25% длительности символа, а в режиме 32k только 6% длительности.

Таким образом, Т2 предлагает более широкий ряд размерностей FFT и защитных интервалов. А именно:

Размерности FFT: 1k, 2k, 4k, 8k, 16k, 32k;

Относительная длительность защитных интервалов: 1/128, 1/32, 1/16, 19/256, 1/8, 19/128, 1/4.

Максимальная длительность защитного интервала в Т2 достигается в режиме 32k при отношении защитной надбавки и длины всего символа 19/128. Длительность защитной надбавки при этом превышает 500 мкс, что вполне достаточно для построения крупной общегосударственной одночастотной сети.

Поскольку количество несущих возраста-ет в той же самой полосе частот, то увеличивается и ве-роятность межсимвольной интерференции. Для того чтобы она не быта слишком большой, необходимо со-ответственно увеличить длительность символа модуля-ции. Казалось бы, это не позволит повысить скорость передачи данных: одновременно с увеличением чиста несущих возрастает и время их передачи. Однако тре-бования к абсолютной длительности защитного интер-вала при этом не меняются, так как время прихода отра-женного сигнала от длительности символа никак не зависит. Защитный интервал 1/128 в режиме 32k будет иметь такую же абсолютную длительность t=28 мкс, что и 1/32 в режиме 8k, а значит, обеспечивать точно такую же защиту от отраженных сигналов. Применение новых защитных интервалов вместе с новыми значениями быстрого преобразования Фурье позволяет получить выигрыш 2... 17% емкости канала и увеличить расстояние между станциями.

В канальном кодировании в DVB-T использовались сверточные коды совместно с кодами Рида-Соломона. В DVB-T2 предлагается использование более эффектив-ных кодов LDPC вместо сверточных кодов и кодов ВСН вместо кодов Рида-Соломона.

Код с малой плотностью проверок на чётность (LDPC- Low-density parity-check code) - используемый в передаче информации код, частный случай блокового линейного кода с проверкой чётности. Особенностью является малая плотность значимых элементов проверочной матрицы, за счёт чего достигается относительная простота реализации средств кодирования.

Коды Боуза-Чоудхури-Хоквингема (BCH) составляют один из больших классов линейных кодов, исправляющих ошибки. Причем метод построения этих кодов задан явно. Для дополнительного снижения частоты ошибки используется внешний уровень кодозащиты ВСН, работающий при малой плотности ошибок. В большинстве режимов код позволяет исправлять до 12 ошибок, но в некоторых - до 8 или до 10 ошибок.

Эф-фективность этих кодов была известна давно, но ранее не удавалось

создать дешевую реализацию на базе мик-роэлектроники. Тестовая имитация работы помехозащиты на базе LDPC показала существенное повышение помехозащищенности по сравнению с защитой, используемой в DVB-T, то есть сверточным кодированием в сочетании с кодом Рида-Соломона. Выигрыш в уровне С/N за счет нового FEC может составлять до 3 дБ для типичного уровня ошибок и при одинаковой доле контрольных символов. По существу, это улучшение позволяет повысить пропускную способность канала примерно на 30%, например, за счет применения более высокого уровня констелляции.

Вводятся также изменения в схему перемежения. Практическое использование DVB-T показало недо-статочно хорошую устойчивость к импульсным поме-хам. В частности, в городской среде использование режима 64QAM с малыми значениями FEC (Forward Error Correction - Прямая коррекция ошибок) может ока-заться более эффективным, чем использование 16QAМ с большими значениями FEC.

В T2 используется три каскада перемежений. Это практически гарантирует, что искаженные элементы, в том числе при пакетных ошибках, после деперемежения в декодере будут раскиданы по LDPC FEC-кадру. Это должно позволить кодеру LDPC выполнить восстановление.

Перечислим эти каскады:

1) битовый перемежитель: рандомизирует биты в пределах FEC-блока;

2) временной перемежитель: перераспределяет данные FEC-блока по символам в рамках кадра Т2. Это повышает устойчивость сигнала к импульсному шуму и изменению характеристик тракта передачи;

3) частотный перемежитель: он рандомизирует данные в рамках OFDM-символа с целью ослабить эффект селективных частотных замираний.

Для противодействия импульсным помехам в DVB-Т2 дополнительно вводится временное перемежение, то есть различные компоненты информации переме-жаются по оси времени с периодом около 70 мс. То есть данные, перед передачей по каналу связи, переставляются в заданном порядке, а в приемной части восстанавливается исходный порядок, т.е. выполняется деперемежение. При этом пакетная ошибка, возникшая в канале связи, превращается в набор рассредоточенных во времени одиночных ошибок, которые проще обнаруживаются и исправляются с помощью кодов, исправляющих ошибки. Бла-годаря этому информация, потерянная в один период времени, может быть восстановлена с использовани-ем информации, передаваемой в другой период вре-мени.

В DVB-T перемежение осуществлялось только в пре-делах одного символа модуляции, и, следовательно, в течение только периода времени передачи этого сим-вола. Если информация вследствие помех в канале связи была утеряна в какой-то момент времени, то ее невозможно было восстановить на основании инфор-мации, переданной в другой момент времени.

В DVB-T2 система перемежения усложнена, вводит-ся перемежение по времени, что позволяет увеличить устойчивость передачи к импульсным помехам, кото-рые так характерны для больших городов. То есть ин-формация перемежается не только внутри одного символа модуляции, но и внутри одного суперкадра. Конечно, это требует от абонентского устройства на-личия большой оперативной памяти, где при обрат-ном преобразовании (de-interleaving) необходимо бу-дет хранить блок временного перемежения, или Т1-блок, а не один символ, как в DVB-T. В DVB-T2 вводятся две новые структуры, которые "отвечают" за перемежение - кадр перемежения и блок временного перемежения (Т1-блок). По сути, эти структуры определяют границы, в которых будет про-изводиться перемежение.

Кадр перемежения состоит из целого числа Т1-блоков. Число это можно изменять. Однако рекомендует-ся использовать комбинацию одного кадра перемеже-ния и одного Т1-блока, поскольку именно в этом случае перемежение будет выполняться в течение бо-лее длительного периода времени. Количество FEC-блоков в одном Т1-блоке может не быть постоянным. Каждый кадр перемежения проецируется на один или несколько Т2-кадров.

Часть несущих, так называемые пилотные несущие, или маркеры синхронизации служат для синхронизации тактовых частот модулятора и демодулятора, синхронизации несущих частот спектра, кадровой синхронизации, оценки состояния канала и уровня фазовых шумов. Различают непрерывные (continual) пилот-сигналы, передаваемые на одной и той же несущей, и распределенные (scattered), передаваемые на нескольких несущих, равномерно распределенных в спектре сигнала и меняющихся от символа к символу. Пилотные несущие модулируются специально формируемой псевдо случайной последовательностью. Для повышения помехоустойчивости они передаются с уровнем в 16/9 раза (примерно на 2,5 дБ) выше, чем остальные несущие.

В системах OFDM используются распределенные пилот-сигналы. Они представляют собой модулированные элементы, определенным образом разнесенные по несущим и во времени. Приемнику известны параметры модуляции пилот-сигналов, и он может использовать их для оценки состояния канала. В DVB-T каждый двенадцатый модулированный элемент является пилот-сигналом, то есть они занимают 8% в общем объеме данных. Эта пропорция используется при любых вариантах защитных интервалов, и размещения пилот-сигналов должно быть таковым, чтобы позволить выровнять сигналы с защитным интервалом 1/4. Однако для меньших защитных интервалов добавка пилот-сигналов в количестве 8% оказывается избыточной. В DVB-T2 определено восемь различных способов размещения - РР1...8 (РР - pilot pattern). Каждому варианту относительной длительности защитного интервала соответствует несколько возможных опций размещения пилот-сигналов. Они динамически выбираются в зависимости от текущего состояния канала, что позволяет оптимизировать их количество. Выбор опти-мального способа позволяет уменьшить количество пе-редаваемой служебной информации на 1...2%.

Более плотное размещение пилот-сигналов может использоваться для снижения требуемого уровня С/N на входе приемника или для улучшения синхронизации. В последнем случае пилот-сигналы модулируются псевдослучайной последовательностью.

Еще одно любопытное нововведение - вращающиеся созвездия (rotated constellation). После того как сигнал COFDM сформирован, производится "вращение" соз-вездия в комплексной плоскости. Чтобы продемонстри-ровать принцип, можно упрощенно изобразить эту схе-му только для четырех точек комплексной плоскости созвездия, то есть для режима QPSK как это показано на рисунке 2.6. Модуляционный символ поворачивается в комплексной плоскости на определенный угол, зависящий от числа уровней модуляции (29° для QPSK, 16,8° - для 16-QAM, 8,6° для 64-QAM и arctg (1/16) для 256-QAM). Более того, перед началом вращения квадратурная Q координата каждого модуляционного символа циклически сдвигается в рамках одного кодового слова т.е. берется из предыдущего символа этого слова, Q-компонента первого символа становится равной Q-компоненте последнего.

Исполь-зование вращающихся созвездий может дать выигрыш до 7,6 дБ в отношении сигнал/шум.

Значительную долю расходов на передачу составляет стоимость электричества, питающего передатчики. OFDM-сигналы характеризуются относительно высоким отношением пиковой и средней мощностей. В связи с этим в Т2 включены две технологии, позволяющие снизить это отношение примерно на 20%. А это, в свою очередь, существенно снижает расходы на электропитание.

Для уменьшения отношения пиковой мощности к средней (PAPR) предлагаются два способа - АСЕ (Active Constellation Extension - расширение активного созвездия) и TR (Tone Reservation - сохранение тона). Чем меньше значение RAPR, тем выше КПД передатчика по мощности. Оба способа могут использоваться одновре-менно, однако первый предпочтительнее для созвездий с меньшим количеством векторов (QPSK), второй - с большим (QAM). У каждого способа есть и недос-татки. Использование АСЕ приведет к сниже-нию отношения сигнал/шум на входе приемного устройства, а применение TR вызовет уменьшение емкости канала, так как предполагает использование части несущих для передачи специаль-ных корректирующих сигналов.

Спецификация Т2 включает два дополнительных инструмента, которые в перспективе можно будет использовать для расширения кадра. Во-первых, структура кадра Т2 предусматривает возможность введения сигнализации для еще несуществующих типов кадров, которые будут предназначены для пока еще не определенных типов сигналов

То есть содержание этих кадров FEF (Future Extension Frames) пока не определено, а определена только структура заголовка. Включение соответствующей сигнализации в спецификацию Т2 позволит ресиверам первого поколения распознать и проигнорировать FEF-фрагменты. Но забронированное уже сегодня место обеспечит обратную совместимость первых систем передачи с будущими, в которых эта сигнализация будет переносить информацию о новых типах содержимого.

Т2 также включает сигнализацию, необходимую для будущего применения частотно-временного деления на слоты (TFS - Time Frequency Slicing). Хотя основная спецификация предусматривает прием без применения TFS, в сигнализацию включены отметки, которые позволят будущим ресиверам, оснащенным двумя тюнерами, работать с TFS-сигналами. Такой сигнал будет занимать несколько радиочастотных каналов, и разные фрагменты каждой из услуг будут в общем случае передаваться на разных частотах. Ресивер будет скачками перестраиваться с канала на канал, собирая фрагменты данных, относящихся к принимаемой услуге. Это позволит формировать пакеты с размерами, значительно превышающими допустимые для одного радиочастотного канала, что, в свою очередь, даст возможность выигрыша за счет статистического мультиплексирования значительного количества каналов и гибкости частотного планирования.

Сравнивая основные параметры при передаче сигналов в стандартах DVB-T и DVB-T2, можно сказать, что устойчивость к помехам, качество картинки, скорость передачи сигнала и другие показатели у сигнала в стандарте DVB-T2 примерно в 1,48 раза лучше DVB-T. Также неоспоримым преимуществом нового стандарта является то, что емкость сетей цифрового телевидения увеличивается как минимум на 30 % при той же инфраструктуре сети и частотных ресурсах.

Библиографический список:


1 Локшин Б.А. Цифровое вещание: от студии к телезрителю. М.: Компания Сайрус Систем, 2001.
2 Ник Уэллс, Крис Нокс. DVB-T2: Новый стандарт вещания для телевидения высокой четкости // Теле-Спутник. 2008. №11.
3 Серов А.В. Эфирное цифровое телевидение DVB-T/Н. СПб.: БХВ-Петербург. 2010.
4 Шахнович И. DVB-T2 новый стандарт цифрового телевизионного вещания // Связь и телекоммуникации. 2009. №6.
5 Walter Fischer. Digital video and audio broadcasting technology. A practical engineering guide. Springer. 2010.

Рецензии:

2.12.2013, 21:18 Назарова Ольга Петровна
Рецензия : Представлен анализ по стандартам. Рекомендуется к печати.