Как технология LiDAR совершила переворот в картографии и сборе геопространственных данных. Применение · Морские технологии

Сегодня для исследований атмосферы Земли, ее газового состава, перемещения воздушных масс применяются все новые и новые технологии. Одна из них - лидары наземного, воздушного, космического базирования.

Лида́р (транслитерация LIDAR англ. LIght Detection and Ranging ) - технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеивания в прозрачных и полупрозрачных средах. Принцип действия лидара не имеет больших отличий от радара: направленный луч источника излучения отражается от целей, возвращается к источнику и улавливается высокочувствительным приёмником (в случае лидара - светочувствительным полупроводниковым прибором); время отклика прямо пропорционально расстоянию до цели. В отличие от радиоволн , эффективно отражающихся только от достаточно крупных металлических целей, световые волны подвержены рассеиванию в любых средах, в том числе в воздухе, поэтому возможно не только определять расстояние до непрозрачных (отражающих свет) дискретных целей, но и фиксировать интенсивность рассеивания света в прозрачных средах. Возвращающийся отражённый сигнал проходит через ту же рассеивающую среду, что и луч от источника, подвергается вторичному рассеиванию, поэтому восстановление действительных параметров распределённой оптической среды - достаточно сложная задача, решаемая как аналитическими, так и эвристическими методами.

Опыт западных стран свидетельствует об успешном использовании этой не так давно сугубо военной технологии в задачах экологического мониторинга, управления воздушным движением и т.п.

В 60-70-е годы лидары, – лазерные локаторы, работающие в видимом или ближнем ИК-диапазонах волн, – в основном использовались в военной технике. Cегодня они с успехом применяются для решения многих задач, например для мониторинга состояния атмосферы, измерения скорости ветра и т.п. Установленные в районах аэропортов, лидары измеряют ветровые сдвиги на летном поле, завихренность следа самолета и другие атмосферные параметры, знать которые необходимо для обеспечения безопасности взлета и посадки. Хорошие результаты дает применение таких систем для измерения дальности, доплеровской скорости и при формировании изображений объектов, находящихся на летном поле. Так, один из лидаров, выпущенных германской фирмой DLR, установлен в аэропорту Франкфурта между двумя взлетно-посадочными полосами, расположенными близко друг к другу. Он измеряет скорость воздушных вихревых следов от двигателей самолета, приближающегося к одной посадочной полосе, а также перемещения воздуха над другой полосой, вызванного его приближением. Такая информация использовалась службой управления воздушным движением для обеспечения безопасной посадки самолетов по двум полосам. По всей территории Англии установлен компактный робастный лазерный измеритель доплеровской скорости с коническим сканированием, разработанный британской фирмой DRA Malvern. Информация о скорости ветра, получаемая с помощью этих устройств, существенно дополняет данные метеозондов. В 1994-1995 годах в аэропорту Хитроу (Лондон) проходил испытания лазерный измеритель скорости. В числе прочих задач он должен был определять вихревые следы от двигателя самолета и их распространение ветром по летному полю на высоте 30-150 метров. Интересно отметить, что в ходе испытаний был обнаружен неожиданный эффект - возвращение воздушного вихря почти с исходной мощностью в область глиссады примерно через 70 секунд после прохода самолета. Импульсный когерентный лидар на углекислом газе французской фирмы Laboratoire de Meteorologie Dynamique (LMD) применяется для измерения параметров атмосферы и скорости ветра. Дальность действия прибора в горизонтальном направлении - около 12 километров, в вертикальном – вплоть до тропопаузы. Основой аппаратуры лидара служит импульсный СО2-лазер с поперечной накачкой, одномодовым излучением и длиной волны 10,6 мкм. Для расширения луча используется 17-см телескоп Кассегрена со смещенной осью. Управление лучом осуществляется с помощью двухзеркального сканера. Отраженный сигнал собирается тем же телескопом и преобразуется гетеродином. Сдвиг частоты составляет 30 МГц. Принимаемый сигнал оцифровывается восьмиразрядным осциллоскопом с частотой выборки 100 МГц. Для хранения данных используется компьютер. Высокую точность при измерении малых доплеровских сдвигов частоты обеспечивает разработанный в Лаборатории атмосферных исследований НАСА доплеровский лидар, использующий краевой эффект. В устройстве частота излучения лазера выбирается на границе полосы пропускания оптического фильтра с высоким спектральным разрешением. При этом небольшие сдвиги частоты значительно изменяют амплитуду измеряемого сигнала. Доплеровские смещения частоты сигнала, вызванные ветровыми перемещениями, определяются по разности частоты излучения и частоты принимаемого сигнала, отраженного от атмосферы. В лидаре использован импульсный твердотельный лазер на алюмоиттриевом гранате, легированном неодимом (Nd:YAG-лазер). Длина волны излучения - 1064 нм, длительность импульса - 15 нс, ширина полосы - 40 МГц. Отраженные сигналы собираются телескопом диаметром 0,4 м с полем зрения 0,2 мрад. Сканирующая оптика позволяет направлять луч в секторе от 30 до 120о по углу места и от 0 до 360о - по азимуту. Лидарная установка прошла натурные испытания, в ходе которых измерялись ветровые сдвиги на высотах от 200 до 2000 метров. Интервал измерений по вертикали составлял 22-26 метров. Результаты измерений скорости ветра сопоставлялись с данными метеозондов. Расхождение не превысило 1 м/c, а разброс результатов при 10 измерениях оказался менее 0,4 м/с. Специалисты Лаборатории атмосферных исследований отмечают, что столь высокая точность измерений предоставляет уникальные возможности для изучения турбулентных процессов в нижних слоях атмосферы. Помимо научных исследований прибор можно с успехом применять для высокоточных измерений ветровых сдвигов и микротурбулентностей в районе аэропортов. В последние годы растет интерес ученых к изучению газового состава атмосферы Земли. Их внимание особенно привлекает озон как наиболее важный химически активный газ. Озон, находящийся в стратосфере, защищает биосферу Земли от вредного влияния ультрафиолетового излучения Солнца. В то же время большие концентрации озона в тропосфере способствуют развитию парникового эффекта и образованию фотохимического смога, что отрицательно воздействует на животный и растительный мир планеты, а также на здоровье людей. Как показывают наблюдения, с начала 70-х годов каждые 10 лет концентрация озона в тропосфере увеличивается примерно на 10% и на столько же снижается в нижних слоях стратосферы. Это говорит о крайней важности тщательного исследования данных процессов. Высокую точность измерения концентрации озона в тропосфере обеспечивают лидары дифференциального поглощения - наземные или размещаемые на самолетах. Они зондируют пространство с помощью двух лучей на разных частотах, по-разному поглощаемых озоном. Концентрацию озона в пространстве вычисляют по разнице амплитуд двух разнесенных по времени отраженных сигналов, которые собираются одним или несколькими телескопами. В таких лидарах особенно важно правильно выбрать частоты излучения, которые, кроме различного поглощения в озоне, должны иметь минимальное молекулярное и партикулярное поглощение. Наземный лидар дифференциального поглощения с диапазоном сканирования частоты излучения лазера от 286 до 292 нм создан специалистами Национальной лаборатории океанических и атмосферных исследований и Института изучения окружающей среды (США, шт.Колорадо). Поскольку на характеристики излучения влияет состояние атмосферы, в частности облачность, лидар установили на высоте 2,7 километра над уровнем моря. В состав установки включены два идентичных лазера на красителе, накачка производится от Nd:YAG-лазера. Лазеры возбуждаются последовательно с интервалом 400 мкс. Сигналы детектируются двумя автономными системами, оптимизироваными для приема сигналов с разных высот, и после обработки в специальных фильтрах поступают на фотоэлектронные умножители. Во время испытаний лидар работал непрерывно более суток, при этом отклонение длины волны излучения не превысило 0,01 нм. Исследования проводились на высотах от четырех километров над уровнем моря до уровня нижней стратосферы (примерно 12 километров). Шаг измерений по высоте составлял менее километра. Точность определения концентрации озона в тропосфере при ясной погоде для данной установки оказалась не хуже 10%. Лидар находится в эксплуатации с 1993 года. В последнее время лидарные установки все чаще устанавливают на самолетах для обнаружения ветровых потоков и измерения их скорости, определения истинной воздушной скорости летательного аппарата и других параметров. Кроме того, бортовые лидары используют в системах отслеживания рельефа местности и предупреждения о препятствиях. Одной из первых лазерных систем самолетного базирования стала система измерения истинной воздушной скорости LATAS (Laser True Airspeed System) производства английской фирмы Royal Signals and Radar Establishment (RSRE). В модернизированном варианте эта система применяется и сегодня. LATAS размещается в носовой части самолета. В ее состав входит лазер на углекислом газе с выходной мощностью 4 Вт, поляризационная оптика на четверть- и полуволновых пластинах, а также детектор на теллуриде кадмия и ртути с полосой 100 МГц. Для измерения воздушной скорости лидар фокусируют на расстояние 30-100 м перед носовой частью самолета, для измерения ветрового сдвига – на 250-300 м. Точность измерения скорости - 0,2 м/с. На многих воздушных судах, в частности на транспортных самолетах “Каравелла” , истребителях “Mираж”, вертолетах “Пума”, установлен доплеровский лидар Crouzet производства французской фирмы Crouzet SA. В его основе - СО2-лазер, излучающий непрерывный сигнал с выходной мощностью 3 Вт, диодный детектор с шириной полосы 200 МГц, выполненный на теллуриде кадмия и ртути, поляризационная волновая пластина и пластина Брюстера. Частота гетеродина задается при двойном прохождении луча через ячейку Брэгга. В системе использован телескоп Далла-Кирхама с эффективной апертурой 7,5 см. Принимаемые сигналы обрабатываются спектр-анализатором на ПАВ. Интервал измерения доплеровских скоростей составляет –25 ...+400 м/с, а дальность измерения - 10-100 м. Общий вес системы Crouzet - около 250 кг. По заказу правительств Франции и Великобритании консорциум фирм Dassault Electronique (Франция) и GEC Marconi (Великобритания) разрабатывает когерентный лазерный авиационный локатор CLARA (Coherent Laser Airborn Radar), работающий в диапазоне 10 мкм. Система предназначена для предупреждения о препятствиях, отслеживания рельефа местности, а также измерения воздушной скорости самолета и наведения на цель. Аппаратура, включающая СО2-лазер, сканер, процессор обработки сигналов и данных, размещается в контейнере под фюзеляжем. Обнаружение, классификация и отображение объектов производятся в реальном времени. Система CLARA проходила испытания на борту самолетов A6-E, HS748 и “Торнадо”. Доплеровский лидар для измерения скорости ветра WIND (Wind Infrared Doppler Lidar) разрабатывают французские фирмы CNRS и CNES и в сотрудничестве с германской DLR. В основе системы - лазер на углекислом газе с поперечной накачкой, формирующий одномодовое излучение. Лазер имеет выходную согласующую оптику с Гауссовой отражательной способностью, что позволяет выделить полезный сигнал на фоне поперечных мод высокого порядка, а также на фоне эхо-сигналов от целей с большой отражательной способностью. В системе использован телескоп Далла-Кирхама со смещенной осью (диаметр свободной апертуры - 20 см, коэффициент расширения апертуры - 15). Фокусное расстояние регулируется от 200 м до предельного значения. Летные испытания лидара проходили на борту самолета Falcon 20 (рис. 1). Во время испытаний производилось коническое сканирование в секторе 30о от надира. Период сканирования - 20 или 30 сек, частота повторения импульсов лазера - 4 или 10 Гц. Хорошие характеристики были получены при средней энергии излучения 360 мДж и частоте повторения 4 Гц. Успешно прошла испытания бортовая лидарная установка, разработанная специалистами Лаборатории им. братьев Райт ВВС США. Система предназначена для трехмерного измерения распределения скорости ветра по высоте (ветрового профиля) в реальном времени. Такие сведения важны для повышения точности десантирования и сбрасывания груза с самолета, увеличения вероятности поражения цели при ракетных и артиллерийских стрельбах. Сигнал, излучаемый лазером, отражается от перемещающихся по ветру частиц пыли и воздушных аэрозолей. Скорость ветра определяется путем измерения доплеровских сдвигов сигналов, отраженных от этих частиц. Сканирование лазерного луча - коническое, что позволяет производить измерения в различных направлениях. Размещение лидара в грузовом отсеке самолета показано на рис.2. Измерение ветрового профиля с помощью этой системы позволило повысить точность приземления при десантировании в 2-10 раз. Широкие возможности для изучения атмосферы Земли, проведения различных метеорологических и климатологических исследований открывают лидары космического базирования. Больших успехов в этой области достигли специалисты исследовательского центра Longley (НАСА). Они создали немало наземных и авиационных лидарных систем для изучения атмосферных аэрозолей и водяных паров, облаков, озоновых дыр. В частности, в рамках программы LITE (Lidar In-Space Technology Experiment) разработана первая в мире лидарная установка для изучения Земли из космоса. С помощью установки LITE изучалась структура облаков, процессы образования облачности, находящиеся в атмосфере аэрозоли, в том числе антропогенного происхождения, определялась высота приземного слоя атмосферы, измерялось горизонтальное распределение температуры и плотности воздушных слоев на высотах от 25 до 40 км, анализировались процессы отражения лазерного излучения от земной и морской поверхностей. LITE имеет традиционную конструкцию лидара прямого обнаружения: передающий лазерный блок, блок оптической юстировки и приемный блок. Передатчиком служит Nd:YAG-лазер с накачкой лампой-вспышкой. Для резервирования в передающем блоке установлены два идентичных квантовых генератора, из которых в рабочем состоянии находится только один. Передатчик одновременно формирует гармоники излучения с длиной волны 1064, 532 и 355 нм. Излучаемая мощность на этих частотах составляет 470, 560 и 160 мДж, соответствено. Блок оптической юстировки содержит поворотную призму для поддержания оптической центровки выходного лазерного луча и угла зрения приемника. В составе приемного блока - телескоп диаметром 1 м, оптические устройства передачи сигнала и электронные устройства предварительной обработки. Для разделения принимаемого сигнала на три частотные составляющие используется дихроичный расщепитель. В каналах обработки сигналов длин волн 532 и 355 нм установлен ударопрочный фотоэлектронный умножитель, для сигналов 1064-нм диапазона используется кремниевый лавинный фотодиод. В устройстве предусмотрены также узкополосные интерференционные фильтры и апертурный диск, которые служат для реконфигурации приборов при работе в дневное и ночное время. Размер дневной апертуры составляет 1,1 мрад, ночной – 3,5 мрад. После прохождения фотоприемников и фильтров сигналы поступают в электронный усилитель и аналогово-цифровой преобразователь (АЦП). Ширина полосы усилителя - 2,1 МГц. АЦП - 12-разрядный, с тактовой частотой 10 МГц. Период стробирования данных - 550 мкс. Электронные устройства обработки включают также резисторную схему, установленную после первого каскада усиления. Схема обеспечивает подавление сигнала в пределах 0-63 дБ. Благодаря этому сильный сигнал, отраженный от плотных облаков или поверхности Земли, не выходит за рамки динамического диапазона 12-разрядных АЦП. Основные вычислительные операции производит быстродействущий сигнальный процессор. Масса аппаратуры составляет 990 кг. Потребляемая мощность в рабочем состоянии - 3,1 кВт, в резервном - 560 Вт. Мощность излучения лазера и расходимость луча выбираются таким образом, чтобы интенсивность лазерного пучка на поверхности Земли была значительно ниже принятых санитарных норм. Cобранные космическим лидаром LITE данные передавались на Землю двумя потоками: с низкой (~20,8 кбит/с) и высокой (~2 Мбит/с) скоростью передачи. Первый поток транслировался через систему связи S-диапазона, второй - через систему телеметрической связи. По мнению специалистов, испытания лидаров LITE в космических условиях прошли успешно. В ходе эксперимента собран большой объем высокоточной информации, на основании которой сформирована общедоступная база данных о состоянии атмосферы. Эксперимент подтвердил возможность применения лидаров в длительных орбитальных полетах. Ожидается, что новые разработки лазеров с диодной накачкой позволят снизить потребляемую мощность, что даст возможность устанавливать лидары на небольших спутниках.

Лазерные лидарные комплексы (ЛЛК) также предназначены для оперативного дистанционного контроля биологической и химической обстановки. Комплексы осуществляют наблюдение за аномальными изменениями атмосферы, обусловленными наличием в ней аэрозолей, а также определение параметров перемещения облаков. Комплексы являются автоматизированной дистанционной системой оперативного контроля экологической обстановки промышленных центров и способны быстро, в автоматическом режиме обнаруживать аварии и обеспечивать информационную поддержку действий аварийно-спасательных служб.

Проблема мониторинга техногенного загрязнения окружающей среды и особенно атмосферного воздуха является в настоящее время чрезвычайно актуальной как в экологическом аспекте, так и в связи с современными проблемами общественной безопасности. Технологии лазерного дистанционного зондирования атмосферной среды дают возможность устранить недостатки и ограничения, присущие традиционным методам локального мониторинга: низкая информативность, трудность обеспечения широкой зоны покрытия, большое время развертывания сетей локальных датчиков и т.п. Особенно эффективным представляется применение мобильных многофункциональных комплексов дистанционного лазерного зондирования – мобильных лидаров. Создание малогабаритного мобильного лидарного комплекса для мониторинга и прогнозирования экологической обстановки над критически важными (опасными) объектами и в районах вероятных террористических атак позволит:

    определять концентрации широкого спектра веществ на расстояниях до 8 км;

    в режиме реального времени отображать на карте местности районы загрязнения и количественные характеристики масштаба заражения;

    определять распространение ядовитого облака;

    прогнозировать развитее ситуации над критическими объектами;

    контролировать содержание опасных веществ атмосфере и оповещать сигналом тревоги в случае превышения ПДК или обнаружения выбросов на контролируемых объектах или территории.

Сканирование сектора ответственности может осуществляться в различных временных режимах: непрерывном, периодическом и по требованию оператора (дежурного). Лазерный анализ позволяет определить в течение нескольких минут факт аномального выброса, вид вещества, интенсивность и направление его распространения. Среди типовых аварийно – химических опасных веществ (АХОВ) можно выделить следующий перечень загрязнителей, заражение которыми представляет интерес на большинстве территорий, требующих усиленного контроля:

  • Аммиак - NH 4

    Диоксид серы - SO 2

    Диоксид азота - NO 2

    Соляная кислота - HCl

    Продукты нефтепереработки.

Помимо указанных выше веществ существуют угрозы аварий на специфических объектах по производству, хранению и утилизации особо опасных химических веществ, а также СДЯВ и ОВ.

Использование высокочувствительных и разработанных лидарных методов зондирования атмосферы на наличие опасных веществ, таких как дифференциальное поглощение (DIAL) и дифференциальное рассеяние (DISC) позволяет измерять величины концентраций на уровнях ПДК рабочих и жилых зон. Для проведения комплексного анализа и прогноза экологической ситуации необходимо, чтобы все полученные данные были согласованы в пространстве, как по размерам зон покрытия, так и по пространственному разрешению, синхронизированы во времени и имели единый формат.

Нештатная экологическая ситуация или террористический акт сопровождается характерным аэрозольным выбросом. Аэрозольный лидар, построенный на основе безопасного для глаз Er - лазера или Nd:YAG - лазера, определяет наличие атмосферного аэрозоля и измеряет его концентрацию, строит пространственное распределение в реальном времени и анализирует его физическую природу. Для этого аэрозольный Ми-лидар и поляризационный лидар объединены в единый функциональный узел.

Лидар дифференциального поглощения видимого и ближнего ИК-диапазона на основе двухканального перестраиваемого импульсного лазера на сапфире с титаном дистанционно измеряет распределение концентрации окислов азота, серы и широкого набора неорганических загрязнителей воздушной среды на уровне ПДК.

Многоспектральный лидар дифференциального поглощения дальнего ИК-диапазона на основе перестраиваемого импульсного СО 2 -TEA лазера измеряет поле концентраций широкого класса органических веществ, а также озона.

Объединение аэрозольного и флуоресцентного лидара, а также лидаров дифференциального поглощения видимого, УФ, ближнего и дальнего ИК-диапазонов на единой платформе увеличивает габариты системы до контейнера, способного разместиться на носителе с грузоподъемностью несколько тонн. Поэтому целесообразно разделить возлагаемые на комплекс задачи следующим образом:

1. Детектирование аэрозольных выбросов и слежение за динамикой (аэрозольный лидар);

2. Детектирование аэрозольных выбросов и идентификация неорганических АХОВ (аэрозольный лидар, коротковолновый ДИАЛ);

3. Детектирование аэрозольных выбросов и идентификация органических АХОВ и ОВ (аэрозольный лидар, длинноволновый ДИАЛ или пассивный ИК- спектрометр).

Дополнительная информация. Состав и технические характеристики предлагаемых вариантов:

1. Детектирование аэрозольных составляющих выброса можно определить с помощью одного лазера. Лазер для аэрозольного канала может быть построен на базе безопасного для глаз эрбиевого волоконного излучателя с длиной волны 1,55 мкм или лазера на неодимовом стекле 1,064 мкм. Высокая частота следования импульсов позволяет производить сканирование с высокой угловой скоростью без потери углового разрешения, а короткие лазерные импульсы обеспечивают высокое пространственное разрешение.

Основные ТТХ комплекса

Параметр

Значение

не менее 5 км

не более 0,5 м

Углы обзора

0,5 – 11 мкм

1,55 (1,064) мкм

не более 130 с

Энергия импульса

Длительность импульса

Частота следования импульсов

Диаметр приёмо-передающего телескопа

Вес системы

Менее 1 т.

)* - с автоматическим сканированием)** в зависимости от шага сканера и выбранного сектора обзора

Состав оборудования:

    Поворотная платформа (одно или двухзеркальный сканер)

    Система термостабилизации отсеков комплекса

    Аппаратура проводной и беспроводной передачи данных

    Бортовой компьютер

    Лазерный излучатель аэрозольного лидара

    Система синхронизации подсистем комплекса

    Приемо-передающий телескоп

    Приемники излучения

    Аналоговый электронный блок управления и диагностики

    Цифровой электронный блок обработки данных

    Система автономного электропитания

    Система видео наблюдения

2. Детектирование аэрозольных составляющих выброса с возможностью идентификации неорганических АХОВ подразумевает использование наряду с аэрозольным лидаром лидара дифференциального поглощения в УФ, видимом и ближнем ИК-диапазоне. Линии поглощения основных АХОВ лежат в диапазоне перестройки лазера на титан сапфире, так для SO 2 это – 300,05 нм (On) и 299,51 нм (Off), для NO 2 – 448,25 нм (on) 446,83 нм (off).

Основные ТТХ комплекса

Параметр

Значение

Максимальная дальность измерений в режиме сканирования

не менее 8 км

Максимальная дальность измерений в режиме измерения

не менее 3 км

Минимальная дальность измерений в режиме сканирования

не более 0,5 м

Углы обзора

Вертикальное направление (угол места)*

Горизонтальное направление (азимут)*

Размер детектируемых аэрозолей

0,5 – 11 мкм

Длина волны в режиме аэрозольного сканирования

1,55 (1,064) мкм

Время сканирования выбранного сектора **

не более 130 с

Пространственное разрешение в режиме сканирования

Энергия импульса

1 – 2 мДж (1,55 мкм) 100 мДж (1,064 мкм)

Длительность импульса

Частота следования импульсов

Ti:Sph лазер (2 шт.)

Диапазон длин волн

350 – 480 нм 230 – 310 нм

Частота следования импульсов

Энергия импульса L=450 нм L=300 нм

25 мДж 6 мДж

Вес системы

Почти все полицейские силы мира (в т.ч. и ГАИ) используют радары для измерения скорости, принуждения выполнения скоростного режима и пополнения казны. С момента разработки этих устройств, за ними неотступно следуют антирадары. К несчастью, у полиции есть два туза — они могут выбирать время и место для своих <отстрелов> (и повышают их убойную силу, выбирая места, опасные или нет, где большинство нормальных людей ездит быстро) и объявлять нелегальными наиболее эффективные контрмеры, такие как наведение помех и использование антирадаров.

Радар посылает пульсирующий или непрерывный сигнал радиочастоты и слушает отражение этого сигнала. Когда импульс достигает движущегося объекта, его частота изменяется в соответствие со скоростью и направлением движения (эффект Допплера). Также появились новые системы, использующие лазерное излучение для определения скорости.

Существует три основных частотных диапазона, в которых работают полицейские радары, обычно называемые X-диапазон (11 ГГц), K-диапазон (24 ГГц) и Ka-диапазон (32-36 ГГц). Все радар-детекторы слушают эти частоты и пищат, чирикают и моргают, когда обнаруживают сигнал. Повышение чувствительности антирадара позволяет раньше обнаруживает радар. К сожалению, эти частоты используются также различными полезными устройствами, такими как системы автоматического открывания дверей гаража, охранными системами, а также присутствуют в излучении линий электропередач. Отсюда растет вторая сторона проблемы — антирадары, которые ловят все подряд и чаще врут, чем предупреждают.

Лидар (Lidar, лазерный радар) — новый враг

Лидар, в отличие от обычного радара, использует лазерное излучение (длина вольны около 900нм) для определения скорости автомобиля. Он через некоторые промежутки времени измеряет расстояние от устройства до цели, и его изменению вычисляет скорость. Поскольку измеряется расстояние очень важно, чтобы лидар был установлен стабильно и капитально для получения правильных значений, и обычная цель (автомобиль) в этом случае превращается в набор поверхностей, которые являются хорошими отражателями. Это очень важно, поскольку устройство использует отражение лазерного луча от цели для измерения расстояния.

С точки зрения водителя, основное отличие от радара состоит в сложности обнаружения. Размер пятна луча составляет около 4 футов на расстоянии в полмили (120см на 800м), и оно очень мало для захвата детектором. Кроме того, все устройства этого класса автоматически отключают излучатель после произведения замера, а не работают непрерывно, как большинство радаров.

Фоторадар — простейший способ собирать деньги

Очередной виток в войне радаров и антирадаров — фоторадар, при обнаружении которым вы узнаете об этом только по получении квитанции на штраф. Он имеет маломощный радар той или иной конструкции для определения скорости и фотографирует автомобиль, движущийся с превышением скорости (вплоть до номеров и лица за рулем). Спорить бесполезно — машина не врет. Некоторые фоторадары оборудованы устройством поворота, позволяющем сканировать некоторый участок дороги, что еще более затрудняет их обнаружение и уменьшает вероятность ошибки. Радар, определяющий скорость, весьма маломощный, его радиус действия обычно не превышает 30-50м, что также затрудняет его обнаружение, особенно если он загораживается постройками или другими автомобилями.

Используется несколько типов подобных устройств:

  • Австралия использует Fairy slant radar system, использующую радар K-диапазона с углом 45 градусов.
  • Новая Зеландия и часть Канады — Auto patrol Ka-фоторадар, достаточно убийственный. Он использует маломощный радар на 34.6 ГГц с углом 22.5 градуса и делает фотографии автомобилей, движущихся в обоих направлениях. Однако он не делает снимок, если обнаруживает несколько автомобилей в кадре для экономии пленки. Частота предусмотрительно выбрана как третья гармоника X-диапазона, где большинство радар-детекторов имеют пониженную чувствительность для подавления бытовых помех.

Vascar (Visual Average Speed Computer and Recorder)

Это не радарная система. Суть в том, что есть две отметки на дороге. В момент пересечения первой включается таймер, в момент пересечения второй — выключается. Расстояние между отметками — фиксированное. Скорость вычисляется. Единственная контрмера — внимательность.

Контрмеры

Наведение помех (Radar jamming)

Со времен противостояния электронные контрмеры стали весьма популярны. Если пропустить рассуждения на тему законности использования таких устройств и перейти к технической стороне вопроса, что дает наведение помех? Существуют шумелки (джаммеры) двух типов — активные и пассивные. Пассивные принимают сигнал радара, зашумляют его и передают обратно _без_усиления_. Основная проблема этого метода видна, если сравнить площадь антенны устройства (около 1 кв.дюйма) с фронтальной площадью автомобиля. Любой сигнал шумелки будет подавлен сигналом от остальной части автомобиля и благополучно отфильтрован системой шумоподавления радара. Исследования подобных устройств показали их весьма низкую эффективность (см. оригинальный текст, там есть ссылки).

Гораздо более эффективные (а следовательно и более незаконные) — активные шумелки. В этом случае устройство посылает мощный сигнал, подавляющий отраженный автомобилем. Как пример — VCDD Stealth, цена около 700 USD (в Новой Зеландии). Состоит из низкокачественного широкополосного детектора излучения, по сигналу которого включается излучатель на той же частоте. По мнению журналов Car & Drivers и NZ Autonews, существуют несколько серьезных проблем при использовании данного устройства:

  • Работает только вперед
  • Плохо работает в коротковолновом диапазоне
  • Работает только в диапазонах X и K
  • Имеет большие габариты
  • Намертво глушит другие детекторы на мили вокруг Учитывая высокую стоимость, незаконность и пп.1-5 представляется не очень удобным использование такого устройства. По другим информации нет.

Прятки (Stealth)

Лучший способ спрятаться от радара — обклеить автомобиль материалом, используемым на знаменитых самолетах-невидимках, однако есть некоторые трудности с его наличием в продаже. Поэтому, для начала, следует обратить внимание на фронтальный профиль автомобиля. Очевидно, что автомобиль с низким профилем, мотором сзади и закрытыми подъемными фарами (Mazda RX7), отражает сигнал в обратном направлении гораздо хуже, нежели минивэн или трейлер. Вообще, автомобиль с низким лобовым сопротивлением, теоретически отражает сигнал куда угодно, только не в обратном направлении, а с учетом использования в современных автомобилях пластмасс и т.п. профиль для отражения сигнала радара еще более уменьшается. Однако, информации о каких-либо формальных исследованиях на эту тему нет.

Наведение помех на лидары (Lidar jamming)

В отличие от радара, лазерное излучение — это свет, и в этом смысле его подавление проще и более легально. Car & Driver magazine (апрель 1994) поместил неплохую заметочку, в которой, в частности, говорилось о том, что использование пары мощных противотуманок позволяет уменьшить расстояние действия лидарного спидометра в два раза, что при наличии детектора дает несколько дополнительных секунд. Robert Weverka и Craig Peterson в своей статье (Autotronics, март 1995, стр. 36) утверждают, что это не работает, однако не объясняют, почему C&D получили положительные результаты.

Прятки от лидаров (Lidar stealth)

Лидар работает на принципе отражения светового (лазерного) луча от поверхности цели, поэтому лучший способ скрыться от него — иметь автомобиль с низким профилем, черного цвета, без хромированных деталей и покрытый грязью. Неплохо, также иметь покрытие (чехлы?) на большие блестящие поверхности для подавления отражения. Тестов на эту тему не попадалось.

Детекторы

Детекторы радаров по сути — радиоприемник, который моргает, пищит или чирикает когда принимает сигнал частоты, на которой работают радары. Не считая разных лампочек, основное различие между детекторами — чувствительность и подавление случайных срабатываний. В большинстве случаев — это взаимоисключающие параметры.

Общественное мнение и обзоры

Производители детекторов постоянно предлагают новые модели. Цена не всегда определяет качество. Некоторые дешевые модели показывают неплохие результаты. С другой стороны некоторые дорогие имеют откровенные провалы в определенных диапазонах.

На что обращать внимание

При покупке, кроме цены смотрите на:

  • чувствительность — иногда производители помещают результаты тестов, должна быть не ниже 110 дБ
  • память — возможность сохранения настроек
  • Mute (выключение звука) — на случай сплошного потока полицейских машин с радарами
  • Скрытность (монтажа) — в случае если использование детекторов запрещено законами страны
  • Регулировка громкости
  • Диапазон — K/Ka/X — band, lidar
  • Наличие разных лампочек и тонов звука для разных источников излучения

Где устанавливать

Обычно, лучшее место для установки детектора вверху лобового стекла, рядом с зеркалом. Это позволяет увеличить дальность действия и обеспечивает хороший <обзор> дороги. Исключение составляют автомобили, имеющие солнцезащитную металлизированную полоску по лобовому стеклу, которая блокирует работу детектора.

Детекторы детекторов

В некоторых странах, где запрещено использование детекторов, используются детекторы радар-детекторов (например, VG2 в Канаде). Их принцип работы основан на улавливании частоты, используемой в супергетеродинах приемников детекторов. Многие производители детекторов учитывают эту тонкость, и выпускают <невидимые> детекторы, такие как модели Bel и Valentine One, а Whistler выпускает подели оснащенные детекторами детекторов.

Важно отметить, что ни одна из систем не является эффективной на 100 процентов. Кроме того, периодически появляются новые разновидности радаров, разработанные с использованием последних технологий и существующие антирадары становятся неэффективными.

На данный момент существует единственный действенный способ избежать штрафов за превышение скорости – не лихачить!

Теги: Лидар, излучатель, сигнал, когерентный, некогерентный, сканирующая оптика

Лидары

Л идар (LIDAR англ. Light Identification Detection and Ranging - световое обнаружение и определение дальности) - технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах.

Лидар как прибор представляет собой активный дальномер оптического диапазона. Сканирующие лидары в системах машинного зрения формируют двумерную или трёхмерную картину окружающего пространства. «Атмосферные» лидары способны не только определять расстояния до непрозрачных отражающих целей, но и анализировать свойства прозрачной среды, рассеивающей свет. Разновидностью атмосферных лидаров являются доплеровские лидары, определяющие направление и скорость перемещения воздушных потоков в различных слоях атмосферы.

Принцип действия


Принцип действия лидара не имеет больших отличий от радара: направленный луч источника излучения отражается от целей, возвращается к источнику и улавливается высокочувствительным приёмником (в случае лидара - светочувствительным полупроводниковым прибором); время отклика прямо пропорционально расстоянию до цели.


Принцип действия лидара прост. Объект (поверхность) освещается коротким световым импульсом, и измеряется время, через которое сигнал вернется к источнику. Свет распространяется очень быстро - 3∙10 8 м/с. Однако он возвращается с некоторой задержкой, которая зависит от расстояния до объекта.

Расстояние, которое прошел фотон на пути до объекта и обратно, можно рассчитать по формуле:

L = c ∙ t пролёта 2

Оборудование, необходимое для измерения этого малого промежутка времени, должно работать чрезвычайно быстро.

Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени, необходимый для возврата импульса. Свет движется с постоянной скоростью, поэтому лидар может вычислить расстояние между ним и цели с высокой точностью.

Во всех случаях радиотехническая система обнаруживает сигналы на фоне помех. Считается, что полезный сигнал имеет частоту, равную резонансной частоте настройки системы ω c = ω 0 . Начальная фаза равна нулю:

U c t = U cm sin ω 0 t

Сумма сигнала и помехи:

U сп t = u с t + u п t = U cm + U п1 sin ω 0 t + U п2 cos ω 0 t

где U п1 и U п2 – амплитуды помех.

  • Некогерентное детектирование (прямой метод измерения): Реагирование происходит на амплитуду суммарного колебания и помехи U спm .Превышением сигнала над помехой называется следующее отношение: m нкг 2 = U cm 2 U п1 2 + U п2 2 = U cm 2 2σ 2 где σ 2 – дисперсия каждой из амплитуд помехи U п1 и U п2
  • Когерентное детектирование: Полностью исключает ортогональную к сигналу составляющую помех. Оно предусматривает реагирование лишь на колебание, равное сумме амплитуды сигнала Ucm и синфазной составляющей помехи U п1. Превышением сигнала над помехой при когерентном обнаружении называется отношение m нкг 2 = U cm 2 U _ п1 2 , где U _ п1 2 – дисперсия амплитуды синфазной составляющей. Когерентные системы лучше всего подходят для доплеровских или фазочувствительных измерений и, как правило, используют оптическое гетеродинное детектирование. Это позволяет им работать при гораздо меньшей мощности, но при этом конструкция фотоприемной схемы намного сложнее.

Существуют две основные категории импульсных лидаров: микроимпульсные и высокоэнергетические системы.

  • Микроимпульсные лидары работают на более мощной компьютерной технике с большими вычислительными возможностями. Эти лазеры меньшей мощности и классифицируются как "безопасные для глаз", что позволяет использовать их практически без особых мер предосторожности.
  • Лидары с большой энергией импульса в основном применяются для исследования атмосферы, где они часто используются для измерения различных параметров атмосферы, таких как высота, наслоение и плотность облаков, свойства частиц облака, температуру, давление, ветер, влажность и концентрацию газов в атмосфере.

В отличие от радиоволн, эффективно отражающихся только от достаточно крупных металлических целей, световые волны подвержены рассеиванию в любых средах, в том числе в воздухе, поэтому возможно не только определять расстояние до непрозрачных (отражающих свет) дискретных целей, но и фиксировать интенсивность рассеивания света в прозрачных средах. Возвращающийся отражённый сигнал проходит через ту же рассеивающую среду, что и луч от источника, подвергается вторичному рассеиванию, поэтому восстановление действительных параметров распределённой оптической среды - достаточно сложная задача, решаемая как аналитическими, так и эвристическими методами.

Излучатель

В абсолютном большинстве конструкций излучателем служит лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и следующие длины волн (в нанометрах):

  • 1550 нм - инфракрасное излучение, невидимое ни глазу человека, ни типичным приборам ночного видения. Глаз не способен сфокусировать эти волны на поверхности сетчатки, поэтому травматический порог для волны 1550 существенно выше, чем для более коротких волн
  • 1064 нм - ближнее инфракрасное излучение неодимовых и иттербиевых лазеров, невидимое глазу, но обнаружимое приборами ночного видения
  • 532 нм - зелёное излучение неодимового лазера, эффективно «пробивающее» массы воды
  • 355 нм - ближнее ультрафиолетовое излучение

Также возможно использование вместо коротких импульсов непрерывной амплитудной модуляции излучения переменным напряжением.

Сканирующая оптика

Простейшие атмосферные лидарные системы не имеют средств наведения и направлены вертикально в зенит.

Для сканирования горизонта в одной плоскости применяются простые сканирующие головки. В них неподвижные излучатель и приёмник также направлены в зенит; под углом 45° к горизонту и линии излучения установлено зеркало, вращающееся вокруг оси излучения. В авиационных установках, где надо сканировать полосу, перпендикулярную направлению полёта самолёта-носителя, ось излучения - горизонтальна. Для синхронизации мотора, вращающего зеркало, и средств обработки принимаемого сигнала используются точные датчики положения ротора, а также неподвижные реперные риски, наносимые на прозрачный кожух сканирующей головки.

Сканирование в двух плоскостях добавляет к этой схеме механизм, поворачивающий зеркало на фиксированный угол с каждым оборотом головки - так формируется цилиндрическая развёртка окружающего мира. При наличии достаточной вычислительной мощности можно использовать жёстко закреплённое зеркало и пучок расходящихся лучей - в такой конструкции один «кадр» формируется за один оборот головки.

Приём и обработка сигнала

Важную роль играет динамический диапазон приёмного тракта. Чтобы избежать перегрузки приёмника интенсивной засветкой от рассеивания в «ближней зоне», в системах дальнего радиуса действия применяют высокоскоростные механические затворы, физически блокирующие приёмный оптический канал. В устройствах ближнего радиуса со временем отклика менее микросекунды такой возможности нет.

Современное состояние и перспективы

Исследования атмосферы

Исследования атмосферы стационарными лидарами является наиболее массовой отраслью применения технологии. В мире развёрнуто несколько постоянно действующих исследовательских сетей (межгосударственных и университетских), наблюдающих за атмосферными явлениями.

Раннее оповещение о лесных пожарах

Лидар, размещённый на возвышенности (на холме или на мачте) и сканирующий горизонт, способен различать аномалии в воздухе, порождённые очагами пожаров. В отличие от пассивных инфракрасных систем, распознающих только тепловые аномалии, лидар выявляет дымы по аномалиям, порождаемым частицами горения, изменению химического состава и прозрачности воздуха и т. п.

Исследования Земли

Вместо установки лидара на земле, где принимаемый отражённый свет будет зашумлён из-за рассеяния в загрязнённых, нижних слоях атмосферы, «атмосферный» лидар может быть поднят в воздух или на орбиту, что существенно улучшает соотношение сигнал-шум и эффективный радиус действия системы.

Строительство и горное дело

Лидары, сканирующие неподвижные объекты (здания, городской ландшафт, открытые горные выработки), относительно дёшевы: так как объект неподвижен, то особого быстродействия от системы обработки сигнала не требуется, а сам цикл обмера может занимать достаточно долгое время (минуты).

Морские технологии

Измерение глубины моря . Для этой задачи используется дифференциальный лидар авиационного базирования. Красные волны почти отражаются поверхностью моря, тогда как зелёные частично проникают в воду, рассеиваются в ней, и отражаются от морского дна. Технология пока не применяется в гражданской гидрографии из-за высокой погрешности измерений и малого диапазона измеряемых глубин.

Поиск рыбы . Аналогичными средствами можно обнаруживать признаки косяков рыбы в приповерхностных слоях воды. Специалисты американской государственной лаборатории ESRL утверждают, что поиск рыбы лёгкими самолётами, оборудованных лидарами, как минимум на порядок дешевле, чем с судов, оборудованных эхолотами.

Спасение людей на море . В 1999 ВМС США запатентовали конструкцию авиационного лидара, применимого для поиска людей и человеческих тел на поверхности моря; принципиальная новизна этой разработки - в применении оптического маскирования отражённого сигнала, снижающего влияние помех.

Разминирование . Обнаружение мин возможно с помощью лидаров, непосредственно погруженных в воду (например, с буя, буксируемого катером или вертолётом), однако не имеет особых преимуществ по сравнению с активными акустическими системами (сонарами).

На транспорте

Определение скорости транспортных средств . В Австралии простейшие лидары используются для определения скорости автомобилей - так же, как и полицейские радары. Оптический «радар» существенно компактнее традиционного, однако менее надёжен в определении скорости современных легковых автомобилей: отражения от наклонных плоскостей сложной формы «запутывают» лидар.

Беспилотные транспортные средства . В 1987-1995 годах в ходе проекта EUREKA Prometheus, стоившего Европейскому союзу более 1 млрд долларов, были выработаны первые практические разработки беспилотных автомобилей. Наиболее известный прототип, VaMP (разработчик - Университет бундесвера в Мюнхене) не использовал лидары из-за недостатка вычислительной мощности тогдашних процессоров. Новейшая их разработка, MuCAR-3 (2006), использует единственный лидар кругового обзора, поднятый высоко над крышей машины, наравне с направленной мультифокальной камерой обзора вперёд и инерциальной навигационной системой.

Промышленные и сервисные роботы . Системы машинного зрения ближнего радиуса действия для роботов, основанные на сканирующем лидаре IBM, формируют цилиндрическую развёртку с углом охвата горизонта 360° и вертикальным углом зрения до +30..-30°. Собственно дальномер, установленный внутри сканирующей оптической головки, работает на постоянном излучении малой мощности, модулированном несущей частотой порядка 10 МГц. Расстояние до целей (при несущей 10 МГц - не более 15 м) пропорционально сдвигу фаз между опорным генератором, модулирующим источник света, и ответным сигналом.

Ru-Cyrl 18- tutorial Sypachev S.S. 1989-04-14 [email protected] Stepan Sypachev students

Всё ещё не понятно? – пиши вопросы на ящик


Научно-исследовательская работа студента (УНИРС) по теме:

«Зеркальные схемы лидарных объективов»

Санкт-Петербург

Введение

1. Принцип действия лидара

2. Устройство лидара

3. Оптические схемы объективов лидаров

3.1 Объектив Ньютона

3.2 Объектив Кассегрена

3.3 Объектив Грегори

Заключение

Введение

Термин “лидар” является аббревиатурой английского выражения light identification, detection and ranging (обнаружение и определение дальности с помощью света).

Лидар - технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах.

Как прибор, лидар представляет собой оптический локатор для дистанционного зондирования воздушных и водных сред. Также к лидарам относят оптические локаторы, которые позволяют дистанционно получать информацию о твердых объектах.

Лидары востребованы и пользуются популярностью благодаря достоинствам используемых в них лазерах:

· Когерентность излучения

· Малая длина волны излучения и, как следствие, малые потери из-за расходимости

· Мгновенная мощность излучения

Совокупность этих свойств делает использование лидара незаменимым на дистанциях от сотен метров до нескольких километров.

1. Принцип действия лидара

Импульсное излучение лазера посылается в атмосферу. Затем, рассеянное атмосферой в обратном направлении, излучение собирается телескопом и регистрируется фотоприемником с последующей оцифровкой сигналов.

импульсный лидар телеобъектив оптический

Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени, необходимый для возврата импульса. Свет движется с постоянной и известной скоростью, поэтому лидар может вычислить расстояние между ним и цели с высокой точностью.

Существуют две основные категории импульсных лидаров: микроимпульсные и высокоэнергетические системы.

Микроимпульсные лидары работают на более мощной компьютерной технике с большими вычислительными возможностями.

Эти лазеры меньшей мощности и классифицируются как "безопасные для глаз", что позволяет использовать их практически без особых мер предосторожности.

Лидары с большой энергией импульса в основном применяются для исследования атмосферы, где они часто используются для измерения различных параметров атмосферы, таких как высота, наслоение и плотность облаков, свойства частиц облака, температуру, давление, ветер, влажность и концентрацию газов в атмосфере.

2 . Устройство лидара

Большинство лидаров состоит из трех частей:

· Передающая часть

· Приемная часть

· Система управления

Передающая часть (а) лидара содержит источник излучения - лазер и оптическую систему для формирования выходного лазерного пучка, т.е. для управления размером выходного пятна и расходимостью пучка.

В абсолютном большинстве конструкций излучателем служит лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и длины волн:

1550 нм -- инфракрасное излучение, невидимое ни глазу человека, ни типичным приборам ночного видения. Глаз не способен сфокусировать эти волны на поверхности сетчатки, поэтому травматический порог для волны 1550 существенно выше, чем для более коротких волн. Однако риск повреждения глаз на деле выше, чем у излучателей видимого света -- так как глаз не реагирует на ИК излучение, то не срабатывает и естественный защитный рефлекс человека

1064 нм -- ближнее инфракрасное излучение неодимовых и иттербиевых лазеров, невидимое глазу, но обнаружимое приборами ночного видения

532 нм -- зелёное излучение неодимового лазера, эффективно «пробивающее» массы воды

355 нм -- ближнее ультрафиолетовое излучение

Приёмная часть (б) состоит из объектива (телескоп), спектрального и/или пространственных фильтров, поляризационного элемента и фотодетектора. Излучение, отраженно-рассеянное от исследуемого объекта, концентрируется приемной оптикой (телескопом), а затем проходит через анализатор спектра. Этот прибор служит для выделения интервала длин волн, в котором проводятся наблюдения, и, следовательно, для отсечки фонового излучения на других длинах волн. Анализатор может представлять собой либо сложный, тщательно настраиваемый моно- или полихроматор, либо набор узкополосных фильтров, включая фильтр отсечки излучения на длине волны лазерного передатчика.

Излучатель и приемный блок могут быть далеко разнесены друг от друга или выполнены в едином блоке, что в последние годы является обычным. Оси излучателя и приемника могут быть совмещены (коаксиальная схема) или разнесены (биаксиальная схема).

Система управления(в) выполняет следующие задачи:

ѕ Управление режимом работы лидара;

ѕ Управление частотой зондирующего излучения лазера;

ѕ Измерение энергии излучения в выходящем и принимаемом двухчастотном лазерном пучке на обеих частотах;

ѕ Обработка результатов, т.е. получение спектральных характеристик атмосферы, определение наличия и концентраций примесей по имеющимся в базе данных компьютера «спектральным портретам» молекул;

ѕ Управление системой наведения лидара на исследуемый объект.

В своем исследовании я решил подробно рассмотреть схемы объективов, используемых в различных лидарах.

3 . Оптические схемы объективов лидаров

Обратный сигнал от исследуемого объекта должен быть перехвачен приемным объективом лидара, отфильтрован (пространственно и спектрально) и направлен на чувствительную площадку фотоприемника. Все это должно быть сделано с максимальной эффективностью, без значительных потерь полезного светового сигнала, собранного объективом, и с максимальным подавлением всех помех, зашумляющих сигнал. Проследим прохождение полезного сигнала через приемную систему и рассмотрим отдельно каждый элемент этой системы.

Лазер освещает на объекте пятно, размер которого определяется расходимостью пучка 2 и расстоянием до объекта R: D=2Rtg2R. Часть отраженного и рассеянного в обратном направлении излучения собирается объективом, как показано на рис.: (лазер и приемный объектив соосны).

Показаны только крайние лучи пучков от точек в пятне, попадающих в объектив. При больших расстояниях лучи от точки практически параллельны друг другу. Назначение объектива - собрать достаточное количество света от пятна и спроецировать пятно на фотоприемник. Поэтому основными параметрами объектива являются светособирающая площадь, фокусное расстояние и поле зрения. Для космических лидаров, когда расстояние до исследуемых слоев атмосферы или земли достигает сотен километров, необходимо использовать объективы с большим диаметром 1…3 м и даже больше, чтобы собрать достаточно света, особенно при работе в режимах комбинационного рассеяния или дифференциального поглощения. Диаметр d и фокусное расстояние f" определяют светосилу объектива (относительное отверстие d/f"). Чем светосильнее система, тем меньше размер изображения, которое она формирует. Поле зрения объектива определяется углом, под которым луч от крайней точки пятна проходит через центр входного зрачка объектива (на рис.). Размер изображения (не более размера фотоприемника), эквивалентное фокусное расстояние (с учетом дополнительных перепроецирующих элементов в спектральном блоке приемника) и угол поля зрения связаны соотношением 2a = 2f"tg, которое позволяет выбрать параметры конкретных схем и подобрать необходимые элементы. Во многих случаях пятно проецируется не на фотоприемник непосредственно, а в плоскость полевой диафрагмы (первичное изображение), которая ограничивает поле зрения объектива. Регулируя размеры полевой диафрагмы, можно изменять эффективный размер пятна, проецируемого на фотоприемник. Другими словами, она позволяет менять пространственное разрешение измерений, а также уменьшать шумовую засетку от многократно рассеянного света. Перепроецирование первичного изображения также является способом борьбы с рассеянным внутри объектива светом. Когда полевая диафрагма имеет максимальный размер, производят взаимную юстировку лазера и приемного объектива лидара (по максимуму принятого сигнала). При измерениях диафрагма имеет минимальный размер. Диафрагма обычно бывает ирисовая или в виде диска с отверстиями разного диаметра.

Поскольку лидар работает с удаленными объектами, объектив должен строить изображение практически из бесконечности на конечное расстояние (в фокальной плоскости). Т.е. используются телеобъективы. Оптический расчет телеобъектива производят с учетом того, что аберрационное размытие края изображения должно быть минимальным или приемлемым с точки зрения световых потерь (виньетирование полевой диафрагмой). В системах типа дальномеров, сканеров, батиметров диаметр объектива небольшой - от 15 до 150 мм. Поэтому объективы обычно линзовые.

Объективы, используемые в лидарах:

· Зеркальные (рефлекторы) - используют в качестве светособирающего элемента зеркало.

· Зеркально - линзовые (катадиоптрические) - в качестве оптических элементов используются и зеркала, и линзы. Стоит отметить, что линзы по размеру сравнимы с главным зеркалом и служат для коррекции формируемого им изображения.

Зеркала можно сделать облегченными, что важно для авиационных и особенно космических систем. Зеркальные системы строят по классическим схемам телескопов: Ньютона), Грегори и Кассегрена. После первичного фокуса условно приведен линзовый объектив, что означает наличие некоторой дополнительной оптики в приемной системе. Зеркальные системы всегда имеют центральное экранирование, даже в схеме Ньютона, в которой в фокусе на оси размещен приемник. При небольших полях зрения в единицы угловых секунд и малых относительных отверстиях (d/f" менее 1:10) вместо параболоида в схеме Ньютона используют сферу, что предпочтительно из экономических соображений. Из-за невысоких требований к качеству изображения (надо только собрать энергию) иногда удается заменить вторичное гиперболическое зеркало на сферическое. Возможны также варианты схемы типа Кассегрена с главным сферическим зеркалом и вторичным асферическим зеркалом высокого порядка. Такие схемы полезны для космических лидаров с большими телескопами.

Варианты взаимного расположения лазера и приемного телескопа:

В первой схеме для совмещения оптических осей используется тыльная поверхность диагонального плоского зеркала. Во второй схеме приемный телескоп используется и как формирующий, что требует ужесточения требований к его качеству (иначе лазерный пучок сильно разойдется). Кроме того, в ней неизбежны потери из-за использования светоделителя. В третьей схеме используются отверстия в главном и диагональном (или вторичном) зеркалах. Центральные зоны всегда нерабочие. Используют также схемы, в которых оси лазера и телескопа не совмещены - параллельны или взаимно наклонены. Такие схемы не позволяют максимально эффективно использовать энергию лазерного пучка, но позволяют избавиться от яркого пятна на оси (почти нулевое поле зрения), которое может вызвать перенасыщение приемника. При энергетических расчетах следует учитывать гауссово распределение энергии в лазерном пучке

3.1 Объектив Ньютона

Данная схема была изобретена Исааком Ньютоном в 1668 году. Здесь главное (параболическое) зеркало направляет излучение на небольшое плоское диагональное зеркало, расположенное вблизи фокуса. Оно, в свою очередь, отклоняет пучок излучения за пределы трубы, где он попадает на приемное устройство.

Данная схема обладает минимальным количеством оптических элементов, что обуславливает простоту юстировки, невысокие требования к обработке зеркал и невысокую стоимость изготовления. Главное зеркало в силу своего большого размера требует времени на термостабилизацию. Также требуется периодическая подстройка зеркал, склонная утрачиваться при транспортировке и в процессе эксплуатации. Система несвободна от аберрации комы.

Объектив Ньютона используется во многих лидарах, рассмотрим некоторые из них:

1) Многоволновый рамановский лидар MRL-400

В основу работы этого лидара положено явление комбинационное рассеяния света (эффект Рамана) -- неупругое рассеяние оптического излучения на молекулах вещества (твёрдого, жидкого или газообразного), сопровождающееся заметным изменением частоты излучения. В спектре рассеянного излучения появляются спектральные линии, которых нет в спектре первичного (возбуждающего) света. Число и расположение появившихся линий определяется молекулярным строением вещества.

Излучение лазера телескопируется внеосевым параболическим зеркальным коллиматором. Лазер вместе с коллиматором крепится на приемном телескопе, что позволяет проводить измерения под любым углом к горизонту.

структура лидара MRL-400

Источник излучения: Nd:YAG лазер Quantel Brilliant с генератором третьей гармоники

Энергия в импульсе: 300/300/200 мДж - 1064/532/355 нм

Частота повторения: 10 Гц

Внеосевой параболический зеркальный коллиматор с коэффициентом увеличения 5. Диэлектрические зеркальные покрытия обеспечивают работу коллиматора на длинах волн 355, 532, 1064 нм.

Телескоп Ньютона с апертурой 400 мм и фокусным расстоянием 1200 мм.

2) Многоволновый аэрозольный лидар PL-200

структура лидара PL-200

Источник излучения: Nd:YAG лазер с генератором третьей гармоники.

Энергия на длине волны 355 нм: 70 мДж

Частота повторения: 25 Гц

Расходимость пучка: < 1 мрад

Коллиматор: Внеосевой параболический коллиматор с диэлектрическими покрытиями и коэффициентом увеличения 5 предназначен для одновременного телескопирования излучаемых длин волн (1064, 532, 355 нм).

В лидаре используется телескоп Ньютона с апертурой 300 мм. Главное зеркало является параболическим с фокальным расстоянием 970 мм.

3.2 Объектив Кассегрена

Схема была предложена Лореном Кассегреном в 1672 году. Главное зеркало большего диаметра (вогнутое; в оригинальном варианте параболическое) отбрасывает излучение на вторичное выпуклое меньшего диаметра (обычно гиперболическое). Вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Традиционный рефлектор Кассегрена сложен в производстве (сложные поверхности зеркал - парабола, гипербола), а также имеет недоисправленную аберрацию комы. Последний недостаток исправлен в различных модификациях схемы Кассегрена.

Из зеркальных объективов построенный по схеме Кассегрена пользуется наибольшей популярностью благодаря сочетанию компактности и большого фокусного расстояния.

Рассмотрим некоторые лидары, в которых используется приёмный телескоп, построенный по схеме Кассегрена:

1) Стационарный лидарный комплекс МВЛ-60

Многоволновой лидар МВЛ-60 предназначен для оперативного дистанционного анализа характеристик атмосферного аэрозоля и облачных образований в атмосфере с помощью лазера, работающего на длинах волн 1064 (ИК), 532 (зеленый) и 355 (УФ) нм.

Приемная антенна лидара представляет собой телескоп, чаще всего зеркальный, построенный обычно по схеме Ньютона или Кассегрена. В телескопе лидара МВЛ-60 с диаметром главного параболического зеркала 60 см реализованы обе эти схемы.

При работе в качестве приемной антенны лидара в телескопе реализуется схема Кассегрена, когда принятый отраженный сигнал лазера попадает вначале на главное параболическое зеркало, затем на вторичное гиперболическое зеркало, а далее через отверстие в центре параболического зеркала в блок анализатора, где затем разводится по разным фотоприемникам и регистрируется компьютером.

При работе в качестве обычного астрономического прибора в телескопе реализуется схема Ньютона: на оптическую ось главного параболического зеркала вводится плоское зеркало, при помощи которого принятое главным зеркалом изображение выводится под углом 90 град. вдоль поворотной оси телескопа. В этом фокусе Ньютона можно поместить окуляр либо видеокамеру и получать изображения объектов звездного неба.

2) Многоволновой лидар с Рамановскими каналами

Излучатель импульсный: Nd:YAG лазер

Длина волны:1064, 532 и 355 нм

Энергия импульса: 100/55/30 мДж

Длительность импульса: 10 нс

Частота посылки импульсов: 10 Гц

Диаметр лазерного пучка (расширенный): 50 мм

Расходимость лазерного излучения: 0.3 мрад

Телескоп (диаметр): Кассегрен, 300 мм первичное зеркало

Угол приема излучения: 0.6 - 5 мрад

Длины волн упругого рассеяния: 1064, 532, 532 деполяризация и 355 нм

Рамановские длины волн: 387, 407, 607 нм

3 . 3 Объектив Грегори

Данная схема была изобретена Джеймсом Грегори в 1663 году. В системе Грегори излучение от главного вогнутого параболического зеркала направляется на небольшое вогнутое эллиптическое зеркало, которое отражает пучок в фотоприемное устройство, помещённое в центральном отверстии главного зеркала. Наличие вторичного зеркала удлиняет фокусное расстояние и тем самым даёт возможность применять большие увеличения.

Размер приемного телескопа, построенного по схеме Грегори, получается больше, чем телескоп Ньютона и почти вдвое больше, чем объектив Кассегрена, что увеличивает экранирование, усложняет юстировку и её сохранность, транспортировку и эксплуатацию в целом.

Данная схема не получила такого распространения, как схемы Ньютона и Кассегрена, так как при прочих равных ее недостатки более существенны, и используется в некоторых специфических случаях.

Заключение

В процессе изучения зеркальных объективов, используемых в лидарах, и сравнения между собой различных схем, я сделал следующий вывод:

Зеркальные объективы имеют ряд преимуществ (по сравнению с линзовыми):

ѕ Высокая светосила и разрешающая способность

ѕ Отсутствие хроматических аберраций у зеркал

ѕ Высокий коэффициент светопропускания

ѕ При сравнительно несложной конструкции зеркальных систем можно получить достаточно совершенную коррекцию сферической аберрации

ѕ Зеркальные системы не содержат преломляющих поверхностей и поэтому удобны для использования в ИК и УФ областях спектра

Но кроме преимуществ зеркальные объективы имеют и недостатки:

ѕ Сложность изготовления и контроля асферических поверхностей зеркал

ѕ Сложность юстировки зеркальных систем

ѕ Сложности, связанные с использованием больших зеркал (влияние погодных условий, необходимость термостабилизации)

ѕ Зеркальные системы, как правило, имеют большую кому, что уменьшает полезное поле системы. Данный недостаток устраняют применением зеркально - линзовых схем.


Подобные документы

    Призменный монокуляр: понятие, назначение, особенности конструкции. Рассмотрение оптической схемы монокуляров с призменными системами О. Малафеева, основные элементы: объектив, окуляр. Этапы аберрационного расчета окуляра с призмой в обратном ходе лучей.

    курсовая работа , добавлен 18.01.2013

    Габаритный расчет оптической системы прибора. Обоснование компонентов микроскопа. Исследование оптический системы объектива на ЭВМ. Расчет конструктивных параметров. Числовая апертура объектива в пространстве. Оптические параметры окуляра Гюйгенса.

    курсовая работа , добавлен 19.03.2012

    Фотоаппарат как оптический прибор. Фокусное расстояние фотообъектива. Поле зрения фотообъектива. Светосила объектива. Просветляющие покрытия. Стандартный ряд относительных отверстий. Разрешающая способность фотообъектива и гиперфокальное расстояние.

    презентация , добавлен 30.01.2015

    Многообразие рынка оптических приборов. Методы контрастирования изображения. Предметные и покровные стекла. Устройства защиты объектива. Система призм и зеркал. Счетные камеры и измерительные приспособления. Современные прямые металлургические микроскопы.

    реферат , добавлен 27.11.2014

    Идеальная оптическая система. Расчет призмы, выбор окуляра. Осесимметричная и пространственная оптическая система. Конструкционные параметры, аберрация объектив и призма. Расчет аберраций монокуляра. Выпуск чертежа сетки. Триора пространства предметов.

    контрольная работа , добавлен 02.10.2013

    Виды световых микроскопов, их комплектация. Правила использования и ухода за микроскопом. Классификация применяемых объективов в оптических приборах. Иммерсионные системы и счетные камеры световых микроскопов. Методы контрастирования изображения.

    реферат , добавлен 06.10.2014

    Роль электротехники в развитии судостроения. Функциональная схема управления асинхронным двигателем с короткозамкнутым ротором. Принцип работы электрической схемы вентилятора. Технология монтажа электрической схемы, используемые материалы и инструменты.

    курсовая работа , добавлен 12.12.2009

    Теоретический анализ основных контуров газонаполненного генератора импульсных напряжений, собранного по схеме Аркадьева-Мракса. Расчет разрядной схемы ГИН, разрядного контура на апериодичность. Измерение тока и напряжения ГИНа. Конструктивное исполнение.

    курсовая работа , добавлен 19.04.2011

    Выбор схемы генератора импульсов напряжения и общей компоновки конструкции. Расчет разрядного контура генератора, разрядных, фронтовых и демпферных сопротивлений, коммутаторов импульсной испытательной установки. Разработка схемы управления установкой.

    курсовая работа , добавлен 29.11.2012

    Понятие и сферы практического использования электронно-оптических преобразователей как устройств, преобразующих электронные сигналы в оптическое излучение или в изображение, доступное для восприятия человеком. Устройство, цели и задачи, принцип действия.

Введение

Термин “лидар” является аббревиатурой английского выражения light identification, detection and ranging (обнаружение и определение дальности с помощью света).

Лидар - технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах.

Как прибор, лидар представляет собой оптический локатор для дистанционного зондирования воздушных и водных сред. Также к лидарам относят оптические локаторы, которые позволяют дистанционно получать информацию о твердых объектах.

Лидары востребованы и пользуются популярностью благодаря достоинствам используемых в них лазерах:

· Когерентность излучения

· Малая длина волны излучения и, как следствие, малые потери из-за расходимости

· Мгновенная мощность излучения

Совокупность этих свойств делает использование лидара незаменимым на дистанциях от сотен метров до нескольких километров.

Принцип действия лидара

Импульсное излучение лазера посылается в атмосферу. Затем, рассеянное атмосферой в обратном направлении, излучение собирается телескопом и регистрируется фотоприемником с последующей оцифровкой сигналов.

импульсный лидар телеобъектив оптический

Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени, необходимый для возврата импульса. Свет движется с постоянной и известной скоростью, поэтому лидар может вычислить расстояние между ним и цели с высокой точностью.

Существуют две основные категории импульсных лидаров: микроимпульсные и высокоэнергетические системы.

Микроимпульсные лидары работают на более мощной компьютерной технике с большими вычислительными возможностями.

Эти лазеры меньшей мощности и классифицируются как "безопасные для глаз", что позволяет использовать их практически без особых мер предосторожности.

Лидары с большой энергией импульса в основном применяются для исследования атмосферы, где они часто используются для измерения различных параметров атмосферы, таких как высота, наслоение и плотность облаков, свойства частиц облака, температуру, давление, ветер, влажность и концентрацию газов в атмосфере.

Устройство лидара


Большинство лидаров состоит из трех частей:

· Передающая часть

· Приемная часть

· Система управления

Передающая часть (а) лидара содержит источник излучения - лазер и оптическую систему для формирования выходного лазерного пучка, т.е. для управления размером выходного пятна и расходимостью пучка.

В абсолютном большинстве конструкций излучателем служит лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и длины волн:

1550 нм -- инфракрасное излучение, невидимое ни глазу человека, ни типичным приборам ночного видения. Глаз не способен сфокусировать эти волны на поверхности сетчатки, поэтому травматический порог для волны 1550 существенно выше, чем для более коротких волн. Однако риск повреждения глаз на деле выше, чем у излучателей видимого света -- так как глаз не реагирует на ИК излучение, то не срабатывает и естественный защитный рефлекс человека

1064 нм -- ближнее инфракрасное излучение неодимовых и иттербиевых лазеров, невидимое глазу, но обнаружимое приборами ночного видения

532 нм -- зелёное излучение неодимового лазера, эффективно «пробивающее» массы воды

355 нм -- ближнее ультрафиолетовое излучение

Приёмная часть (б) состоит из объектива (телескоп), спектрального и/или пространственных фильтров, поляризационного элемента и фотодетектора. Излучение, отраженно-рассеянное от исследуемого объекта, концентрируется приемной оптикой (телескопом), а затем проходит через анализатор спектра. Этот прибор служит для выделения интервала длин волн, в котором проводятся наблюдения, и, следовательно, для отсечки фонового излучения на других длинах волн. Анализатор может представлять собой либо сложный, тщательно настраиваемый моно- или полихроматор, либо набор узкополосных фильтров, включая фильтр отсечки излучения на длине волны лазерного передатчика.

Излучатель и приемный блок могут быть далеко разнесены друг от друга или выполнены в едином блоке, что в последние годы является обычным. Оси излучателя и приемника могут быть совмещены (коаксиальная схема) или разнесены (биаксиальная схема).

Система управления(в) выполняет следующие задачи:

ѕ Управление режимом работы лидара;

ѕ Управление частотой зондирующего излучения лазера;

ѕ Измерение энергии излучения в выходящем и принимаемом двухчастотном лазерном пучке на обеих частотах;

ѕ Обработка результатов, т.е. получение спектральных характеристик атмосферы, определение наличия и концентраций примесей по имеющимся в базе данных компьютера «спектральным портретам» молекул;

ѕ Управление системой наведения лидара на исследуемый объект.

В своем исследовании я решил подробно рассмотреть схемы объективов, используемых в различных лидарах.


© 2024, leally.ru - Твой гид в мире компьютера и интернета