Индикатор пиков и впадин или как из глупостей получить выгоду. Двухканальный пиковый индикатор уровня

Индикатор максимумов и минимумов, который способен давать точную информацию - одна из составляющих мифического «Священного Грааля». Перед трейдерами стоит извечная задача - создание идеального помощника, который бы максимально точно определял направление движения тренда и указывал локальные экстремумы. Станет ли этот инструмент незаменимым?

Все группы индикаторов

За время существования интернет-трейдинга и технического анализа разработаны сотни разнообразных индикаторов и роботов, которые призваны помочь инвесторы в анализе рынка. Множество из них анализируют рынок по принципу пиков, впадин и экстремумов.

Инструменты можно разделить на следующие группы:

  • осцилляторы.
  • индикаторы экстремумов.

Обратите внимание! Из всех форекс брокеров, работающих на территории РФ, критериям действительно качественной компании удовлетворяют немногие. Лидером является – Альпари!

Более 20 лет на рынке Форекс;
- 3 международные лицензии;
- 75 инструментов;
- быстрый и удобный вывод средств;
- более двух миллионов клиентов;
- бесплатное обучение;
Альпари - это брокер №1 по версии Интерфакса! Все, что необходимо для начала - просто зарегистрироваться на сайте!

Стоит рассмотреть наиболее типичные из них.

Осцилляторы

Осцилляторы - группа инструментов, математическая модель большинства которых основана на разных типах скользящих средних. При этом почти все они не просто не перерисовываются, а являются источниками опережающих сигналов.

Индикатор MACD.

Важной особенностью осцилляторов является способность указывать на перекупленность или перепроданность рынка, что сигнализирует о скором развороте тренда.

Дивергенция на AO.

Кроме того, почти все осцилляторы способны демонстрировать дивергенцию, что также является очень сильным подтверждающим разворотным сигналом.

Для справки! При дивергенции минимумы или максимумы на графике всегда менее выражены, чем предыдущие пики на самом графике цены.

Текущий бар на графике осциллятора всегда будет перерисовываться, то есть, анализировать нужно предыдущий.

Осцилляторы - отличный инструмент для определения рыночной впадины, они дают мощные сигналы для входа в торговлю. Однако для построения полноценной торговой стратегии таких индикаторов недостаточно. Необходимо дополнение индикаторами, которые способны дать информацию о значении локальных экстремумов для того, чтоб трейдер мог оперировать локальными максимумами и минимумами при построении торговой стратегии.

Индикаторы экстремумов

Индикаторы, способные определять локальные хай и лоу уровни, играют важную роль во многих торговых стратегиях. С их помощью трейдер определяет точки установки торговых приказов Stop Loss и Take Profit.

Общая проблема таких индикаторов - перерисовка последнего значения. Например, общеизвестный Fractals дает точное значение экстремума только на третьем баре, что значительно замедляет точное определение локального экстремума.

Пример построения стратегии

Пример построения простой, но эффективной стратегии, основанной на взаимодействии разных индикаторов пиков и впадин заключается в том, что она будет построена при помощи стандартных MACD и Fractals.

MACD даст сигнал высокой точности о готовящемся развороте рынка, а Fractals укажет локальный экстремум для установки Stop Loss.

Шаг 1, поиск входа в рынок

Сигнал на покупку от MACD.

14.09 в 19:00 MACD дал четкий сигнал о перепроданности рынка, сообщив о дивергенции и сформировав впадину, более высокую, нежели предыдущая. Значение Fractals на самом нижнем баре станет точкой установки Stop Loss. Открывается ордер на покупку по цене 1.18895.

Шаг 2, сопровождение ордера

Подтвердив данные осциллятора, цена начала стремительный рост в сторону сильного уровня сопротивления на 1.1200. По ходу роста переносим Stop Loss на уровень безубыточности, снова используя образовавшийся новый фрактал – локальный минимум.

Шаг 3, выход из торговли и фиксация прибыли

Закрытие позиции.

Через сутки цена, встретив сильное сопротивление на уровне 1.12, начала коррекцию. MACD просигнализировал об образовании пика. Произошло формирование локального максимума, о чем сообщил Fractals. Закрывается ордер по цене. 1.19425

Чистая прибыль составила: 1,19425-1,18895 = 53 пункта.

Индикаторы пиков и впадин могут служить достаточно эффективным инструментом для построения прибыльных торговых стратегий. Основная проблема, над которой бьются многие трейдеры - перерисовка последнего значения.

Стремление получить индикатор пиков и впадин без перерисовки для получения максимально быстрого сигнала приводит к созданию программных продуктов, которые выдают массу ложных сигналов.

Важно! Индикатор high low уровней всегда будет работать так, что перерисовка как минимум на текущем баре неминуема.

Существование программы, которая бы давала четкий сигнал на формирующемся баре, без перерисовки - прекрасная мечта, которая приводит к созданию множества второсортных продуктов, генерирующих ложные сигналы. На практике стоит доверять лишь тем экстремумам, реальность которых подтверждена минимум двумя последующими барами.

Многие хорошо помнят, как на заре 80-х, в магнитофонных деках (японских) были индикаторы уровня записи с отображением пиков. Иметь такой индикатор в своём распоряжении - было мечтой многих радиолюбителей и меломанов, а собрать его самому в то время было просто не реально.
С появлением микроконтроллеров, схемотехника резко изменилась, и сейчас схема пикового индикатора выглядит не сложнее схемы простого транзисторного приёмника 80-х.
Вашему вниманию предлагается пиковый индикатор уровня сигнала на микроконтроллере PIC16F88, моно, в качестве индикаторов используются светодиоды или светодиодные матрицы. Входы левого и правого канала в нём объединены. Или для второго канала необходимо изготовить ещё один подобный индикатор. Количество светодиодов в индикаторе (матрице) - 40 шт. Хорошо будет смотреться индикатор, например на таких матрицах (по 10 светодиодов).

Подобных матриц на канал необходимо 4 шт. Цвет свечения выбирайте на свой вкус. Можно применить одноцветные, а можно последнюю поставить например желтого или красного цвета)если первые зелёные).
Или например есть ещё такие матрицы по 20 светодиодов. Их на канал нужно 2 шт.



Посмотрите демонстрационное видео, работы индикатора пиков. Здесь он работает в режиме индикации с пиками в падающем режиме, шкала логарифмическая (резисторы R11-R14 отсутствуют, или джамперы сняты).


Индикатор может работать и в линейном режиме, с индикацией пиков и без индикации пиков, так-же в режиме бегающей точки с индикацией пиков и без индикации пиков. Сама пик индикация работает в двух режимах - обычном и падающем. Обычный - это пики горят в течении 0,5 секунд и гаснут, падающий - это пики горят 0,5 секунд и падают вниз (если уровень сигнала в данный момент стал ниже уровня, который был 0,5 сек. назад).
Схема индикатора изображена ниже. Светодиоды применены на ток 3 мА, если ставить светодиоды мощнее, на ток 20 мА, то резисторы R1-R8 необходимо заменить на резисторы по 22-33 Ом. R11-R14 устанавливаются в зависимости от необходимого режима работы индикатора. Для оперативного переключения режимов, можно в точках их соединения с общим проводом установить коммутированные перемычки ("джамперы").

Конфигурация процессора (установка предохранителей, "фузов")

CP:OFF, CCP1:RB0, DEBUG:OFF, WRT_PROTECT:OFF, CPD:OFF, LVP:OFF, BODEN:ON, MCLR:OFF, PWRTE:OFF, WDT:ON, OSC:INTRC_IO, IESO:OFF, FCMEN:OFF.



Режимы, в которых может работать индикатор, изображены ниже в таблице. Их можно комбинировать установкой или снятием перемычек (резисторов). Резистором R1 изменяется чувствительность индикатора, меняется напряжение на выводе 2 микроконтроллера, причём чем меньше напряжение на выводе, тем выше чувствительность. Оптимальное напряжение на выводе 200-250 мВ.

Таблица 1. Выбор режимов индикации.

Резистор
джампер

Отсутствует

Присутствует

Бег линия

Бегающая точка

Логарифмическая шкала

Линейная шкала

С индикацией пиков

Без индикации пиков

Пики падающие

Пики простые


Ниже в архиве имеются схема, рисунки печатной платы, прошивка микроконтроллера.
Этот двухканальный индикатор сигнала звука на светодиодном столбике выполнен на специализированных микросхемах LM3914. Собрал данный индикатор по 60 светодиодов на каждый канал, все диоды красного свечения (больше нравятся по яркости свечения), хотя конструкция индикатора такова, что легко можно заменить планку на свечение диодов другого цвета. Конструктивно девайс имеет 3 платы:

1. Плата индикаторов (сменная).

2. Плата левого канала.

3. Плата правого канала.

Уровни индикации:

- Первый сегмент 20 mv
- 10 сегмент 150 mv
- 20 сегмент 300 mv
-.........
-.........
-.........
- 60 сегмент 900 mv

Калибровка производилась при помощи милливольтметра раздельно по каналам и затем уже как сравнение двух вместе. Конструктивно микросхемы стоят в панелях, для удобства замены, к примеру для логарифмического индикатора на LM3915.

Ее основу составляют 10 компараторов, на инверсные входы которых через буферный ОУ подается входной сигнал, а прямые входы подключены к отводам резистивного делителя напряжения. Выходы компараторов являются генераторами втекающего тока, что позволяет подключать светодиоды без ограничительных резисторов. Индикация может производиться или одним светодиодом (режим "точка”), или линейкой из светящихся светодиодов, высота которой пропорциональна уровню входного сигнала (режим "столбик”). Входной сигнал Uвх подают на вывод 5, а напряжения, определяющие диапазон индицируемых уровней, - на выводы 4 (нижний уровень Uн) и 6 (верхний уровень Uв).

Таблица рабочих параметров микросхемы LM3914

Ток потребления при всех горящих LED сегментах обоих каналов порядка 1,3А при питании 5В. На платах не применен входной усилитель сигнала, но чувствительность его такова, что нижний предел (первый сегмент) можно зажечь меньше чем 20 mv переменного сигнала.


Уровня сдвоенная на 2 канала имеет размер 157х32 мм. Каждая плата канала раздельная (левый и правый) имеет размер 157х24 мм. В собраном виде конструктив имеет размеры: 157х32х45 мм.


В качестве настройки правильной линейности шкалы необходимо выбрать пределы нижних и верхних уровней для каждой микросхемы. Принципиально есть возможность при желании растянуть шкалу каждого канала в несколько раз при данном схемном решении.

Не секрет, что звучание системы во многом зависит от уровня сигнала на ее участках. Контролируя сигнал на переходных участках схемы, мы можем судить о работе различных функциональных блоков: коэффициенте усиления, вносимых искажениях и т.д. Так же бывают случаи, когда результирующий сигнал просто не возможно услышать. В тех случаях, когда не возможно контролировать сигнал на слух, применяются различного рода индикаторы уровня.
Для наблюдения могут использоваться как стрелочные приборы, так и специальные устройства, обеспечивающие работу «столбцовых» индикаторов. Итак, рассмотрим их работу более подробно.

1 Шкальные индикаторы
1.1 Простейший шкальный индикатор.

Этот вид индикаторов наиболее прост из всех существующих. Шкальный индикатор состоит из стрелочного прибора и делителя. Упрощенная схема индикатора приведена на рис.1 .

В качестве измерителей чаще всего используются микроамперметры с током полного отклонения 100 – 500мкА. Такие приборы рассчитаны на постоянный ток, поэтому для их работы звуковой сигнал необходимо выпрямить диодом. Резистор предназначен для преобразования напряжения в ток. Собственно говоря, прибор измеряет ток, проходящий через резистор. Рассчитывается элементарно, по закону Ома (был такой. Георгий Семеныч Ом) для участка цепи. При этом нужно учесть, что напряжение после диода будет в 2 раза меньше. Марка диода не важна, так что подойдет любой, работающий на частоте больше 20кГц. Итак, расчет: R = 0.5U/I
где: R – сопротивление резистора (Ом)
U - Максимальное измеряемое напряжение (В)
I – ток полного отклонения индикатора (А)

Гораздо удобнее оценивать уровень сигнала, задав ему некоторую инерционность. Т.е. индикатор показывает среднее значение уровня. Этого легко добиться, подключив параллельно прибору электролитический конденсатор, однако следует учесть, что при этом напряжение на приборе увеличится в (корень из 2) раз. Такой индикатор может быть использован для измерения выходной мощности усилителя. Что же делать, если уровня измеряемого сигнала не хватает, что бы «расшевелить» прибор? В этом случае на помощь приходят такие парни, как транзистор и операционный усилитель (далее ОУ).

Если можно измерить ток через резистор, то можно измерить и коллекторный ток транзистора. Для этого нам понадобится сам транзистор и коллекторная нагрузка (тот же самый резистор). Схема шкального индикатора на транзисторе приведена на рис.2


Рис.2

Здесь тоже все просто. Транзистор усиливает сигнал по току, а в остальном все работает так же. Коллекторный ток транзистора должен превышать ток полного отклонения прибора как минимум в 2 раза (так оно спокойнее и для транзистора, и для Вас), т.е. если ток полного отклонения 100 мкА, то коллекторный ток должен быть не менее 200мкА. Собственно говоря, это актуально для миллиамперметров, т.к. через самый слабый транзистор «со свистом» пролетает 50 мА. Теперь смотрим справочник и находим в нем коэффициент передачи по току h 21э. Вычисляем входной ток: I b = I k /h 21Э где:
I b – входной ток

R1 вычисляется по закону Ома для участка цепи: R=U e /I k где:
R – сопротивление R1
U e – напряжение питания
I k – ток полного отклонения = ток коллектора

R2 предназначен для подавления напряжения на базе. Подбирая его нужно добиться максимальной чувствительности при минимальном отклонении стрелки в отсутствии сигнала. R3 регулирует чувствительность и его сопротивление, практически, не критично.

Бывают случаи, когда сигнал требуется усилить не только по току, но и по напряжению. В этом случае схема индикатора дополняется каскадом с ОЭ. Такой индикатор применен, например, в магнитофоне "Комета 212". Его схема приведена на рис.3


Рис.3

Такие индикаторы обладают высокой чувствительностью и входным сопротивлением, следовательно, вносят минимум изменений в измеряемый сигнал. Один из способов использования ОУ – преобразователь «напряжение – ток» приведен на рис.4.


Рис.4

Такой индикатор обладает меньшим входным сопротивлением, зато весьма прост в расчетах и изготовлении. Вычислим сопротивление R1: R=U s /I max где:
R – сопротивление входного резистора
U s – Максимальный уровень сигнала
I max – ток полного отклонения

Диоды выбираются по тому же критерию, как и в других схемах.
Если уровень сигнала низок и (или) требуется высокое входное сопротивление, можно воспользоваться повторителем. Его схема приведена на рис.5.


Рис.5

Для уверенной работы диодов, выходное напряжение рекомендуется поднять до 2-3 В. Итак в расчетах отталкиваемся от выходного напряжения ОУ. Первым делом выясним нужный нам коэффициент усиления: К= U вых /U вх. Теперь вычислим резисторы R1 и R2: K=1+(R2/R1)
В выборе номиналов ограничений, казалось бы, нет, но R1 не рекомендуется ставить меньше 1кОм. Теперь вычислим R3: R=U o /I где:
R – сопротивление R3
U o – выходное напряжение ОУ
I – ток полного отклонения

2 Пиковые (светодиодные) индикаторы

2.1 Аналоговый индикатор

Пожалуй, наиболее популярный вид индикаторов в настоящее время. Начнем с простейших. На рис.6 приведена схема индикатора «сигнал/пик» на основе компаратора. Рассмотрим принцип действия. Порог срабатывания задан опорным напряжением, которое устанавливается на инвертирующем входе ОУ делителем R1R2. Когда сигнал на прямом входе превышает опорное напряжение, на выходе ОУ появляется +U п, открывается VT1 и загорается VD2. Когда сигнал ниже опорного напряжения, на выходе ОУ действует –U п. В этом случае открыт VT2 и светится VD2. Теперь рассчитаем это чудо. Начнем с компаратора. Для начала выберем напряжение срабатывания (опорное напряжение) и резистор R2 в пределах 3 – 68 кОм. Вычислим ток в источнике опорного напряжения I att =U оп /R б где:
I att – ток через R2 (током инвертирующего входа можно пренебречь)
U оп – опорное напряжение
R б – сопротивление R2


Рис.6

Теперь вычислим R1. R1=(U e -U оп)/ I att где:
U e – напряжение источника питания
U оп – опорное напряжение (напряжение срабатывания)
I att – ток через R2

Ограничительный резистор R6 подбирается по формуле R1=U e / I LED где:
R – сопротивление R6
U e – напряжение питания
I LED – прямой ток светодиода (рекомендуется выбрать в пределах 5 – 15 мА)
Компенсирующие резисторы R4, R5 выбираются по справочнику и соответствуют минимальному сопротивлению нагрузки для выбранного ОУ.

Начнем с индикатора предельного уровня с одним светодиодом (рис.7 ). В основе этого индикатора лежит триггер Шмитта. Как известно триггер Шмитта обладает некоторым гистерезисом т.е. порог срабатывания отличается от порога отпускания. Разность этих порогов (ширина петли гистерезиса) определяется отношением R2 к R1 т.к. триггер Шмитта представляет собой усилитель с положительной обратной связью. Ограничительный резистор R4 вычисляется по тому же принципу, что и в предыдущей схеме. Ограничительный резистор в цепи базы рассчитывается исходя из нагрузочной способности ЛЭ. Для КМОП (рекомендуется именно КМОП-логика) выходной ток составляет примерно 1,5 мА. Для начала вычислим входной ток транзисторного каскада: I b =I LED /h 21Э где:


Рис.7

I b – входной ток транзисторного каскада
I LED – прямой ток светодиода (рекомендуется выставить 5 – 15 мА)
h 21Э – коэффициент передачи тока

Если входной ток не превышает нагрузочную способность ЛЭ можно обойтись без R3, в противном случае его можно рассчитать по формуле: R=(E/I b)-Z где:
R – R3
E – напряжение питания
I b – входной ток
Z – входное сопротивление каскада

Для измерения сигнала «столбиком» можно собрать многоуровневый индикатор (рис.8 ). Такой индикатор прост, но его чувствительность мала и годится только для измерения сигналов от 3-х вольт и выше. Пороги срабатывания ЛЭ устанавливаются подстроечными резисторами. В индикаторе использованы элементы ТТЛ, в случае применения КМОП, на выходе каждого ЛЭ следует установить усилительный каскад.


Рис.8

Наиболее простой вариант изготовления оных. Некоторые схемы приведены на рис.9


Рис.9

Так же можно использовать и другие усилители индикации. Схемы включения к ним можно спросить в магазине или у Яндекса.

3. Пиковые (люминесцентные) индикаторы

В свое время применялись в отечественной технике, сейчас широко применяются в музыкальных центрах. Такие индикаторы весьма сложны в изготовлении (включают в себя специализированные микросхемы и микроконтроллеры) и в подключении (требуют нескольких источников питания). Я не рекомендую использовать их в любительской технике.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
1.1 Простейший шкальный индикатор
VD1 Диод 1 В блокнот
R1 Резистор 1 В блокнот
PA1 Mикроамперметр 1 В блокнот
Рис.2
VT1 Транзистор 1 В блокнот
VD1 Диод 1 В блокнот
R1 Резистор 1 В блокнот
R2 Резистор 1 В блокнот
R3 Переменный резистор 10 кОм 1 В блокнот
РА1 Mикроамперметр 1 В блокнот
Рис.3
VT1, VT2 Биполярный транзистор

КТ315А

2 В блокнот
VD1 Диод

Д9Е

1 В блокнот
С1 10 мкФ 1 В блокнот
С2 Электролитический конденсатор 1 мкФ 1 В блокнот
R1 Резистор

750 Ом

1 В блокнот
R2 Резистор

6.8 кОм

1 В блокнот
R3, R5 Резистор

100 кОм

2 В блокнот
R4 Подстроечный резистор 47 кОм 1 В блокнот
R6 Резистор

22 кОм

1 В блокнот
РА1 Mикроамперметр 1 В блокнот
Рис.4
ОУ 1 В блокнот
Диодный мост 1 В блокнот
R1 Резистор 1 В блокнот
РА1 Mикроамперметр 1 В блокнот
Рис.5
ОУ 1 В блокнот
Диодный мост 1 В блокнот
R1 Резистор 1 В блокнот
R2 Резистор 1 В блокнот
R3 Резистор 1 В блокнот
PA1 Mикроамперметр 1 В блокнот
2.1 Аналоговый индикатор
Рис.6
ОУ 1 В блокнот
VT1 Транзистор N-P-N 1 В блокнот
VT2 Транзистор P-N-P 1 В блокнот
VD1 Диод 1 В блокнот
R1, R2 Резистор 2 В блокнот
R3 Подстроечный резистор 1 В блокнот
R4, R5 Резистор 2 В блокнот
R6 Резистор 1 В блокнот
HL1, VD2 Светодиод 2 В блокнот
Рис.7
DD1 Логическая ИС 1 В блокнот
VT1 Транзистор N-P-N 1 В блокнот
R1 Резистор 1 В блокнот
R2 Резистор 1 В блокнот
R3 Резистор 1 В блокнот
R4 Резистор 1 В блокнот
HL1 Светодиод 1 В блокнот
Рис.8
DD1 Логическая ИС 1 В блокнот
R1-R4 Резистор 4 В блокнот
R5-R8 Подстроечный резистор 4 В блокнот
HL1-HL4 Светодиод 4 В блокнот
Рис.9
Микросхема A277D 1 В блокнот
Электролитический конденсатор 100 мкФ 1 В блокнот
Переменный резистор 10 кОм 1 В блокнот
Резистор

1 кОм

1 В блокнот
Резистор

56 кОм

1 В блокнот
Резистор

13 кОм

1 В блокнот
Резистор

12 кОм

1 В блокнот
Светодиод 12

Самодельный блок пиковой индикации стереофонического сигнала своими руками, схема простого пикового индикатора. Пиковые индикаторы аудиосигналов показывают факт превышения уровнемсигнала ЗЧ некоторого предварительно заданного значения.

Здесь приводится описание пикового светодиодного индикатора на основе микросхемы CD4093. Отечественным аналогом которой является К561ТЛ1. Микросхема содержит четыре логических элемента «2И-Не» с эффектом триггеров Шмитта. В данной схеме входы каждого из элементов соединены между собой, поэтому элементы работают как инверторы - триггеры Шмитта.

Принципиальная схема

Выходные сигналы стереоканалов от выхода УНЧ поступают через конденсаторы С1 и С2 на входы элементов D1.1 и D1.2, соответственно. На входы этих элементов через резисторы R2 и R3 поступает постоянное напряжение смещения от подстроечного резистора R1.

На входах логических элементов постоянное напряжение смещение складывается с переменной составляющей аудиосигнала. Задача резистора R1 в том, чтобы выставить оптимальное напряжение смещения, при котором будет необходимая чувствительность индикатора, то есть, этим резистором задается тот самый пиковый порог.

Рис. 1. Принципиальная схема самодельного пикового индикатора.

Состояние на выходах элементов D1.1 и D1.2 будет меняться только тогда, когда будет превышен этот порог, выставленэтой схемы преобразуется в импульсы логического уровня, которые через диоды VD1 и VD2 заряжают конденсаторы С3 и С4. Эти схемы из диодов VD1,VD2, конденсаторов С3,С4 и резисторов R4,R6 работают как детекторы.

И напряжение на конденсаторах С3 и С4 увеличивается. Особенно это важно, так как пиковый момент входного сигнала может быть не длительным. А напряжение в виде заряда удерживается этими конденсаторами, потому что они быстро заряжаются через диоды и медленно разряжаются через резисторы.

Как только напряжение на С3 или С4 достигает порога переключения триггера Шмитта (D1.3 или D1.4, соответственно), на выходе D1.3 или D1.4 появляется логический ноль, который приводит к зажиганию светодиода HL1 или HL2. Соответствующий светодиод, или если стереосигнал хорошо сбалансирован, оба светодиода вспыхивают и горят не меньше времени, требующегося на разрядку С3 или С4 через R4 или R6.

Детали и налаживание

Светодиоды - любые индикаторные, например, АЛ307. Налаживание - подстройкой резистора R1 по порогу срабатывания.