Идеальный ОУ — Неинвертирующий усилитель. Инвертирующий операционный усилитель

Операционным усилителем (ОУ) принято называть интегральный усилитель постоянного тока с дифференциальным входом и двухтактным выходом, предназначенный для работы с цепями обратных связей. Название усилителя обусловлено первоначальной областью его применения - выполнением различных операций над аналоговыми сигналами (сложение, вычитание, интегрирование и др.). В настоящее время ОУ выполняют роль многофункциональных узлов при реализации разнообразных устройств электроники различного назначения. Они применяются для усиления, ограничения, перемножения, частотной фильтрации, генерации, стабилизации и т.д. сигналов в устройствах непрерывного и импульсного действия.

Необходимо отметить, что современные монолитные ОУ по своим размерам и цене незначительно отличаются от отдельных дискретных элементов, например, транзисторов. Поэтому выполнение различных устройств на ОУ часто осуществляется значительно проще, чем на дискретных элементах или на усилительных ИМС.

Идеальный ОУ имеет бесконечно большой коэффициент усиления по напряжению (K и ОУ =∞), бесконечно большое входное сопротивление, бесконечно малое выходное сопротивление, бесконечно большой КОСС и бесконечно широкую полосу рабочих частот. Естественно, что на практике ни одно из этих свойств не может быть осуществлено полностью, однако к ним можно приблизиться в достаточной для многих областей мере.

На рисунке 6.1 приведено два варианта условных обозначений ОУ - упрощенный (а) и с дополнительными выводами для подключения цепей питания и цепей частотной коррекции (б).

Рисунок 6.1. Условные обозначения ОУ


На основе требований к характеристикам идеального ОУ можно синтезировать его внутреннюю структуру, представленную на рисунке 6.2.


Рисунок 6.2. Структурная схема ОУ


Упрощенная электрическая схема простого ОУ, реализующая структурную схему рисунка 6.2, показана на рисунке 6.3.


Рисунок 6.3. Схема простого ОУ


Данная схема содержит входной ДУ (VT 1 и VT 2) с токовым зеркалом (VT 3 и VT 4), промежуточные каскады с ОК (VT 5) и с ОЭ (VT 6), и выходной токовый бустер на транзисторах VT 7 и VT 8 . ОУ может содержать цепи частотной коррекции (C кор), цепи питания и термостабилизации (VD 1 , VD 2 и др.), ИСТ и т.д. Двухполярное питание позволяет осуществить гальваническую связь между каскадами ОУ и нулевые потенциалы на его входах и выходе в отсутствии сигнала. С целью получения высокого входного сопротивления входной ДУ может быть выполнен на ПТ. Следует отметить большое разнообразие схемных решений ОУ, однако основные принципы их построения достаточно полно иллюстрирует рисунок 6.3.

6.2. Основные параметры и характеристики ОУ

Основным параметром ОУ коэффициент усиления по напряжению без обратной связи K u ОУ , называемый также полным коэффициентом усиления по напряжению. В области НЧ и СЧ он иногда обозначается K u ОУ 0 и может достигать нескольких десятков и сотен тысяч.

Важными параметрами ОУ являются его точностные параметры, определяемые входным дифференциальным каскадом. Поскольку точностные параметры ДУ были рассмотрены в подразделе 5.5, то здесь ограничимся их перечислением:

◆ напряжение смещения нуля U см ;

◆ температурная чувствительность напряжения смещения нуля dU см /dT ;

◆ ток смещения ΔI вх ;

◆ средний входной ток I вх ср .

Входные и выходные цепи ОУ представляются входным R вхОУ и выходным R выхОУ сопротивлениями, приводимыми для ОУ без цепей ООС. Для выходной цепи даются также такие параметры, как максимальный выходной ток I выхОУ и минимальное сопротивление нагрузки R н min , а иногда и максимальная емкость нагрузки. Входная цепь ОУ может включать емкость между входами и общей шиной. Упрощенные эквивалентные схемы входной и выходной цепи ОУ представлены на рисунке 6.4.


Рисунок 6.4. Простая линейная макромодель ОУ


Среди параметров ОУ следует отметить КОСС и коэффициент ослабления влияния нестабильности источника питания КОВНП=20lg·(ΔE U вх ). Оба этих параметра в современных ОУ имеют свои значения в пределах (60…120)дБ.

К энергетическим параметрам ОУ относятся напряжение источников питания ±E, ток потребления (покоя) I П и потребляемая мощность. Как правило, I П составляет десятые доли - десятки миллиампер, а потребляемая мощность, однозначно определяемая I П , единицы - десятки милливатт.

К максимально допустимым параметрам ОУ относятся:

◆ максимально возможное (неискаженное) выходное напряжение сигнала U вых max (обычно чуть меньше Е);

◆ максимально допустимая мощность рассеивания;

◆ рабочий диапазон температур;

◆ максимальное напряжение питания;

◆ максимальное входное дифференциальное напряжение и др.

К частотным параметрам относится абсолютная граничная частота или частота единичного усиления f T (F 1), т.е. частота, на которой K u ОУ =1. Иногда используется понятие скорости нарастания и времени установления выходного напряжения, определяемые по реакции ОУ на воздействие скачка напряжения на его входе. Для некоторых ОУ приводятся также дополнительные параметры, отражающие специфическую область их применения.

Амплитудные (передаточные) характеристики ОУ представлены на рисунке 6.5 в виде двух зависимостей U вых =f (U вх ) для инвертирующего и неинвертирующего входов.

Когда на обоих входах ОУ U вх =0, то на выходе будет присутствовать напряжение ошибки U ош , определяемое точностными параметрами ОУ (на рисунке 6.5 U ош не показано ввиду его малости).


Рисунок 6.5. АХ ОУ


Частотные свойства ОУ представляются его АЧХ, выполненной в логарифмическом масштабе, K u ОУ =φ(lg f ). Такая АЧХ называется логарифмической (ЛАЧХ), ее типовой вид приведен на рисунке 6.6 (для ОУ К140УД10).

Рисунок 6.6. ЛАЧХ и ЛФЧХ ОУ К140УД10


Частотную зависимость K u ОУ можно представить в виде:

Здесь τ в постоянная времени ОУ, которая при M в =3 дБ определяет частоту сопряжения (среза) ОУ (см. рисунок 6.6);

ω в = 1/τ в = 2πf в .

Заменив в выражении для K u ОУ τ в на 1/ω в , получим запись ЛАЧХ:

На НЧ и СЧ K u ОУ =20lgK u ОУ 0 , т.е. ЛАЧХ представляет собой прямую, параллельную оси частот. С некоторым приближением можем считать, что в области ВЧ спад K u ОУ происходит со скоростью 20дБ на декаду(6дБ на октаву). Тогда при ω>>ω в можно упростить выражение для ЛАЧХ:

K u ОУ = 20lgK u ОУ 0 – 20lg(ω/ω в ).

Таким образом, ЛАЧХ в области ВЧ представляется прямой линией с наклоном к оси частот 20дБ/дек. Точка пересечения рассмотренных прямых, представляющих ЛАЧХ, соответствует частоте сопряжения ω в (f в ). Разница между реальной ЛАЧХ и идеальной на частоте f в составляет порядка 3дБ (см. рисунок 6.6), однако для удобства анализа с этим мирятся, и такие графики принято называть диаграммами Боде .

Следует заметить, что скорость спада ЛАЧХ 20дБ/дек характерна для скорректированных ОУ с внешней или внутренней коррекцией, основные принципы которой будут рассмотрены ниже.

На рисунке 6.6 представлена также логарифмическая ФЧХ (ЛФЧХ), представляющая собой зависимость фазового сдвига j выходного сигнала относительно входного от частоты. Реальная ЛФЧХ отличается от представленной не более чем на 6°. Отметим, что и для реального ОУ j=45° на частоте f в , а на частоте f T - 90°. Таким образом, собственный фазовый сдвиг рабочего сигнала в скорректированном ОУ в области ВЧ может достигнуть 90°.

Рассмотренные выше параметры и характеристики ОУ описывают его при отсутствии цепей ООС. Однако, как отмечалось, ОУ практически всегда используется с цепями ООС, которые существенно влияют на все его показатели.

6.3. Инвертирующий усилитель

Наиболее часто ОУ используется в инвертирующих и неинвертирующих усилителях. Упрощенная принципиальная схема инвертирующего усилителя на ОУ приведена на рисунке 6.7.


Рисунок 6.7. Инвертирующий усилитель на ОУ


Резистор R 1 представляет собой внутреннее сопротивление источника сигнала E г , посредством R ос ОУ охвачен ∥ООСН.

При идеальном ОУ разность напряжений на входных зажимах стремиться к нулю, а поскольку неинвертирующий вход соединен с общей шиной через резистор R 2 , то потенциал в точке a тоже должен быть нулевым ("виртуальный нуль", "кажущаяся земля"). В результате можем записать: I г =I ос , т.е. E г /R 1 =–U вых /R ос . Отсюда получаем:

K U инв = U вых /E г = –R ос /R 1 ,

т.е. при идеальном ОУ K U инв определяется отношением величин внешних резисторов и не зависит от самого ОУ.

Для реального ОУ необходимо учитывать его входной ток I вх , т.е. I г =I ос +I вх или (E г U вх )/R 1 =(U вх U вых )/R ос +U вх /U вхОУ , где U вх - напряжение сигнала на инвертирующем входе ОУ, т.е. в точке a . Тогда для реального ОУ получаем:

Нетрудно показать, что при глубине ООС более 10, т.е. K u ОУ /K U инв =F >10, погрешность расчета K U инв для случая идеального ОУ не превышает 10%, что вполне достаточно для большинства практических случаев.

Номиналы резисторов в устройствах на ОУ не должны превышать единиц мегом, в противном случае возможна нестабильная работа усилителя из-за токов утечки, входных токов ОУ и т.п. Если в результате расчета величина R ос превысит предельное рекомендуемое значение, то целесообразно использовать Т-образную цепочку ООС, которая при умеренных номиналах резисторов позволяет выполнить функцию эквивалента высокоомного R ос (рисунок 6.7б) . В этом случае можно записать:

На практике часто полагают, что R ос 1 =R ос 2 >>R ос 3 , а величина R 1 обычно задана, поэтому R ос 3 определяется достаточно просто.

Входное сопротивление инвертирующего усилителя на ОУ R вх инв имеет относительно небольшое значение, определяемое параллельной ООС:

R вх инв = R 1 +(R ос /K u ОУ + 1)∥R вхОУ R 1 ,

т.е. при больших K u ОУ входное сопротивление определяется величиной R 1 .

Выходное сопротивление инвертирующего усилителя R вых инв в реальном ОУ отлично от нуля и определяется как величиной R вых ОУ , так и глубиной ООС F. При F>10 можно записать:

R вых инв = R вых ОУ /F = R вых ОУ /K U инв /K u ОУ .

С помощью ЛАЧХ ОУ можно представить частотный диапазон инвертирующего усилителя (см. рисунок 6.6), причем

f вОС = f T /K U инв .

В пределе можно получить K U инв =1, т.е. получить инвертирующий повторитель. В этом случае получаем минимальное выходное сопротивление усилителя на ОУ:

R вых пов = R вых ОУ /K u ОУ .

В усилителе на реальном ОУ на выходе усилителя при U вх =0 всегда будет присутствовать напряжение ошибки U ош , порождаемое U см и ΔI вх . С целью снижения U ош стремятся выровнять эквиваленты резисторов, подключенных к входам ОУ, т.е. взять R 2 =R 1 ∥R ос (см. рисунок 6.7а). При выполнении этого условия для K U инв >10 можно записать:

U ош U см K U инв + ΔI вх R ос .

Уменьшение U ош возможно путем подачи дополнительного смещения на неинвертирующий вход (с помощью дополнительного делителя) и уменьшения номиналов применяемых резисторов.

На основе рассмотренного инвертирующего УПТ возможно создание усилителя переменного тока путем включения на вход и выход разделительных конденсаторов, номиналы которых определяются исходя из заданного коэффициента частотных искажений M н (см. подраздел 2.5).

6.4. Неинвертирующий усилитель

Упрощенная принципиальная схема неинвертирующего усилителя на ОУ приведена на рисунке 6.8.

Рисунок 6.8. Неинвертирующий усилитель на ОУ


Нетрудно показать, что в неинвертирующем усилителе ОУ охвачен ПООСН. Поскольку U вх и U ос подаются на разные входы, то для идеального ОУ можно записать:

U вх = U вых R 1 /(R 1 + R ос ),

откуда коэффициент усиления по напряжению неинвертирующего усилителя:

K U неинв = 1 + R ос /R 1 ,

K U неинв = 1 + |K U инв |.

Для неинвертирующего усилителя на реальном ОУ полученные выражения справедливы при глубине ООС F>10.

Входное сопротивление неинвертирующего усилителя R вх неинв велико и определяется глубокой последовательной ООС и высоким значением R вхОУ :

R вх неинв = R вхОУ ·F = R вхОУ ·K U ОУ /K U неинв .

Выходное сопротивление неинвертирующего усилителя на ОУ определяется как для инвертирующего, т.к. в обоих случаях действует ООС по напряжению:

R вых неинв = R выхОУ /F = R выхОУ /K U неинв /K U ОУ .

Расширение полосы рабочих частот в неинвертирующем усилителе достигается также, как и в инвертирующем, т.е.


f вОС = f T /K U неинв .

Для снижения токовой ошибки в неинвертирующем усилителе, аналогично инвертирующему, следует выполнить условие:

R г = R 1 ∥R ос .

Неинвертирующий усилитель часто используют при больших R г (что возможно за счет большого R вх неинв ), поэтому выполнение этого условия не всегда возможно из-за ограничения на величину номиналов резисторов.

Наличие на инвертирующем входе синфазного сигнала (передаваемого по цепи: неинвертирующий вход ОУ ⇒ выход ОУ ⇒ R ос ⇒ инвертирующий вход ОУ) приводит к увеличению U ош , что является недостатком рассматриваемого усилителя.

При увеличении глубины ООС возможно достижение K U неинв =1, т.е. получение неинвертирующего повторителя, схема которого приведена на рисунке 6.9.

Рисунок 6.9. Неинвертирующий повторитель на ОУ


Здесь достигнута 100% ПООСН, поэтому данный повторитель имеет максимально большое входное и минимальное выходное сопротивления и используется, как и любой повторитель, в качестве согласующего каскада. Для неинвертирующего повторителя можно записать:

U ош U см + I вх ср R г I вх ср R г ,

т.е. напряжение ошибки может достигать довольно большой величины.

На основе рассмотренного неинвертирующего УПТ также возможно создание усилителя переменного тока путем включения на вход и выход разделительных конденсаторов, номиналы которых определяются исходя из заданного коэффициента частотных искажений M н (см. подраздел 2.5).

Помимо инвертирующего и неинвертирующего усилителей на основе ОУ выполняются различные варианты УУ, некоторые из них будут рассмотрены ниже.

6.5. Разновидности УУ на ОУ

разностный (дифференциальный) усилитель , схема которого приведена на рисунке 6.10.

Рисунок 6.10. Разностный усилитель на ОУ


Разностный усилитель на ОУ можно рассматривать как совокупность инвертирующего и неинвертирующего вариантов усилителя. Для U вых разностного усилителя можно записать:

U вых = K U инв U вх 1 + K U неинв U вх 2 R 3 /(R 2 + R 3).

Как правило, R 1 =R 2 и R 3 =R ос , следовательно, R 3 /R 2 =R ос /R 1 =m . Раскрыв значения коэффициентов усиления, получим:

U вых = m (U вх 2 – U вх 1),

Для частного случая при R 2 =R 3 получим:

U вых = U вх 2 – U вх 1 .

Последнее выражение четко разъясняет происхождение названия и назначение рассматриваемого усилителя.

В разностном усилителе на ОУ при одинаковой полярности входных напряжений имеет место синфазный сигнал, который увеличивает ошибку усилителя. Поэтому в разностном усилителе желательно использовать ОУ с большим КОСС. К недостаткам рассмотренного разностного усилителя можно отнести разную величину входных сопротивлений и трудность в регулировании коэффициента усиления. Эти трудности устраняются в устройствах на нескольких ОУ, например, в разностном усилителе на двух повторителях (рисунок 6.11).

Рисунок 6.11. Разностный усилитель на повторителях


Данная схема симметрична и характеризуется одинаковыми входными сопротивлениями и малым напряжением ошибки, но работает только на симметричную нагрузку.

На основе ОУ может быть выполнен логарифмический усилитель , принципиальная схема которого приведена на рисунке 6.12.

Рисунок 6.12 Логарифмический усилитель на ОУ


P-n переход диода VD смещен в прямом направлении. Полагая ОУ идеальным, можно приравнять токи I 1 и I 2 . Используя выражение для ВАХ p-n перехода {I =I 0 ·}, нетрудно записать:

U вх /R = I 0 ·,

откуда после преобразований получим:

U вых = φ T ·ln(U вх /I 0 R ) = φ T (lnU вх – lnI 0 R ),

из чего следует, что выходное напряжение пропорционально логарифму входного, а член lnI 0 R представляет собой ошибку логарифмирования. Следует заметить, что в данном выражении используются напряжения, нормированные относительно одного вольта.

При замене местами диода VD и резистора R получается антилогарифмический усилитель .

Широкое распространение получили инвертирующие и неинвертирующие сумматоры на ОУ, называемые еще суммирующими усилителями или аналоговыми сумматорами. На рисунке 6.13 приведена принципиальная схема инвертирующего сумматора с тремя входами. Это устройство является разновидностью инвертирующего усилителя, многие свойства которого проявляются и в инвертирующем сумматоре.

Рисунок 6.13. Инвертирующий сумматор на ОУ


U вх 1 /R 1 + U вх 2 /R 2 + U вх 3 /R 3 = –U вых /R ос ,

Из полученного выражения следует, что выходное напряжение устройства представляет собой сумму входных напряжений, умноженную на коэффициент усиления K U инв . При R ос =R 1 =R 2 =R 3 K U инв =1 и U вых =U вх 1 +U вх 2 +U вх 3 .

При выполнении условия R 4 =R ос R 1 ∥R 2 ∥R 3 токовая ошибка мала, и ее можно рассчитать по формуле U ош =U см (K U ош +1), где K U ош =R ос /(R 1 ∥R 2 ∥R 3) - коэффициент усиления сигнала ошибки, который имеет большее значение, чем K U инв .

Неинвертирующий сумматор реализуется также как и инвертирующий сумматор, но для него следует использовать неинвертирующий вход ОУ по аналогии с неинвертирующим усилителем.

При замене резистора R ос конденсатором C (рисунок 6.14) получаем устройство, называемое аналоговым интегратором или просто интегратором.

Рисунок 6.14. Аналоговый интегратор на ОУ


При идеальном ОУ можно приравнять токи I 1 и I 2 , откуда следует:

Точность интегрирования тем выше, тем больше K u ОУ .

Кроме рассмотренных УУ, ОУ находят применение в целом ряде устройств непрерывного действия, которые будут рассмотрены ниже.

6.6. Коррекция частотных характеристик

Под коррекцией частотных характеристик будем понимать изменение ЛАЧХ и ЛФЧХ для получения от устройств на ОУ необходимых свойств и, прежде всего, обеспечение устойчивой работы. ОУ обычно используется с цепями ООС, однако при некоторых условиях, из-за дополнительных фазовых сдвигов частотных составляющих сигнала, ООС может превратится в ПОС и усилитель потеряет устойчивость. Поскольку ООС очень глубокая (βK U >>1), то особенно важно обеспечить фазовый сдвиг между входным и выходным сигналом, гарантирующий отсутствие возбуждения.

Ранее на рисунке 6.6 были приведены ЛАЧХ и ЛФЧХ для скорректированного ОУ, по форме эквивалентные ЛАЧХ и ЛФЧХ одиночного усилительного каскада, из которых видно, что максимальный фазовый сдвиг φ<90° при K u ОУ >1, а скорость спада коэффициента усиления в области ВЧ составляет 20дБ/дек. Такой усилитель устойчив при любой глубине ООС.

Если ОУ состоит из нескольких каскадов (например, трех), каждый из которых имеет скорость спада 20дБ/дек и не содержит цепей коррекции, то его ЛАЧХ и ЛФЧХ имеют более сложную форму (рисунок 6.15) и содержит область неустойчивых колебаний.


Рисунок 6.15. ЛАЧХ и ЛФЧХ нескорректированного ОУ


Для обеспечения устойчивой работы устройств на ОУ используются внутренние и внешние цепи коррекции, с помощью которых добиваются общего фазового сдвига при разомкнутой цепи ООС менее 135° на максимальной рабочей частоте. При этом автоматически получается, что спад K u ОУ составляет порядка 20дБ/дек.

В качестве критерия устойчивости устройств на ОУ удобно использовать критерий Боде , формулируемый следующим образом: "Усилитель с цепью обратной связи устойчив, если прямая его коэффициента усиления в децибелах пересекает ЛАЧХ на участке со спадом 20дБ/дек". Таким образом, можно заключить, что цепи частотной коррекции в ОУ должны обеспечивать скорость спада K U инв (K U неинв ) на ВЧ порядка 20дБ/дек.

Цепи частотной коррекции могут быть как встроенные в полупроводниковый кристалл, так и созданными внешними элементами. Простейшая цепь частотной коррекции осуществляется с помощью подключения к выходу ОУ конденсатора C кор достаточно большого номинала. Необходимо, чтобы постоянная времени τ кор =R вых C кор была больше, чем 1/2πf в . При этом сигналы высоких частот на выходе ОУ будут шунтироваться C кор и полоса рабочих частот сузится, большей часть весьма значительно, что является существенным недостатком данного вида коррекции. Полученная в этом случае ЛАЧХ показана на рисунке 6.16.

Рисунок 6.16. Частотная коррекция внешним конденсатором


Спад K u ОУ здесь не будет превышать 20дБ/дек, а сам ОУ будет устойчив при введении ООС, поскольку φ никогда не превысит 135°.

Более совершенны корректирующие цепи интегрирующего (запаздывающая коррекция) и дифференцирующего (опережающая коррекция) типов. В общем виде коррекция интегрирующего типа проявляется аналогично действию корректирующей (нагрузочной) емкости. Корректирующая RC цепь включается между каскадами ОУ (рисунок 6.17).


Рисунок 6.17. Частотная коррекция интегрирующего типа


Резистор R 1 является входным сопротивлением каскада ОУ, а сама цепь коррекции содержит R кор и C кор. Постоянная времени этой цепи должна быть больше постоянной времени любого из каскадов ОУ. Поскольку цепь коррекции является простейшей однозвенной RC цепью, то наклон ее ЛАЧХ равен 20дБ/дек, что и гарантирует устойчивую работу усилителя. И в этом случае цепь коррекции сужает полосу рабочих частот усилителя, однако широкая полоса все равно ничего не дает, если усилитель неустойчив.

Устойчивая работа ОУ при относительно широкой полосе обеспечивается коррекцией дифференцирующего типа. Сущность такого способа коррекции ЛАЧХ и ЛФЧХ заключается в том, что ВЧ сигналы проходят внутри ОУ в обход части каскадов (или элементов), обеспечивающих максимальный K u ОУ 0 , ими не усиливаются и не задерживаются по фазе. В результате ВЧ сигналы будут усиливаться меньше, но их малый фазовый сдвиг не приведет к потере устойчивости усилителя. Для реализации коррекции дифференцирующего типа к специальным выводам ОУ подключается корректирующий конденсатор (рисунок 6.18).


Рисунок 6.18. Частотная коррекция дифференцирующего типа


Помимо рассмотренных корректирующих цепей известны и другие (см., например ). При выборе схем коррекции и номиналов их элементов следует обращаться к справочной литературе (например, ).

Что то часто мне стали задавать вопросы по аналоговой электронике. Никак сессия студентов за яцы взяла? ;) Ладно, давно пора двинуть небольшой ликбезик. В частности по работе операционных усилителей. Что это, с чем это едят и как это обсчитывать.

Что это
Операционный усилитель это усилок с двумя входами, невье… гхм… большим коэфициентом усиления сигнала и одним выходом. Т.е. у нас U вых = K*U вх а К в идеале равно бесконечности. На практике, конечно, там числа поскромней. Скажем 1000000. Но даже такие числа взрывают мозг при попытке их применить напрямую. Поэтому, как в детском саду, одна елочка, две, три, много елочек — у нас тут много усиления;) И баста.

А входа два. И один из них прямой, а другой инверсный.

Более того, входы высокоомные. Т.е. их входное сопротивление равно бесконечности в идеальном случае и ОЧЕНЬ много в реальном. Счет там идет на сотни МегаОм, а то и на гигаомы. Т.е. оно замеряет напряжение на входе, но на него влияет минимально. И можно считать, что ток в ОУ не течет.

Напряжение на выходе в таком случае обсчитывается как:

U out =(U 2 -U 1)*K

Очевидно, что если на прямом входе напряжение больше чем на инверсном, то на выходе плюс бесконечность. А в обратном случае будет минус бесконечность.

Разумеется в реальной схеме плюс и минус бесконечности не будет, а их замещать будет максимально высокое и максимально низкое напряжение питания усилителя. И у нас получится:

Компаратор
Устройство позволяющее сравнивать два аналоговых сигнала и выносить вердикт — какой из сигналов больше. Уже интересно. Применений ему можно придумать массу. Кстати, тот же компаратор встроен в большую часть микроконтроллеров и как им пользоваться я показывал на примере AVR в статьях и про создание . Также компаратор замечательно используется для создания .

Но одним компаратором дело не ограничивается, ведь если ввести обратную связь, то из ОУ можно сделать очень многое.

Обратная связь
Если мы сигнал возьмем со выхода и отправим прямиком на вход, то возникнет обратная связь.

Положительная обратная связь
Возьмем и загоним в прямой вход сигнал сразу с выхода.

  • Напряжение U1 больше нуля — на выходе -15 вольт
  • Напряжение U1 меньше нуля — на выходе +15 вольт

А что будет если напряжение будет равно нулю? По идее на выходе должен быть ноль. Но в реальности напряжение НИКОГДА не будет равно нулю. Ведь даже если на один электрон заряд правого перевесит заряд левого, то уже этого достаточно, чтобы на бесконечном усилении вкатить потенциал на выход. И на выходе начнется форменный ад — скачки сигнала то туда, то сюда со скоростью случайных возмущений, наводящихся на входы компаратора.

Для решения этой проблемы вводят гистерезис. Т.е. своего рода зазор между переключениями из одного состояния в другое. Для этого вводят положительную обратную связь, вот так:


Считаем, что на инверсном входе в этот момент +10 вольт. На выходе с ОУ минус 15 вольт. На прямом входе уже не ноль, а небольшая часть выходного напряжения с делителя. Примерно -1.4 вольта Теперь, пока напряжение на инверсном входе не снизится ниже -1.4 вольта выход ОУ не сменит своего напряжения. А как только напряжение станет ниже -1.4, то выход ОУ резко перебросится в +15 и на прямом входе будет уже смещение в +1.4 вольта.

И для того, чтобы сменить напряжение на выходе компаратора сигналу U1 надо будет увеличиться на целых 2.8 вольта, чтобы добраться до верхней планки в +1.4.

Возникает своеобразный зазор где нет чувствительности, между 1.4 и -1.4 вольтами. Ширина зазора регулируется соотношениями резисторов в R1 и R2. Пороговое напряжение высчитывается как Uout/(R1+R2) * R1 Скажем 1 к 100 даст уже +/-0.14 вольт.

Но все же ОУ чаще используют в режиме с отрицательной обратной связью.

Отрицательная обратная связь
Окей, воткнем по другому:


В случае отрицательной обратной связи у ОУ появляется интересное свойство. Он всегда будет пытаться так подогнать свое выходное напряжение, чтобы напряжения на входах были равны, в результате давая нулевую разность.
Пока я в великой книге от товарищей Хоровица и Хилла это не прочитал никак не мог вьехать в работу ОУ. А оказалось все просто.

Повторитель
И получился у нас повторитель. Т.е. на входе U 1 , на инверсном входе U out = U 1 . Ну и получается, что U out = U 1 .

Спрашивается нафига нам такое счастье? Можно же было напрямую кинуть провод и не нужен будет никакой ОУ!

Можно, но далеко не всегда. Представим себе такую ситуацию, есть датчик выполненный в виде резистивного делителя:


Нижнее сопротивление меняет свое значение, меняется расклад напряжений выхода с делителя. А нам надо снять с него показания вольтметром. Но у вольтметра есть свое внутреннее сопротивление, пусть большое, но оно будет менять показания с датчика. Более того, если мы не хотим вольтметр, а хотим чтобы лампочка меняла яркость? Лампочку то сюда никак не подключить уже! Поэтому выход буфферизируем операционным усилителем. Его то входное сопротивление огромно и влиять он будет минимально, а выход может обеспечить вполне ощутимый ток (десятки миллиампер, а то и сотни), чего вполне хватит для работы лампочки.
В общем, применений для повторителя найти можно. Особенно в прецезионных аналоговых схемах. Или там где схемотехника одного каскада может влиять на работу другого, чтобы разделить их.

Усилитель
А теперь сделаем финт ушами — возьмем нашу обратную связь и через делитель напряжения подсадим на землю:

Теперь на инверсный вход подается половина выходного напряжения. А усилителю то по прежнему надо уравнять напряжения на своих входах. Что ему придется сделать? Правильно — поднять напряжение на своем выходе вдвое выше прежнего, чтобы компенсировать возникший делитель.

Теперь будет U 1 на прямом. На инверсном U out /2 = U 1 или U out = 2*U 1 .

Поставим делитель с другим соотношением — ситуация изменится в том же ключе. Чтобы тебе не вертеть в уме формулу делителя напряжения я ее сразу и дам:

U out = U 1 *(1+R 1 /R 2)

Мнемонически запоминается что на что делится очень просто:

При этом получается, что входной сигнал идет по цепи резисторов R 2 , R 1 в U out . При этом прямой вход усилителя засажен на нуль. Вспоминаем повадки ОУ — он постарается любыми правдами и неправдами сделать так, чтобы на его инверсном входе образовалось напряжение равное прямому входу. Т.е. нуль. Единственный вариант это сделать — опустить выходное напряжение ниже нуля настолько, чтобы в точке 1 возник нуль.

Итак. Представим, что U out =0. Пока равно нулю. А напряжение на входе, например, 10 вольт относительно U out . Делитель из R 1 и R 2 поделит его пополам. Таким образом, в точке 1 пять вольт.

Пять вольт не равно нулю и ОУ опускает свой выход до тех пор, пока в точке 1 не будет нуля. Для этого на выходе должно стать (-10) вольт. При этом относительно входа разность будет 20 вольт, а делитель обеспечит нам ровно 0 в точке 1. Получили инвертор.

Но можно же и другие резисторы подобрать, чтобы наш делитель выдавал другие коэффициенты!
В общем, формула коэффициента усиления для такого усилка будет следующей:

U out = — U in * R 1 /R 2

Ну и мнемоническая картинка для быстрого запоминания ху из ху.

Допустим U 2 и U 1 будет по 10 вольт. Тогда на 2й точке будет 5 вольт. А выход должен будет стать таким, чтобы на 1й точке стало тоже 5 вольт. То есть нулем. Вот и получается, что 10 вольт минус 10 вольт равняется нуль. Все верно:)

Если U 1 станет 20 вольт, то выход должен будет опуститься до -10 вольт.
Сами посчитайте — разница между U 1 и U out станет 30 вольт. Ток через резистор R4 будет при этом (U 1 -U out)/(R 3 +R 4) = 30/20000 = 0.0015А, а падение напряжения на резисторе R 4 составит R 4 *I 4 = 10000*0.0015 = 15 вольт. Вычтем падение в 15 вольт из входных 20 и получим 5 вольт.

Таким образом, наш ОУ прорешал арифметическую задачку из 10 вычел 20, получив -10 вольт.

Более того, в задачке есть коэффициенты, определяемые резисторами. Просто у меня, для простоты, резисторы выбраны одинакового номинала и поэтому все коэффициенты равны единице. А на самом деле, если взять произвольные резисторы, то зависимость выхода от входа будет такой:

U out = U 2 *K 2 — U 1 *K 1

K 2 = ((R 3 +R 4) * R 6) / (R 6 +R 5)*R 4
K 1 = R 3 /R 4

Мнемотехника для запоминания формулы расчета коэффициентов такова:
Прям по схеме. Числитель у дроби вверху поэтому складываем верхние резисторы в цепи протекания тока и множим на нижний. Знаменатель внизу, поэтому складываем нижние резисторы и множим на верхний.

Тут все просто. Т.к. точка 1 у нас постоянно приводится к 0, то можно считать, что втекающие в нее токи всегда равны U/R, а входящие в узел номер 1 токи суммируются. Соотношение входного резистора и резистора в обратной связи определяет вес входящего тока.

Ветвей может быть сколько угодно, я же нарисовал всего две.

U out = -1(R 3 *U 1 /R 1 + R 3 *U 2 /R 2)

Резисторы на входе (R 1 , R 2) определяют величину тока, а значит общий вес входящего сигнала. Если сделать все резисторы равными, как у меня, то вес будет одинаковым, а коэффициент умножения каждого слагаемого будет равен 1. И U out = -1(U 1 +U 2)

Сумматор неинвертирующий
Тут все чуток посложней, но похоже.


Uout = U 1 *K 1 + U 2 *K 2

K 1 = R 5 /R 1
K 2 = R 5 /R 2

Причем резисторы в обратной связи должны быть такими, чтобы соблюдалось уравнение R 3 /R 4 = K 1 +K 2

В общем, на операционных усилителях можно творить любую математку, складывать, умножать, делить, считать производные и интегралы. Причем практически мгновенно. На ОУ делают аналоговые вычислительные машины. Одну такую я даже видел на пятом этаже ЮУрГУ — дура размером в пол комнаты. Несколько металлических шкафов. Программа набирается соединением разных блоков проводочками:)

Неинвертирующий усилитель — это, пожалуй, одним из трех самых элементарных схем аналоговой электроники, наряду со схемами инвертирующего усилителя и повторителя напряжения. Он даже проще чем инвертирующий усилитель, поскольку для работы схемы не нужно двухполярное питание.

Обратите внимание на единицу, содержащуюся в формуле. Это нам говорит о том, что неинвертирующий усилитель всегда имеет усиление больше 1, а это значит, что с помощью такой схемы вы не можете ослабить сигнал.

Чтобы лучше понять, как работает неинвертирующий усилитель, давайте рассмотрим схему на и подумаем, какое будет напряжение на его выходе.

В первую очередь мы должны подумать о том, какие напряжения присутствуют на обоих входах нашего операционного усилителя. Вспомним первое из правил, которое описывает работу операционного усилителя:

Правило №1 — операционный усилитель оказывает воздействие своим выходом на вход через ООС (отрицательная обратная связь), в результате чего напряжения на обоих входах, как на инвертирующем (-), так и на неинвертирующем (+) выравнивается.

То есть, напряжение на инвертирующем входе составляет 3В. На следующем этапе давайте рассмотрим сопротивлением 10k. Мы знаем, какое напряжение на нем и его сопротивление, а значит, из мы можем вычислить какой ток течет через него:

I = U/R = 3В/10k = 300мкА.

Этот ток, согласно правилу 2, не может быть взят с инвертирующего входа (-), таким образом, он идет с выхода усилителя.

Правило №2 — входы усилителя не потребляют ток

Ток 300мкА протекает также через резистор сопротивлением 20к. Напряжение на нем мы легко вычислим с помощью закона Ома:

U = IR = 300мкА * 20к = 6В

Получается, что это напряжение и есть выходное напряжение усилителя? Не, это не так. Напомним, что резистор 20к на одном из своих выводов имеет напряжение 3В. Обратите внимание, как направлены напряжения на обоих резисторах.

Ток течет в направлении противоположном направлению стрелки, символизирующей точку с более высоким напряжением. Поэтому к рассчитанным 6В нужно добавить еще 3В на входе. В таком случае конечный результат будет 9В.

Стоит отметить, что резисторы R1 и R2 образуют простой . Помните, что сумма напряжений на отдельных резисторах делителя должно быть равно напряжению, поступающему на делитель — напряжение не может исчезнуть бесследно и возникнуть из ниоткуда.

В заключение мы должны проверить полученный результат с последним правилом:

Правило №3 — напряжения на входах и выходе должны быть в диапазоне между положительным и отрицательным напряжением питания ОУ.

То есть на необходимо проверить, что рассчитанное нами напряжение можно получить реально. Часто начинающие думают, что усилитель работает как «Perpetuum Mobile», и вырабатывает напряжение из ничего. Но надо помнить, что для работы усилителя также нужно питание.

Классические усилители работают от напряжения -15В и +15В. В такой ситуации расчетные нами 9В являются реальным напряжением, поскольку 9В находится в диапазоне питающего напряжения. Однако современные усилители часто работают с напряжением от 5В или еще ниже. В такой ситуации нет никаких шансов, чтобы усилитель выдал на выходе 9В.

Поэтому при разработке схем необходимо всегда помнить, что теоретические расчеты всегда должны сверяться с реальностью и физическими возможностями компонентов.

Всем доброго времени суток. В прошлой статье я рассказывал о питания. В данной статье я расскажу о применении ОУ в линейных схемах .

Повторитель напряжения

Первая схема, о которой я расскажу, является схема усилителя с единичным усилением (единичный усилитель) или так называемый . Схема данного усилителя показана ниже

Усилитель с единичным усилением (повторитель напряжения).

Данная схема представляет собой модификацию , отличие состоит в том, что отсутствуют резистор обратной связи и резистор на инвертирующем входе. Таким образом, напряжение с выхода ОУ полностью поступает на инвертирующий вход ОУ, а, следовательно, коэффициент передачи обратной связи равен единице (β = 1).

Как известно, входное сопротивление ОУ с обратной связью определяется следующим выражением


  • где R BX – входное сопротивление ОУ без ОС,

Тогда для повторителя напряжения входное сопротивление будет иметь вид

Выходное сопротивление ОУ с обратной связью представляет собой следующее выражение


  • где R BЫX – входное сопротивление ОУ без ОС,
  • β – коэффициент передачи цепи ОС,
  • К – коэффициент усиления ОУ без ОС.

Так как у повторителя напряжения коэффициент передачи обратной связи равен единице (β = 1), то выходное сопротивление будет иметь следующий вид


Пример расчёта параметров повторителя напряжения

Для примера рассчитаем повторитель напряжения на ОУ, который имеет на требуемой частоте коэффициент усиления К У = 80 (38 дБ), входное сопротивление R BX = 500 кОм, выходное сопротивление R BЫX = 300 Ом.

Входное сопротивление повторителя напряжения составит

Выходное сопротивление повторителя напряжения составит


Недостатки простейшей схемы повторителя напряжения

Вследствие того, что усиление ОУ с разомкнутой цепью ОС изменяется с частотой (с ростом частоты происходит уменьшение коэффициента усиления), поэтому входное и выходное сопротивления также зависят от частоты (с ростом частоты входное сопротивление уменьшается, а выходное – возрастает).

Если входной сигнал имеет достаточно большую постоянную составляющую и значительный размах амплитуды, то может возникнуть ситуация, когда будет превышен предел синфазных входных напряжений. Для устранения данной проблемы сигнал на неивертирующий вход необходимо подавать, через разделительный конденсатор, а между неинвертирующим входом и «землёй» включить резистор, однако этот резистор будет влиять на входное сопротивление повторителя.

Ещё одним способом улучшения параметров повторителя напряжения, который рекомендуют производители ОУ является включение в цепь ОС и между неинвертирующим входом и «землёй» резисторов с одинаковым сопротивлением. При этом коэффициент усиления ОУ будет также равен единице, но входное и выходное сопротивление будут зависеть от внешних резисторов, а не от параметров ОУ.

Наиболее действенным способом улучшения параметров единичного усилителя является схема, в которой после схемы повторителя напряжения включить усилитель мощности, обеспечивающий большой выходной ток. В этом случае коэффициент усиления напряжения составит примерно единицу, а ток ОС определяется характеристика усилителя мощности (входное и выходное сопротивление умножаются на коэффициенты усиления обоих усилителей).

Неинвертирующий усилитель

После разбора повторителя напряжения, который, по сути, является неинвертирующим усилителем с коэффициентом усиления равным единице, перейдём к рассмотрению схемы неинвертирующего усилителя с произвольным коэффициентом усиления. Такой тип усилителя характеризуется тем, что имеет высокое входное и низкое выходное сопротивление, схема усилителя приведена ниже


Схема неинвертирующего усилителя.

Данная схема является одной из стандартных схем включения операционных усилителей и содержит ОУ DA1, резистор смещения R1 и резистор обратной связи R2. Операционный усилитель в данной схеме охвачен последовательной обратной связью по напряжению, коэффициент передачи цепи обратной связи составит


Тогда входное сопротивление неинвертирующего усилителя составит

R BX.ОУ – входное сопротивление ОУ при разомкнутой цепи ОС,

К ОУ – коэффициент усиления ОУ при разомкнутой цепи ОС.

Выходное сопротивление неинвертирующего усилителя можно вычислить из следующего выражения


R ВЫХ.ОУ – выходное сопротивление ОУ при разомкнутой цепи ОС.

Коэффициент усиления неинвертирующего усилителя


В данном типе усилителя присутствует некоторый уровень напряжения смещения UСМ на входе, поэтому данная схема может быть применена там где уровень смещения напряжения на входе не имеет существенного влияния. Уровень напряжения смещения на входе составит


Пример расчёта неинвертирующего усилителя

Рассчитаем неинвертирующий усилитель, который должен обеспечить коэффициент усиления К = 10. В качестве ОУ применим К157УД2, имеющий следующие параметры: коэффициент усиления (на частоте 1 кГц) К = 1800 (65 дБ), входное сопротивление R BX.ОУ = 500 кОм, выходное сопротивление R BЫX.ОУ = 300 Ом, напряжение смещения U CM = 10 мВ, входной ток I ВХ ≤ 500 нА. Входной сигнал имеет уровень U ВХ = 40 мВ.

Неинвертирующий сумматор

В продолжение темы неинвертрующих усилителей расскажу о неинвертирующем сумматоре, который выполняет функцию сложения входных сигналов и находит своё применение в качестве линейных смесителей сигналов (микшеров), например, когда сигналы из нескольких источников необходимо скомбинировать и подать на вход усилителя мощности. Схема неинвертирующего сумматора представлена ниже



Данная схема представляет собой неинвертирующий усилитель с двумя входами и состоит из ОУ DA1, токоограничительных входных резисторов R1 и R2, резистора смещения R3 и резистора обратной связи R4.

Для данной схемы основные соотношения соответствуют схеме простого неинвертирующего усилителя, с учётом того что входное напряжение в схеме соответствует среднему напряжению входных выводов


А сопротивление резисторов должны соответствовать следующему условию


Коэффициенты усиления по разным каналам определяются следующим выражением


R N – сопротивление входного резистора,

K N – коэффициент усиления соответствующего канала усиления.

Основным недостатком схемы неинвертирующего сумматора является отсутствие точки нулевого потенциала, поэтому коэффициент усиления по различным входам не являются независимыми. Данный недостаток проявляет себя в тех случаях, когда внутреннее сопротивление источников входных напряжений или только одного из них известно приблизительно или изменяется в процессе работы.

Теория это хорошо, но без практического применения это просто слова.

Следовательно, .

Так как U вых = U д · К и U д =U вых / К, при К → ∞ и U д ≈ 0, можно написать, что
. Решая уравнение, получим выражение для коэффициента усиления с замкнутой обратной связьюK ос
,(15.3)

которое справедливо при условии К » K ос.

В схеме повторителя напряжения на ОУ ( рис.15.4) U вых обратная связь поступает с выхода усилителя на инвертирующий вход. Так как усиливается разность напряжения на входах ОУ - U д, то можно увидеть, что напряжение на выходе усилителя U вых = U д · К.

Рис.15.4. Повторитель напряжения на ОУ

Выходное напряжение ОУ U вых = U вх + U д. Так как U вых =U д ·К, получим, что U д =U вых /К. Следовательно,
. Так как К велико (К → ∞), тоU вых /К стремится к нулю, и в результате получаем равенство U вх =U вых.

Входное напряжение связано с землей только через входное сопротивление усилителя, которое очень велико, поэтому повторитель может служить хорошим согласующим каскадом.

Усилитель с дифференциальным входом имеет два входа, причем инвертирующий и неинвертирующий входы находятся под одинаковым напряжением, в данном случае равным U ос, так как разность напряжений между инвертирующим и неинвертирующим входами очень мала (обычно меньше 1мВ),.

Рис. 15.5. Усилитель с дифференциальным входом

Если задать U 1 равным нулю и подать входной сигнал по входу U 2 , то усилитель будет действовать как неинвертирующий усилитель, у которого входное напряжение снимается с делителя, образованного резисторами R 2 и R΄ ос. Если оба напряжения U 1 и U 2 подаются на соответствующие входы одновременно, то сигнал на инвертирующем входе вызовет такое изменение выходного напряжения, что напряжение в точке соединения резисторов R 1 и R ос станет равным U ос, где
.

Вследствие того, что усилитель имеет очень высокое входное сопротивление,

имеем

.

Решая полученное уравнение относительно U вых, имеем:

Подставляя выражение для U ос, получим:

Если положить R 1 = R 2 и R oc = R´ oc (ситуация, которая наиболее часто встречается), получим
. Полярность выходного напряжения определяется большим из напряженийU 1 и U 2 .

Очевидно, что если U 2 на рис.15.5 равно нулю, то усилитель будет действовать по отношению к U 1 как инвертирующий усилитель.

Входное сопротивление схемы ОУ можно определить следующим образом. К дифференциальному входному сопротивлению ОУ r д приложено напряжение. U д. Благодаря наличию обратной связи это напряжение имеет малую величину.

U д = U вых /K U = U 1 /(1+K U b), (15.6)

где b = R 1 /(R 1 +R 2) - коэффициент передачи делителя в цепи обратной связи. Таким образом, через это сопротивление протекает только ток, равный U 1 /r д (1+K U b). Поэтому дифференциальное входное сопротивление, благодаря действию обратной связи, умножается на коэффициент 1+K U b. Согласно рис. 12, для результирующего входного сопротивления схемы имеем:

R вх = r д (1+K U b)||r вх

Эта величина даже для операционных усилителей с биполярными транзисторами на входах превышает 10 9 Ом. Следует однако помнить, что речь идет исключительно о дифференциальной величине ; это значит, что изменения входного тока малы, тогда как среднее значение входного тока может принимать несравненно бoльшие значения.

Рис. 15.6. Схема неинвертирующего усилителя с учетом собственных сопротивлений ОУ.

Выходное сопротивление ОУ операционного усилителя, не охваченного обратной связью, определяется выражением:

(15.7)

При подключении нагрузки происходит некоторое снижение выходного напряжения схемы, вызванное падением напряжения на rвых, которое передается на вход усилителя через делитель напряжения R 1 , R 2 . Возникающее при этом увеличение дифференциального напряжения компенсирует изменение выходного напряжения.

В общем случае выходное сопротивление может иметь достаточно высокое значение (в некоторых случаях от 100 до 1000 Ом. Подключение цепи ОС поволяет уменьшить выходное сопротивление

Для усилителя, охваченного обратной связью, эта формула принимает вид:

(15.8)

При этом величина U д не остается постоянной, а изменяется на величину

dU д = - dU n = -bdU вых

Для усилителя с линейной передаточной характеристикой изменение выходного напряжения составляет

dU вых =K U dU д - r вых dI вых

Величиной тока, ответвляющегося в делитель напряжения обратной связи в данном случае можно пренебречь. Подставив в последнее выражение величину dU д, получим искомый результат:

(15.9)

Если, например, b =0,1, что соответствует усилению входного сигнала в 10 раз, а K U =10 5 , то выходное сопротивление усилителя снизится с 1 кОм до 0,1 Ом. Вышеизложенное, вообще говоря, справедливо в пределах полосы пропускания усилителя f п, Гц. На более высоких частотах выходное сопротивление ОУ с обратной связью будет увеличиваться, т.к. величина |K U | с ростом частоты будет уменьшаться со скоростью 20дБ на декаду (см. рис. 3). При этом оно приобретает индуктивный характер и на частотах более f т становится равным величине выходного сопротивления усилителя без обратной связи.

Динамические параметры ОУ, характеризующие быстродействие ОУ, можно разделить на параметры для малого и большого сигналов. К первой группе динамических параметров относятся полоса пропускания f п, частота единичного усиления f т и время установления t у. Эти параметры называются малосигнальными, т.к. они измеряются в линейном режиме работы каскадов ОУ (DU вых <1В). Ко второй группе относятся скорость нарастания выходного напряжения r и мощностная полоса пропускания f р. Эти параметры измеряются при большом дифференциальном входном сигнале ОУ (более 50 мВ). Некоторые из этих парамеров рассмотрены выше. Время установления отсчитывается от момента подачи на вход ОУ ступеньки входного напряжения до момента, когда в последний раз станет справедливым равенство |U вых.уст - U вых(t) | = d, где U вых.уст - установившееся значение выходного напряжения, d - допустимая ошибка.

Рабочая полоса частот или полоса пропускания ОУ определяется по виду амплитудно-частотной характеристики, снятой при максимально возможной амплитуде неискаженного выходного сигнала. Вначале на низких частотах устанавливают такую амплитуду сигнала от генератора гармонических колебаний, чтобы амплитуда выходного сигнала U вых.макс немного не доходила до границ насыщения усилителя. Затем увеличивают частоту входного сигнала. Мощностная полоса пропускания f р соответствует значению U вых.макс равному 0,707 от первоначального значения. Величина мощностной полосы пропускания снижается при увеличении емкости корректирующего конденсатора.

Эксплуатационные параметры ОУ определяют допустимые режимы работы его входных и выходных цепей и требования к источникам питания, а также температурный диапазон работы усилителя. Ограничения эксплуатационных параметров обусловлены конечными значениями пробивных напряжений и допустимыми токами через транзисторы ОУ. К основным эксплуатационным параметрам относятся: номинальное значение питающего напряжения U п; допустимый диапазон питающих напряжений; ток, потребляемый от источника I пот; максимальный выходной ток I вых.макс; максимальные значения выходного напряжения при номинальном питании; максимально-допустимые значения синфазных и дифференциальных входных напряжений

Амплитудно-частотная характеристика операционного усилителя является важным фактором, от которого зависит устойчивость работы реальных схем с таким усилителем. В большинстве операционных усилителей отдельные каскады соединены между собой по постоянному току гальваническими связями, поэтому эти усилители не имеют спада усиления в области низких частот и у них необходимо анализировать спад коэффициента усиления с возрастанием частоты.

Рис.15.7. АЧХ операционного усилителя

На рис.15.7. показана типичная частотная характеристика операционного усилителя.

Рис. 15.8. Упрощенная эквивалентная схема ОУ

При возрастании частоты емкостное сопротивление падает, что приводит к уменьшению постоянной времени τ = R н* С. Очевидно, должна существовать частота, при превышении которой напряжение на выходе U вых окажется меньше, чем КU д.

Выражение для коэффициента усиления К на любойчастоте

имеет вид
, где К – коэффициент усиления без обратной связи на низких частотах;f – рабочая частота; f 1 – граничная частота или частота при 3 дБ, т.е. частота, на которой К(f) на 3 дБ ниже К, или равен 0,707·А.

Если, как это обычно бывает, R н » R вых, то
.

Обычно амплитудно-частотная характеристика дается в общем виде. как:

. (15.10)

где f - интересующая нас частота, в то время как f 1 – фиксированная частота, которая называется граничной частотой и является характеристикой конкретного усилителя. С ростом частоты коэффициент усиления по напряжению падает. Кроме того, из выражения для θ видно, что при изменении частоты, фаза выходного сигнала сдвигается относительно фазы входного; - выходной сигнал отстает по фазе от входного.

Добавление отрицательной обратной связи так, например, как это сделано в инвертирующем или неинвертирующем усилителях, увеличивает эффективную полосу пропускания операционного усилителя.

Чтобы убедиться в этом, рассмотрим выражение для коэффициента усиления без обратной связи усилителя со спадом 6дБ / октава (при двукратном увеличении частоты):

, где К(f) – коэффициент усиления без обратной связи на частоте f; А – коэффициент усиления без обратной связи на низких частотах; f 1 – сопрягающая частота. Подставляя это соотношение в выражение для коэффициента усиления при наличии обратной связи
, получим

. (15.11)

Это выражение можно переписать в виде
, гдеf 1 oc = f 1 (1+Аβ); K 1 – коэффициент усиления с замкнутой обратной связью на низких частотах; f 1oc – граничная частота при наличии обратной связи.

Граничная частота при наличии обратной связи равна граничной частоте без обратной связи, умноженной на (1+Кβ)>1, так что эффективная ширина полосы пропускания действительно увеличивается при использовании обратной связи. Это явление показано на рис.8, где f 1oc > f 1 для усилителя с коэффициентом усиления равным 40 дБ.

Если скорость спада усилителя составляет 6дБ/октава, произведение коэффициента усиления на полосу пропускания постоянно: Kf 1 = const. Чтобы убедиться в этом, умножим идеальный коэффициент усиления на низких частотах на верхнюю частоту среза того же усилителя при наличии обратной связи.

Тогда получим произведение усиления на полосу пропускания:

, где К – коэффициент усиления без обратной связи на низких частотах.

Если раньше было показано, что для увеличения полосы пропускания с помощью обратной связи следует уменьшить коэффициент усиления, то теперь выведенное соотношение дает возможность узнать, какой частью коэффициента усиления необходимо пожертвовать для получения желаемой полосы пропускания.

Схема замещения операционного усилителя позволяет учитывать влияние неидеальности усилителя на характеристики схемы. Для этого удобно представить усилитель полной схемой замещения, содержащей существенные элементы неидеальности. Полная схема замещения ОУ для малых медленных изменений сигналов представлена на рис. 15.9.

Рис. 15.9.. Схема замещения операционного усилителя для малых сигналов

У операционных усилителей с биполярными транзисторами на входе входное сопротивление для дифференциального сигнала r д составляет несколько мегаом, а входное сопротивление для синфазного сигнала r вх несколько гигаом. Входные токи, определяемые этими сопротивлениями, имеют величину порядка нескольких наноампер. Существенно бoльшие значения имеют постоянные токи, протекающие через входы операционного усилителя и определяемые смещением транзисторов дифференциального каскада. Для универсальных ОУ входные токи находятся в пределах от 10 нА до 2 мкА, а для усилителей со входными каскадами, выполненными на полевых транзисторах, они составляют доли наноампер.