Географические информационные системы. Геоинформационная система - гис Географическая информационная система гис предназначена для

Однозначное краткое определение этому явлению дать достаточно сложно. Географическая информационная система (ГИС) - это возможность нового взгляда на окружающий нас мир. Если обойтись без обобщений и образов, то ГИС - это современная компьютерная технология для картирования и анализа объектов реального мира, также событий, происходящих на нашей планете. Эта технология объединяет традиционные операции работы с базами данных, такими как запрос и статистический анализ, с преимуществами полноценной визуализации и географического (пространственного) анализа, которые предоставляет карта. Эти возможности отличают ГИС от других информационных систем и обеспечивают уникальные возможности для ее применения в широком спектре задач, связанных с анализом и прогнозом явлений и событий окружающего мира, с осмыслением и выделением главных факторов и причин, а также их возможных последствий, с планированием стратегических решений и текущих последствий предпринимаемых действий.

Создание карт и географический анализ не являются чем-то абсолютно новым. Однако технология ГИС предоставляет новый, более соответствующий современности, более эффективный, удобный и быстрый подход к анализу проблем и решению задач, стоящих перед человечеством в целом, и конкретной организацией или группой людей, в частности. Она автоматизирует процедуру анализа и прогноза. До начала применения ГИС лишь немногие обладали искусством обобщения и полноценного анализа географической информации с целью обоснованного принятия оптимальных решений, основанных на современных подходах и средствах.

В настоящее время ГИС - это многомиллионная индустрия, в которую вовлечены сотни тысяч людей во всем мире. ГИС изучают в школах, колледжах и университетах. Эту технологию применяют практически во всех сферах человеческой деятельности - будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи.

Составные части ГИС

Работающая ГИС включает в себя пять ключевых составляющих: аппаратные средства, программное обеспечение, данные, исполнители и методы.
Аппаратные средства. Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ, от централизованных серверов до отдельных или связанных сетью настольных компьютеров.

Программное обеспечение ГИС содержит функции и инструменты, необходимые для хранения, анализа и визуализации географической (пространственной) информации. Ключевыми компонентами программных продуктов являются: инструменты для ввода и оперирования географической информацией; система управления базой данных (DBMS или СУБД); инструменты поддержки пространственных запросов, анализа и визуализации (отображения); графический пользовательский интерфейс (GUI или ГИП) для легкого доступа к инструментам.

Данные. Это вероятно наиболее важный компонент ГИС. Данные о пространственном положении (географические данные) и связанные с ними табличные данные могут собираться и подготавливаться самим пользователем, либо приобретаться у поставщиков на коммерческой или другой основе. В процессе управления пространственными данными ГИС интегрирует пространственные данные с другими типами и источниками данных, а также может использовать СУБД, применяемые многими организациями для упорядочивания и поддержки имеющихся в их распоряжении данных.

Исполнители. Широкое применение технологии ГИС невозможно без людей, которые работают с программными продуктами и разрабатывают планы их использования при решении реальных задач. Пользователями ГИС могут быть как технические специалисты, разрабатывающие и поддерживающие систему, так и обычные сотрудники (конечные пользователи), которым ГИС помогает решать текущие каждодневные дела и проблемы.

Методы. Успешность и эффективность (в том числе экономическая) применения ГИС во многом зависит от правильно составленного плана и правил работы, которые составляются в соответствии со спецификой задач и работы каждой организации.

Как работает ГИС?

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги и т.п. При использовании подобных ссылок для автоматического определения местоположения или местоположений объекта (объектов) применяется процедура, называемая геокодированием. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект или явление, такие как дом, в котором проживает ваш знакомый или находится нужная вам организация, где произошло землетрясение или наводнение, по какому маршруту проще и быстрее добраться до нужного вам пункта или дома.

Векторная и растровая модели. ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми. В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y. Местоположение точки (точечного объекта), например буровой скважины, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты, типа речных водосборов, земельных участков или областей обслуживания, хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как типы почв или доступность объектов. Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке. Обе модели имеют свои преимущества и недостатки. Современные ГИС могут работать как с векторными, так и с растровыми моделями.

Задачи, которые решает ГИС. ГИС общего назначения, в числе прочего, обычно выполняет пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

Ввод. Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера. Многие данные уже переведены в форматы, напрямую воспринимаемые ГИС-пакетами.

Манипулирование. Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть в разных масштабах (осевые линии улиц имеются в масштабе 1: 100 000, границы округов переписи населения - в масштабе 1: 50 000, а жилые объекты - в масштабе 1: 10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.

Управление. В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (СУБД), то специальными компьютерными средствами для работы с интегрированными наборами данных (базами данных). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих, как ГИС, так и не ГИС приложениях.

Запрос и анализ. При наличии ГИС и географической информации Вы сможете получать ответы простые вопросы (Кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промзона?) и более сложные, требующие дополнительного анализа, запросы (Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?). Запросы можно задавать как простым щелчком мышью на определенном объекте, так и с посредством развитых аналитических средств. С помощью ГИС можно выявлять и задавать шаблоны для поиска, проигрывать сценарии по типу “что будет, если…”. Современные ГИС имеют множество мощных инструментов для анализа, среди них наиболее значимы два: анализ близости и анализ наложения. Для проведения анализа близости объектов относительно друг друга в ГИС применяется процесс, называемый буферизацией. Он помогает ответить на вопросы типа: Сколько домов находится в пределах 100 м от этого водоема? Сколько покупателей живет не далее 1 км от данного магазина? Какова доля добытой нефти из скважин, находящихся в пределах 10 км от здания руководства данного НГДУ? Процесс наложения включает интеграцию данных, расположенных в разных тематических слоях. В простейшем случае это операция отображения, но при ряде аналитических операций данные из разных слоев объединяются физически. Наложение, или пространственное объединение, позволяет, например, интегрировать данные о почвах, уклоне, растительности и землевладении со ставками земельного налога.

Визуализация. Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. Карта - это очень эффективный и информативный способ хранения, представления и передачи географической (имеющей пространственную привязку) информации. Раньше карты создавались на столетия. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками и таблицами, фотографиями и другими средствами, например, мультимедийными.

Связанные технологии. ГИС тесно связана рядом других типов информационных систем. Ее основное отличие заключается в способности манипулировать и проводить анализ пространственных данных. Хотя и не существует единой общепринятой классификации информационных систем, приведенное ниже описание должно помочь дистанциировать ГИС от настольных картографических систем (desktop mapping), систем САПР (CAD), дистанционного зондирования (remote sensing), систем управления базами данных (СУБД или DBMS) и технологии глобального позиционирования (GPS).

Системы настольного картографирования используют картографическое представление для организации взаимодействия пользователя с данными. В таких системах все основано на картах, карта является базой данных. Большинство систем настольного картографирования имеет ограниченные возможности управления данными, пространственного анализа и настройки. Соответствующие пакеты работают на настольных компьютерах - PC, Macintosh и младших моделях UNIX рабочих станций.

Системы САПР способны чертежи проектов и планы зданий и инфраструктуры. Для объединения в единую структуру они используют набор компонентов с фиксированными параметрами. Они основываются на небольшом числе правил объединения компонентов и имеют весьма ограниченные аналитические функции. Некоторые системы САПР расширены до поддержки картографического представления данных, но, как правило, имеющиеся в них утилиты не позволяют эффективно управлять и анализировать большие базы пространственных данных.

Дистанционное зондирование и GPS. Методы дистанционного зондирования - это искусство и научное направление для проведения измерений земной поверхности с использованием сенсоров, таких как различные камеры на борту летательных аппаратов, приемники системы глобального позиционирования или других устройств. Эти датчики собирают данные в виде изображений и обеспечивают специализированные возможности обработки, анализа и визуализации полученных изображений. Ввиду отсутствия достаточно мощных средств управления данными и их анализа, соответствующие системы вряд ли можно отнести к настоящим ГИС.

Системы управления базами данных предназначены для хранения и управления всеми типами данных, включая географические (пространственные) данные. СУБД оптимизированы для подобных задач, поэтому во многие ГИС встроена поддержка СУБД. Эти системы не имеют сходных с ГИС инструментов для анализа и визуализации.

Что ГИС могут сделать для вас?

Делать пространственные запросы и проводить анализ. Способность ГИС проводить поиск в базах данных и осуществлять пространственные запросы позволила многим компаниях сэкономить миллионы долларов. ГИС помогает сократить время получения ответов на запросы клиентов; выявлять территории подходящие для требуемых мероприятий; выявлять взаимосвязи между различными параметрами (например, почвами, климатом и урожайностью с/х культур); выявлять места разрывов электросетей. Риэлторы используют ГИС для поиска, к примеру, всех домов на определенной территории, имеющих шиферные крыши, три комнаты и 10-метровые кухни, а затем выдать более подробное описание этих строений. Запрос может быть уточнен введением дополнительных параметров, например стоимостных. Можно получить список всех домов, находящих на определенном расстоянии от определенной магистрали, лесопаркового массива или места работы.

Улучшить интеграцию внутри организации. Многие применяющие ГИС организации обнаружили, что одно из основных ее преимуществ заключается в новых возможностях улучшения управления собственной организацией и ее ресурсами на основе географического объединения имеющихся данных и возможности их совместного использования и согласованной модификации разными подразделениями. Возможность совместного использования и постоянно наращиваемая и исправляемая разными структурными подразделениями база данных позволяет повысить эффективность работы как каждого подразделения, так и организации в целом. Так, компания, занимающаяся инженерными коммуникациями, может четко спланировать ремонтные или профилактические работы, начиная с получения полной информации и отображения на экране компьютера (или на бумажных копиях) соответствующих участков, например водопровода, и заканчивая автоматическим определением жителей, на которых эти работы повлияют, и уведомлением их о сроках предполагаемого отключения или перебоев с водоснабжением.

Принятие более обоснованных решений. ГИС, как и другие информационные технологии, подтверждает известную поговорку о том, что лучшая информированность помогает принять лучшее решение. Однако, ГИС - это не инструмент для выдачи решений, а средство, помогающее ускорить и повысить эффективность процедуры принятия решений, обеспечивающее ответы на запросы и функции анализа пространственных данных, представления результатов анализа в наглядном и удобном для восприятия виде. ГИС помогает, например, в решении таких задач, как предоставление разнообразной информации по запросам органов планирования, разрешение территориальных конфликтов, выбор оптимальных (с разных точек зрения и по разным критериям) мест для размещения объектов и т. д. Требуемая для принятия решений информация может быть представлена в лаконичной картографической форме с дополнительными текстовыми пояснениями, графиками и диаграммами. Наличие доступной для восприятия и обобщения информации позволяет ответственным работникам сосредоточить свои усилия на поиске решения, не тратя значительного времени на сбор и обмысливание доступных разнородных данных. Можно достаточно быстро рассмотреть несколько вариантов решения и выбрать наиболее эффектный и эффективный.

Создание карт. Картам в ГИС отведено особое место. Процесс создания карт в ГИС намного более прост и гибок, чем в традиционных методах ручного или автоматического картографирования. Он начинается с создания базы данных. В качестве источника получения исходных данных можно пользоваться и оцифровкой обычных бумажных карт. Основанные на ГИС картографические базы данных могут быть непрерывными (без деления на отдельные листы и регионы) и не связанными с конкретным масштабом. На основе таких баз данных можно создавать карты (в электронном виде или как твердые копии) на любую территорию, любого масштаба, с нужной нагрузкой, с ее выделением и отображением требуемыми символами. В любое время база данных может пополняться новыми данными (например, из других баз данных), а имеющиеся в ней данные можно корректировать по мере необходимости. В крупных организациях созданная топографическая база данных может использоваться в качестве основы другими отделами и подразделениями, при этом возможно быстрое копирование данных и их пересылка по локальным и глобальным сетям.

Геоинформационные системы (ГИС) - системы сбора, хранения, обработки, доступа, анализа, интерпретации и графической визуализации пространственных данных.ГИС лежат в основе геоинформационных технологий (ГИС-технологий), т.е. информационных технологий обработки и представления пространственно-распределенной информации.

ГИС-технологии являются мощным инструментом для работы и наглядного представления информации. Используя передовые возможности систем управления базами данных (СУБД), являясь уникальными редакторами растровой и векторной графики и обладая широчайшим инструментарием для проведения аналитических операций, ГИС зарекомендовали себя в качестве эффективного средства решения задач в области картографии, геологии, муниципального управления, землеустройства, экологии, транспорта, промышленности, сельского и лесного хозяйства.

По некоторым оценкам около 80% всей информации, связанной с деятельностью человека, имеет пространственную привязку. Например, работа жилищно-коммунальных служб требует использования информации о расположении обслуживаемых зданий, прохождении тепломагистралей, линий электропередачи и т. д., которая может быть представлена в виде карты. Сопроводительная документация (паспорта объектов, фотографии, протоколы), хотя и не отображается непосредственно на карте, имеет взаимосвязь с объектами карты, обладающими пространственной привязкой. Как следствие, ГИС-технологии находят все большее применение в современном информационном обществе, являясь удобным инструментом для решения многих практических, научных и учебных задач.


Программные продукты, обладающие расширенным набором инструментов для работы с пространственной информацией.

Разновидность геоинформационных систем, отличительной особенностью которых является предоставление информации через сеть Internet/Intranet

Класс программного обеспечения для мобильных устройств, предназначенного для доступа, обработки, анализа, и графической визуализации пространственных данных

Геоинформационные системы, предназначенные для решения задач органов государственной власти.

Многопользовательская геоинформационная система, реализованная для автоматизации бизнес-процессов организации. Данный вид геоинформационных систем предназначен для анализа и визуализации пространственных данных и связанной с ними информации.

Стоит только начать работать с геоинформационными системами (ГИС), как приходит понимание их незаменимости в работе любого руководителя или сотрудника организации, имеющего дело с географически распределенными данными.

Год назад передо мною возникла задача нанести на карту для совместной работы несколько сот объектов, раскиданных по муниципальному району. Поэтому изначально искал веб-сервис, позволяющий отобразить мои данные на карте в Интернет, но позже изменил подход – оказалось, что полезные возможности от визуализации данных на карте возрастают на порядок, если использовать веб-сервисы совместно с десктопными решениями.

Тогда я наше время для некоторого углубления в предмет и изучения рынка, проанализировал различные платные и бесплатные ГИС, и выяснил, что знакомые геодезисты и специалисты, работающие в сфере градостроительной деятельности, предпочитают ГИС «ИнГЕО» (тот же AutoCAD, только заточенный под создание информационной системы обеспечения градостроительной деятельности). Другая часть ГИС-пользователей устанавливает на свои компьютеры MapInfo.

Но тут оказалось, что менее искушенные товарищи радуются бесплатному (Open Source) решению QGIS, которое с их слов закрывает нужды широкого круга специалистов, от руководителей экономической безопасности и директоров строительных компаний до геодезистов. Причем, закрывает не хуже по отношении к названным выше коммерческим ГИС, чем LibreOffice нужды пользователей Microsoft Word - вопрос исключительно в привычке.

Так QGIS стал для меня персональным открытием года. И если сначала с недоверием отнесся к утверждению своего знакомого, что QGIS быстро вытесняет дорогостоящие профессиональные ГИС, то теперь полагаю, что такое утверждение имеет право на жизнь.

На скриншоте ниже показан пример данных, обработанных нами в QGIS и выложенных на бесплатный облачный веб-сервис NextGIS.com для совместной работы. С NextGIS.com мы познакомимся ниже.

Со временем информация в ГИС накапливается, появляется возможность одним нажатием кнопки отображать комбинации слоев карт с казавшейся когда-то несвязанной тематикой и делать открытия, которые ранее не были очевидными.

Геоинформационная система QGIS

→ Ссылка на проект

QGIS – это свободная бесплатная десктопная географическая информационная система с открытым кодом. С ее помощью можно создавать, редактировать, визуализировать, анализировать и публиковать геопространственную информацию в Windows, Mac, Linux, BSD (а вскоре и на Android). Система хорошо документирована на русском языке, плюс у нее обширное русскоязычное сообщество пользователей и разработчиков.

Функциональность QGIS определяется большим количеством устанавливаемых расширений, загружаемых через меню «Управление модулями». Можно найти модули под самые разнообразные задачи, от геокодинга, до упрощения геометрии, интеграции с картографическими веб-сервисами и 3D-моделирования ландшафта.

Задача настоящей статьи – дать общее представление о возможностях QGIS. Как то или иное исполнить на практике – предлагаю гуглить и сразу пробовать по ходу статьи. Интерфейс приложения дружественен и понятен новичку, особенно если иметь представление об общих принципах работы ГИС которым во многом посвящена эта статья.

Файл проекта и файлы слоев QGIS

Основные объекты, с которыми пользователь работает в ГИС – это слои. Обычный слой представляет собой таблицу, каждой строке которой соответствуют по одному объекту на карте. В отличие от привычных каждому таблиц в стиле Microsoft Excel кроме атрибутивных данных, таких как, например, наименование объекта недвижимости, арендатора, адреса, площади и т.д., в таблице QGIS есть столбец, по умолчанию скрытый, с так называемой «геометрией» объекта – пространственными данными, позволяющими отобразить на карте объект, описанный в соответствующей строке этой таблицы.

В зависимости от типа слоя объектами, которые могут быть разнесены по карте, являются растровые объекты (изображения, например, куски спутниковых снимков) или векторные данные, которые описываются координатам вершин. Существуют три основных типа векторных объектов:

  • точки;
  • линии, в том числе ломаные;
  • полигоны (замкнутые линии площадных объектов).
Пользователю QGIS важно понимать где именно хранятся таблицы, строки которых содержат пространственные данные. В приложении мы формируем проект, в котором создаем новые, или в который затаскиваем ранее созданные или публично доступные таблицы. Это могут быть табличные файлы в разнообразных форматах, таблицы баз данных, созданных QGIS или другими приложениями, публичные и частные веб-сервисы.

В простейшем варианте пользователь создает свои слои в табличных файлах с расширением «.shp» (от англ. Shape – форма, облик) – родном формате QGIS. Один слой (таблица) содержится в одном файле.shp. Если необходимо передать кому-то картографическую информацию для дальнейшей работы, то можно отправить один файл «.shp», хотя во многих случаях целесообразнее запаковать в архив и передать всю папку проекта.

Как уже было сказано, для хранения геометрии отводится отдельное поле в таблице слоя. Если его нет в источнике (файле, базе данных, внешнем приложении), то QGIS поможет его создать. Это значит, что можно, например, присоединить в проект выгруженный из Microsoft Excel файл с адресами контрагентов в формате CSV, создать в нем поля геометрии или конвертировать в полноценный слой «.shp» для отображения этих адресов на карте.

QGIS позволяет присоединять в проект файлы таблиц слоев во множестве форматов, например MapInfo, ArcGIS или даже CSV, но как правило, после присоединения я их сразу конвертирую в формат QGIS (.shp), так как при этом появляются дополнительные возможности, особенно в части стилизации. Иногда присоединенные файлы слоев имеют неверную кодировку текста. В этом случае правильную можно выбрать в свойствах слоя.

Поскольку файлы не импортируются, а присоединяются в проект, то изменения, которые вносятся в строки таблицы будут сохраняться в эти же самые файлы. То есть, они станут видны во всех приложениях, использующих эту таблицу, и наоборот.

Что немного сбивает с толку новичка? Загруженные в проект слои по умолчанию защищены от записи и не редактируются, на них нельзя наносить новые объекты, передвигать их, изменять атрибуты и добавлять поля в таблице. Для всего этого необходимо выделить нужный слой и нажать кнопку редактирования. После этого станут доступны соответствующие другие кнопки и опции.

Не забывайте, что ваши правки распространяются на выделенный слой и если вы переключились на другой - прежний хотя и останется в режиме редактирования, но нанести на карту новый объект у вас не получится до тех пор, пока вы не выберите редактируемый слой вновь. Излишне напоминать, что надо периодически сохранять изменения редактируемого слоя (или целиком проекта), чтобы их не потерять.

Стили

Таблицы с данными и правила их отображения на карте (стили) хранятся и обрабатываются QGIS раздельно. Что такое таблицы мы поняли, теперь необходимо разобраться с тем, что такое стили.

Стиль устанавливается для каждой таблицы. Самое простое, что описывает стиль – это цвета, маркеры и изображения, используемые для отображения объектов таблицы на карте, форматирование и расположение подписей и поля таблицы из которых эти подписи формируются, масштаб при котором отображается слой или подписи. В том числе, с помощью стиля можно легко поставить оформление слоя на карте в зависимость от каких-нибудь полей этой или связанных таблиц. Например, отображать должников и кредиторов на карте разными символами.

Кроме того, можно настроить действия, которые производятся, например, при нажатии на маркер объекта на карте. Если вы желаете щелчком мыши по карте переходить на страницу объекта в закрытой корпоративной сети или запустить некое приложение для обработки объекта – нет проблем.

Использование слоев из публичных источников

Существуют специальные веб-сервисы WMS и WFS которые предназначены для передачи картографической информации. Пользователь использует специальную HTTP ссылку, по которой клиент пользователя (QGIS) запрашивает данные. Сервер отдает данные и они отображаются на мониторе пользователя. В некоторых случаях эти данные можно редактировать и возвращать на сервер.

Принципиальная разница между протоколами WMS и WFS заключается в следующем:

  • WMS - передает картографическую информацию в виде готовых изображений (растров), привязанных к координатам.
  • WFS - позволяет запрашивать и при наличии полномочий редактировать на карте векторные пространственные данные, такие как дороги, береговые линии, земельные участки и т.д.
Существует много полезных публичных сервисов для предоставления картографической информации в виде слоев (обычно WMS), доступных по веб-ссылке и напрашивающихся в наши проекты QGIS. Множество из этих сервисов доступны из модуля QGIS «Quick Map Services».

После установки модуля откройте в его настройках вкладку «Загрузить сервисы» и нажмите кнопку «Получить источники данных». Вам станут доступны публичная кадастровая карта, фотопланы от Google и Yandex, лицензионно чистая и, на мой взгляд, наиболее подробная из доступных карт OpenStreetMap (она же OSM), а также еще десятки полезных слоев, которые можно разместить в своем проекте.

Кроме того, некоторые сервисы предоставляют полезную информацию для автоматического анализа. Например, из OSM можно получить все региональные и федеральные дороги на карте с номерами, типами дорог, покрытием и т.д.

Геокодинг

Геокодинг – замечательное изобретение. Если под рукой есть таблица в Excel с адресами 10000 объектов (например, перечень контрагентов), почему бы их тоже не анализировать на карте.
Для этого в QGIS конвертируем таблицу из CSV-файла в слой.shp (модуль «RuGeocoder»). При этом таблица слоя получит скрытый столбец с геометрией (координатами точек), но он пока будет пуст.

Теперь с помощью того же модуля используем процедуру геокодинга, указываем таблицу слоя и ее поле с адресами, выбираем поставщика услуги. Мой выбор Yandex, поскольку он справляется с адресами на русском языке лучше всех.

Итак, запускаем процедуру геокодинга, ждем в среднем по секунде на каждый из обрабатываемых объектов и получаем всех их, раскиданными по карте.

Системы координат

Полезно понимать, что существуют различные системы координат. Их сотни.

В школе мы изучали только географические (WGS-84), представляющие точку на карте в виде градусов, минут, секунд широты и долготы. Однако в геоинформационных системах географические координаты хранятся в градусах и их десятичных долях, а минуты и секунды не используются (например, описание точки с координатами 45°34′55″ северной широты и 15°30′0″ западной долготы будут выглядеть так: 45.581944°, -15.5°).

Нередки случаи, когда из сторонних источников вы получаете слои, поля геометрии которых используют одну из прямоугольных систем координат. Прямоугольные системы активно используют геодезисты и проектировщики - это, так называемые, местные системы координат (МСК). Прямоугольные системы координат предполагают, что земля плоская и все измерения по осям абсцисс и ординат проводятся от конкретной нулевой точки в километрах от нее.

Зачем их так много? Дело в том, что допущение о плоской планете не позволяет использовать одну местную систему координат по всей Земле, так как уже через несколько сотен километров погрешность становится ощутимой. Зато они незаменимы в случае, когда требуется высокая точность на территории, ограниченной несколькими градусами широты и долготы. Так в Московской области геодезистами используются системы МСК-50 зоны 1 или 2.

QGIS позволяет выбрать систему координат для каждого слоя. То есть в одном проекте могут быть слои с разными системами координат, и они легко конвертируются из одной системы в другую – достаточно сохранить слой в shp-файл или базу данных, выбрав в качестве параметра новую систему. Кроме того в QGIS можно настроить систему координат в которую будут переводиться все слои проекта при их отображении на экране, а также системы которые будет устанавливаться по умолчанию для новых проектов и слоев в текущем проекте.

Информация о системе координат хранится вместе с таблицей в shp-файле QGIS, и передавая кому-либо файл слоя вместе с ним вы передаете соответствующие настройки. В других источниках слоев, включаемых в проект, информация о системе координат может отсутствовать. Поэтому, если вы получили от кого-либо слой с информацией, которая почему-то не отображается на карте, сделайте следующее – откройте таблицу объектов этого слоя, выделите любую строку и нажмите кнопку перехода к объекту. Если на экране отобразилась Африка или мировой океан, значит, QGIS систему координат распознал неправильно. Уточните у тех, от кого получен источник (файл), в какой системе координат хранятся данные, и установите ее для слоя в QGIS.

Если нужной системы координат нет в QGIS, то ее можно ввести самому (Пользовательская система координат). Для этого надо знать строку настроек. Google вам в помощь - попытайтесь использовать запрос с наименованием искомой системы плюс, например, «пользовательская система координат QGIS».

Для чего еще это может понадобиться? Пользователи публичной кадастровой карты хорошо знают о проблеме сдвига слоев кадастра относительно спутниковой подложки. Она сбивает с толку, мешает визуально оценивать границы земельных участков. Аналогичную картину мы видим при добавлении слоя публичной кадастровой карты в QGIS вместе со снимками Yandex или Google.

Чтобы исправить ситуацию я создал в QGIS собственную пользовательскую систему координат со следующими параметрами, подобранными эмпирическим путем, и установил ее для слоев кадастровой карты:

Proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=-11.0 +y_0=-6 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs
В результате проблема снята.

Немножко высшего пилотажа

Первое. Интересен вариант хранения пространственной информации в базе данных. Если есть база данных Microsoft SQL, Oracle или Postgres в которых, например, находится таблица с перечнем контрагентов с их адресами или таблица со списком оборудования, раскиданным по территории, то эту таблицу (запрос) полезно зацепить в QGIS.

Надо только добавить поле геометрии, и в этом QGIS поможет. Не забудьте установить в базе данных права на редактирование таблицы пользователю, получающему к ней доступ из QGIS. Информация, внесенная в QGIS, будет храниться в базе данных, а при изменении в базе данных сторонними управленческими приложениями, сразу же отображаться в QGIS.

Второе. Если нет желания давать прямой доступ к изменениям в базе или другом источнике данных (например файле CSV), но хочется оперативно получать информацию на карте, то есть эффективный способ и для этого.

Например, у нас есть информация об арендаторах нашего имущества в базе данных 1С, мы желаем показывать арендаторов на карте, выделять разными цветами должников по арендной плате и выводить рядом их сумму долга или какой-нибудь график с тенденцией погашения.

Нужно, в точности как это делаем с обычными слоями, присоединить таблицы базы данных с интересующей нас информацией (например, о динамике задолженности, должнике, объектах недвижимости и т.д.) в проект QGIS с правами на чтение. Поскольку присоединенные таблицы изначально не имеют геометрии, и мы не даем QGIS возможности ее создавать и изменять, то, понятно, надо как-то по-другому дать ГИС отсутствующую информацию о месторасположении имущества.

Для этого создаем слой.shp, располагаем на нем объекты, занося в один из атрибутов уникальные номера, соответствующие идентификаторам этих объектов в 1С. То-есть в обеих таблицах должны быть поля с одинаковыми идентифицирующими данными по которым их можно связать между собой. Настраиваем в свойствах слоя.shp соответствующие связи. В результате мы не меняем из QGIS данные 1С, но их изменение со стороны 1С сразу влияет на отображение объектов и сопутствующей информации на карте в QGIS. Осталось настроить свойства слоя карты для красивого отображения информации и наслаждаться результатом в реальном времени.

Третье. Отображать данные на карте в QGIS можно не только точками, линиями и полигонами с надписями, но и диаграммами, формируемыми автоматически на основе представленных данных.

Четвертое. Можно получать из QGIS аналитику в виде таблиц и итоговых данных, рассчитанных с учетом геопространственной информации. Например, имея таблицу населенных пунктов с количеством жителей в каждом и таблицу дорог из OSM, быстро подсчитать население, проживающее на расстоянии более 3 километров от региональных и федеральных автодорог.

NextGIS.com

Еще одним открытием года для меня стал облачный продукт NextGIS.com. Молодая российская команда NextGIS активно участвует в развитии QGIS. В этом можно убедиться по количеству доступных в QGIS модулей их производства. В 2016 году они запустили упомянутый картографический веб-сервис и неустанно расширяют его возможности.

Исходники проекта доступны на github . Так что если есть желание развернуть веб-сервис самостоятельно - нет проблем. Однако условия, которые предлагает команда NextGIS для доступа к своем облаку, без сомнения заслуживают внимания даже самых прижимистых пользователей.

Создать свою собственную веб-ГИС в облаке NextGIS можно бесплатно. Вы получите доменное имя в формате вашеимя.nextgis.com и можете почти без ограничений использовать все предоставляемые ими вкусности. Самое то, чтобы начать знакомиться с решением и использовать его на практике. Главное ограничение бесплатной подписки – невозможность ограничить доступ на чтение к информации. Любой может видеть то, что размещено вами.

Уже с бесплатной подпиской вы можете создавать сколько угодно веб-карт с произвольными настройками, компоновкой и стилями загруженных вами слоев, а также рассматривать, анализировать карты на рабочем компьютере и, в комплекте с NextGIS Mobile, собирать данные в поле, размещая их сразу в облако. Можно встраивать карты в веб-сайты или смотреть на сервисе.

Платная подписка снижает ограничения, в том числе по количеству пользователей, редактирующих слои (изначально один пользователь), разграничению их прав. Какие-то слои можно показать всем, а права доступа к другим ограничить. Плюс предоставляется возможность использовать собственное доменное имя, например gis.моякомпания.ru и получить разнообразие преднастроенных подложек (в бесплатной подписке есть только карта OpenStreetMap).

Со слов представителя компании сейчас условия подписки меняются. Ориентироваться нужно на информацию, размещенную на сайте сервиса по адресу nextgis.ru/pricing . Ранее платный тариф был единым и составлял 3000 руб.в месяц. Теперь платная подписка стоит от 600 рублей. Обещают, что за те же 3000 руб. в месяц клиент будет получать полный и актуальный комплекс программного обеспечения и сервисов, как и раньше.

Интеграция QGIS и NextGIS.com

Остановлюсь на нескольких не очевидных принципах интеграции QGIS и NextGIS.com. Работая в QGIS, вы создаете в своих проектах слои и их стили, как это уже рассматривалось выше. Теперь для того, чтобы разместить созданный слой на веб-карте у нас есть несколько способов. Рассмотрим сначала длинный путь, чтобы разобраться с идеологией NextGIS Web. Для размещения слоя необходимо:
  • зайти в QGIS в свойства слоя и из них сохранить стиль в файл;
  • сохранить файл слоя в системе координат WGS 84 (EPSG:3857).
Затем, имея два файла (стиля слоя с расширением.qml и таблицы слоя с расширением.shp), надо:
  • войти в свой аккаунт на своем сайте в облаке NextGIS.com,
  • создать новый слой через опцию «Создать ресурс - Векторный слой» и во вкладке «Векторный слой» загрузить файл с расширением.shp.

После сохранения ресурса в его настройках появится возможность загружать файлы стилей слоев. К каждому слою с данными можно сохранить несколько разных файлов стилей, которые по-разному будут отображать данные на веб-карте.

Наконец, настало время разместить слой на карте. Для этого откройте главную страницу своего сайта. Среди перечисленных объектов основной группы ресурсов будет как минимум одна существующая веб-карта. Войдите в ее настройки и выберите вкладку «Слои». Нажмите «Добавить слой» и отыщите в открывшейся таблице ваш слой и под ним стиль, в котором хотите, чтобы его данные отображались на Веб-карте. Нажмите «Сохранить» и «Веб-карта – Открыть». Слой перед вами на карте - включите его для отображения.

Действительно длинный путь, не так ли? Но есть маршрут, который решает все это и многое другое прямо из QGIS в несколько нажатий клавиш и которым пользуюсь я.

Модуль NextGIS Connect для QGIS

Установите через меню QGIS «Управление модулями» модуль NextGIS Connect. В интерфейсе появится виджет «Ресурсы NextGIS». В его настройках создайте подключение, указав данные вашего аккаунта, в том числе адрес своего сайта (в формате «http://мойсайт.nextgis.com»), имя пользователя «administrator» и полученный при регистрации пароль. Вместо ввода логина и пароля можете использовать учетную запись гостя, но с нею не удастся загружать данные из QGIS на веб-сайт - можно только получать информацию с сайта. После регистрации на экране отобразятся все ваши ресурсы на облачном сервисе.


Теперь для того, чтобы разместить слои QGIS на веб-карте есть два способа.

Поэтому есть второй способ более изящный, предназначенный для работы с уже созданными веб-картами. Для этого мы поднимаем из QGIS в облако NextGIS.com по одному новому или измененному слою:

  • удаляем в окне NextGIS Connect слои, которые хотим поднять обновленными;
  • выбираем в окне NextGIS Connect конечную папку ресурсов;
  • выделяем слой в QGIS правой кнопкой мыши и в контекстном меню выбираем «NextGIS Connect – Импортировать выбранный слой». Выбранный слой копируется в облако вместе с его стилем;
  • повторяем действия для всех слоев, которые хотим обновить на веб-карте;
  • выделяем в окне NextGIS Connect карту на которой собираемся разместить слой и переходим на нее щелчком правой кнопки мыши через контекстное меню «Открыть в ВебГИС»;
  • в открывшемся окне ресурса веб-карты на сайте нажимаем кнопку «Изменить», выбираем вкладку «Слои» и нажимаем кнопку «Добавить слой». Находим загруженные слои и добавляем на карту стили, размещенные под каждым из них. Нажимаем «Сохранить».
Обратите внимание, если вы не вошли на сайт под своей учетной записью, то хотя и прошли указанный маршрут, сохранение данных вызовет ошибку.

Растровые слои

Полезность пользовательских растровых слоев в качестве подложек карт при работе в QGIS очевидна не сразу, поскольку существует модуль расширения «Quick Map Services», который в пару кликов добавляет в проект слои публичных веб-карт, например Яндекс-Спутника или кадастровой карты.

Но со временем нужда в них появляется в следующих случаях если:

  • на карте нужен более детализированный, чем доступные публично, фотографический план отдельного объекта или территории, который есть у вас в наличии
  • вы работаете в дороге, при нестабильном доступе в Интернет или если вас досаждает длительная загрузка публичных снимков при каждом перемещении экрана;
  • вы пользуетесь бесплатной версией NextGIS.com, а единственная подложка OpenStreetMap на ваших веб-картах вас не устраивает.
Во втором и третьем случае вам поможет открытое десктопное приложение SAS.Планета. Загрузите его себе на компьютер с сайта . Очертите территорию, которую желаете заграбить в растровый слой, выберите в меню «Операции с выделенной областью», откройте вкладку «Склеить» и установите выбранные настройки (например, как на рисунке). По кнопке «Начать» на вашем компьютере будут сформированы растровые изображений с геопривязкой, которые можно загрузить в качестве растрового слоя в QGIS или ресурса в NextGIS.com.

На что надо обратить внимание:

  1. Предпочтительный формат файла для хранения растровых данных – GeoTIFF с компрессией JPEG. Он занимает мало места, единственный загружается на NextGIS.com и может содержать тайлы – маленькие разномасштабные изображения, эффективно и быстро открывающиеся на веб-карте при перемещении экрана. Все тайлы по умолчанию хранятся в одном файле, но этого монстра не надо каждый раз загружать себе на компьютер, из него будут выбираться строго необходимые куски-тайлы. Однако, если файл все равно слишком велик для вас или для загрузки на сервис веб-карты, то его можно разбить на части как это показано (2x2 куска, 4 файла) в указанных выше настройках.
  2. В проект QGIS растровый слой можно поместить простым перетаскиванием. А если надо скрепить несколько частей, то можно использовать так называемый «виртуальный слой» или просто собрать все растровые слои в группу.
  3. Максимальный масштаб для Yandex-Спутника равен 18. 17 достаточен для многих задач, а файл с тайлами уменьшается значительно.
  4. При склейке в SAS.Planet в GeoTIFF-файле размещаются только тайлы указанного масштаба, и после прикрепления растрового слоя в проект QGIS в свойствах слоя рекомендуется выбрать опцию «Пирамиды». Растры высокого разрешения могут замедлить навигацию в QGIS. Создание копий данных низкого разрешения (пирамид) позволяет существенно повысить скорость, поскольку QGIS будет автоматически выбирать оптимальное разрешение в зависимости от текущего масштаба. Создайте пирамиды меньших размеров.

NextGIS Mobile

Если вам приходится работать в поле, есть желание оперативно получать информацию в пути с карты, одновременно собирая данные и оперативно делясь с другими, то полезно использовать бесплатное приложение NextGIS Mobile для смартфона или планшета. С его помощью можно получать и обрабатывать географически распределенную информацию из различных источников, в том числе со слоев NextGIS.com и сторонних баз данных, загружать из QGIS, изменять, рисовать объекты и создавать новые слои, возвращать их в QGIS. И все в привязке к собственному местоположению. Приятна возможность сохранять в слои собственные треки перемещений.

Для массового сбора информации достаточно просто создаются собственные формы, удобные для использования неподготовленными сотрудниками из приложения на телефоне или планшете.

Вместо заключения

Есть еще множество способов работы с упомянутыми выше решениями. Например, слои можно разместить на каком-нибудь бесплатном или собственном сервере баз данных PostgreSQL, вести с ними работу в QGIS и других приложениях, например LibreOffice, Microsoft Access или Microsoft Excel, а на сайте NextGIS.com один раз настроить слой для отображения на веб-карте. В результате все изменения данных в QGIS или в Microsoft Excel немедленно будут отображаться на веб-карте.

К размещенным в облаке объектам слоя можно прикреплять на карте документы и фотографии. Их просмотр удобен и нагляден. Правда, если этот слой вам приходится периодически заменять новым из QGIS, то с удаленной версией исчезнет и вся наполненная вами красота. Альтернатива – работать в облаке не путем замены слоев из QGIS (через модуль NextGIS Connect или вручную), а опосредованно, например, опять же, через однажды настроенный слой, получающий информацию из базы данных Postgres.

В любом случае, связка QGIS, NextGIS.com и NextGIS Mobile является гибким и полезным инструментом, доступным каждому. Переход к работе с ГИС для решения прикладных задач с географически распределенными данными – увлекательная задача и усилия по изучению предмета окупаются возможностями, которые мы тем самым открываем перед собой.

В заключение для иллюстрации материалов статьи предлагаю вот это короткое видео.

56. Геоинформационные системы (ГИС).

Понятие о геоинформационных системах

Геоинформационные системы (ГИС) – это автоматизированные системы, основными функциями которых являются сбор, хранение, интеграция, анализ и графическая визуализация в виде карт или схем пространственно-временных данных, а также связанной с ними атрибутивной информации о представленных в ГИС объектах.

ГИС возникли в 1960–70 гг. на стыке технологий обработки информации в системах управления базами данных и визуализации графических данных в системах автоматизированного проектирования (САПР), автоматизированного производства карт, управления сетями. Интенсивное использование ГИС началось в середине 90-х гг. ХХ в. В это время появляются мощные и относительно дешевые персональные компьютеры, становится более доступным и понятным программное обеспечение.

В качестве источников данных для создания ГИС служат:

Картографические материалы (топографические и общегеографические карты, карты административно-территориального деления, кадастровые планы и др.). Так как получаемые с карт данные имеют пространственную привязку, они используются в качестве базового слоя ГИС;

Данные дистанционного зондирования (ДДЗ), прежде всего, материалы, получаемые с космических аппаратов и спутников. При дистанционном зондировании изображения получают и передают на Землю с носителей съемочной аппаратуры, размещенных на разных орбитах. Полученные снимки отличаются разным уровнем обзорности и детальности отображения объектов природной среды в нескольких диапазонах спектра (видимый и ближний инфракрасный, тепловой инфракрасный и радиодиапазон). Благодаря этому с применением ДДЗ решают широкий спектр экологических задач. К методам дистанционного зондирования относятся также аэро- и наземные съемки, и другие неконтактные методы, например гидроакустические съемки рельефа морского дна. Материалы таких съемок обеспечивают получение как количественной, так и качественной информации о различных объектах природной среды;

Результаты геодезических измерений на местности, выполняемые нивелирами, теодолитами, электронными тахеометрами, GPS приемниками и т. д.; - данные государственных статистических служб по самым разным отраслям народного хозяйства, а также данные стационарных измерительных постов наблюдений (гидрологические и метеорологические данные, сведения о загрязнении окружающей среды и т. д).

Литературные данные (справочные издания, книги, монографии и статьи, содержащие разнообразные сведения по отдельным типам географических объектов). В ГИС редко используется только один вид данных, чаще всего это сочетание разнообразных данных на какую-либо территорию.

Классификация геоинформационных систем.

ГИС системы разрабатывают и применяют для решения научных и прикладных задач инфраструктурного проектирования, городского и регионального планирования, рационального использования природных ресурсов, мониторинга экологических ситуаций, а также для принятия оперативных мер в условиях чрезвычайных ситуаций и др. Множество задач, возникающих в жизни, привело к созданию различных ГИС, которые могут классифицироваться по следующим признакам:

По функциональным возможностям: - полнофункциональные ГИС общего назначения;

Специализированные ГИС, ориентированные на решение конкретной задачи в какой либо предметной области;

Информационно-справочные системы для домашнего и информационно-справочного пользования. Функциональные возможности ГИС определяются также архитектурным принципом их построения:

Закрытые системы не имеют возможностей расширения, они способны выполнять только тот набор функций, который однозначно определен на момент покупки; - открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).

По пространственному (территориальному) охвату ГИС подразделяются на глобальные (планетарные), общенациональные, региональные, локальные (в том числе муниципальные).

По проблемно-тематической ориентации – общегеографические, экологические и природопользовательские, отраслевые (водных ресурсов, лесопользования, геологические, туризма и т. д.).

По способу организации географических данных – векторные, растровые, векторно-растровые ГИС.

Основные компоненты геоинформационных систем.

К основным компонентам ГИС относят: технические (аппаратные) и программные средства, информационное обеспечение.

Технические средства – это комплекс аппаратных средств, применяемых при функционировании ГИС. К ним относятся рабочая станция (персональный компьютер), устройства ввода-вывода информации, устройства обработки и хранения данных, средства телекоммуникации.

Рабочая станция используется для управления работой ГИС и выполнения процессов обработки данных, основанных на вычислительных и логических операциях. Современные ГИС способны оперативно обрабатывать огромные массивы информации и визуализировать результаты.

Ввод данных реализуется с помощью разных технических средств и методов: непосредственно с клавиатуры, с помощью дигитайзера или сканера, через внешние компьютерные системы. Пространственные данные могут быть получены с электронных геодезических приборов, с помощью дигитайзера или сканера, либо с использованием фотограмметрических приборов.

Устройства для обработки и хранения данных интегрированы в системном блоке компьютера, включающем в себя центральный процессор, оперативную память, запоминающие устройства (жесткие диски, переносные магнитные и оптические носители информации, карты памяти, флеш-накопители и др.). Устройства вывода данных – монитор, графопостроитель, плоттер, принтер, с помощью которых обеспечивается наглядное представление результатов обработки пространственно-временных данных.

Программные средства – программное обеспечение (ПО) для реализации функциональных возможностей ГИС. Оно подразделяется на базовое и прикладное ПО.

Базовые программные средства включают: операционные системы (ОС), программные среды, сетевое программное обеспечение, системы управления базами данных, а также модули управления средствами ввода и вывода данных, систему визуализации данных и модули для выполнения пространственного анализа.

К прикладному ПО относятся программные средства, предназначенные для решения специализированных задач в конкретной предметной области. Они реализуются в виде отдельных модулей (приложений) и утилит (вспомогательных средств).

Информационное обеспечение – совокупность массивов информации, систем кодирования и классификации информации. Особенность хранения пространственных данных в ГИС – их разделение на слои. Многослойная организация электронной карты, при наличии гибкого механизма управления слоями, позволяет объединить и отобразить гораздо большее количество информации, чем на обычной карте.

(Тут всё обычно. По пунктам.)

Предназначена для сбора, хранения, анализа, графической визуализации пространственных данных.

Определение 1

Говоря языком географии ГИС – это инструменты, которые дают возможность искать, анализировать, редактировать цифровые карты и необходимую дополнительную информацию о каких-либо объектах.

ГИС широко применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне и других областях.

По охвату территории ГИС могут быть:

  1. Глобальные;
  2. Субконтинентальные;
  3. Национальные;
  4. Региональные;
  5. Субрегиональные;
  6. Локальные или местные.

Пространственными данными являются такие, которые описывают местоположение объектов в пространстве, а ГИС дают возможность добавлять, удалять, обновлять, запрашивать, просматривать, анализировать эти данные. Пространственные данные представлены в виде основных форматов – векторной графики и в виде растров.

Определение 2

Растровое изображение – это двумерный массив точек, где каждая точка представлена своим цветом.

Для оформления «подложки» цифровой карты обычно используется растровая графика, а поверх её отображается векторная геометрия. Например, на картах Яндекс можно увидеть огромное количество растров. Пространственной информации можно отображать огромное количество при небольших объемах памяти и это, без сомнения, большой плюс растровых изображений на цифровых картах.

Отрицательным моментом , пожалуй, является то, что при увеличении масштаба отображения, качество изображения на растре значительно снижается. Вполне понятно, что разные масштабы будут использовать растры разного территориального охвата и разрешения. Они будут сменять друг друга, если картинку надо будет увеличить или уменьшить.

Векторная графика . Это не что иное, как геометрия, представленная в виде наборов координат. Само изображение не хранится, под системой визуализации оно формируется «налету» и, независимо от масштаба, имеет высокое качество картинки.

Виды векторных пространственных данных:

  1. Точечная геометрия. Чаще всего это точка на карте определенного цвета. В ряде случаев ГИС заменяют эту точку стрелкой, иконкой, растровым рисунком, векторным символом;
  2. Линейная геометрия. Использование этого вида целесообразно тогда, когда важно показать протяженность и площадь. Такими объектами, как правило, являются дороги, реки, территориальные границы и др.;
  3. Площадная геометрия. Использовать этот вид будут тогда, когда важным является абсолютно всё.

С помощью ГИС можно ответить на следующие вопросы:

  1. Что расположено в таком-то месте;
  2. Где конкретно это находится;
  3. Что изменилось, начиная с какого-либо времени;
  4. Какие пространственные структуры существуют;
  5. Что произойдет, например, если добавить новую дорогу, т.е. моделирование.

Задачи, которые решает ГИС

Географическая геоинформационная система общего назначения выполняет в основном пять задач с данными – ввод, манипулирование, управление, запрос и анализ, визуализацию.

Задача ввода . Чтобы ввести данные в ГИС они должны быть преобразованы в подходящий цифровой формат. Процесс преобразования называется оцифровкой и может быть автоматизирован с применением сканерной технологии.

Задача манипулирования может возникнуть тогда, когда имеющиеся данные конкретного проекта необходимо дополнительно видоизменить в соответствии с требованиями системы. Например, географическая информация имеет разные масштабы – линии улиц в одном масштабе, границы округов – в другом, а жилые объекты в третьем масштабе. Понятно, что гораздо удобнее работать с информацией, когда она находится в одном масштабе и одинаковой картографической проекции. В связи с этим ГИС-технологии предоставляют разные способы манипулирования пространственными данными.

Задача управления хорошо просматривается, когда географическая информация небольших проектов хранится в виде обычных файлов. Если объем информации и число пользователей увеличить, тогда для хранения, структурирования и управления данными гораздо эффективнее использовать систему управления базами данных (СУДБ). Наиболее удобной является реляционная структура, хранящая данные в табличной форме. Данный подход гибок и широко используется.

Запрос и анализ . ГИС дает возможность получать ответы не только на простые вопросы, например, кто владелец данного земельного участка? но и на сложные, требующие дополнительного анализа. Запросы создаются щелчком мыши на определенный объект или через развитые аналитические средства. Чтобы сделать анализ близости объектов по отношению друг к другу, применяется процесс буферизации.

Визуализация. Результат в виде карты или графика для многих типов пространственных операций является конечным. Наиболее эффективным и информативным способом хранения, представления, передачи географической информации всегда была карта. Если карты создавались на протяжении столетий, то сегодня, с помощью ГИС появились новые инструменты, расширяющие и развивающие картографию. Визуализация дает возможность быстро и легко дополнить карты отчетными документами, графиками, таблицами, диаграммами, фотографиями.

Перспективы развития ГИС-технологий

Замечание 1

В ходе реализации программы по обеспечению населения России информацией ГИС-технологии должны модернизироваться и совершенствоваться. С этой целью Министерство РФ по связи и информации сделало заказ компании AYAXI в $ 2002$ г. на разработку дизайна и системы интернет-сайтов Федеральной целевой программы «Электронная Россия на $2002$-$2010$ гг.» В соответствии с положениями Окинавской хартии глобального информационного общества Президент России в $2000$ г. подписал «Концепцию формирования и развития единого информационного пространства России и государственных информационных ресурсов».

Развитие идет в два этапа:

  1. Первый этап связан с созданием электронного представительства ФЦП «Электронная Россия» в интернет и наполнением сайтов социально значимой информацией.
  2. Второй этап связан с реорганизацией сайтов в интерактивный портал.

Принципы портала:

  1. Устраняются все административные барьеры при внедрении информационно-коммуникативных технологий, отвечающих интересам безопасности государства;
  2. Обязательная открытость концепций для обсуждения целей и задач программ заинтересованными сторонами;
  3. Невозможность дублирования работ, которые реализуются в рамках других программ;
  4. Максимальная экономия денежных средств в бюджетах всех уровней и сниженная финансовая нагрузка;
  5. Публикуемые информационные материалы должны формировать общественное мнение по поддержке мероприятий, выполняемых в рамках ФЦП «Электронная Россия»;
  6. Информационные материалы должны отражать официальную позицию органов исполнительной власти.

Современное компьютерное общество имеет одну очень важную тенденцию, которая связана с переходом в сетевую среду передачи информации. Малые и средние компании объединяют свои компьютеры в сеть. Здесь есть как преимущества, так и новые проблемы.

Главная проблема заключается в совместном доступе к данным и защита информации от несанкционированного доступа. В ходе разработки персонального компьютера по разделению доступа к данным закладывались определенные возможности, и блокировка осуществлялась на уровне файлов. При модификации файла оператором, все остальные могут его только просматривать и не более. В развитых странах, например, все системы земельного кадастра для населения, являются доступными. В пределах России тоже происходит формирование единой информационной сети объектов недвижимого имущества. Это не противоречит закону об информации и является важным моментом для контроля со стороны общественности за рынком недвижимости. Сегодня для ГИС приоритетным становится ориентация на массового непрофессионального пользователя.