Основные виды аналоговой модуляции. Узкополосные случайные процессы

Первый тип искажений сравнительно легко устраним, поскольку в технологии CDMA предусмотрены возможности многопользовательского детектирования и сложения разнесенных сигналов с помощью Rake-приемника (см. «Сети», 2000, б№ 8, с. 20 и б№ 9, с. 22). С помехами от внешних источников борются при помощи расширения спектра передаваемого сигнала. Теоретически, увеличение базы сигнала (B) позволяет уменьшить помеху до сколь угодно малого уровня.

Системам на базе CDMA присуще одно важное свойство: способность эффективно бороться с помехами, особенно узкополосными. Именно благодаря этому технология CDMA долгие годы применялась преимущественно в военных системах, обычно работающих в сложной помеховой обстановке и условиях радиоподавления.

Методы борьбы с помехами принципиально отличаются от используемых при устранении многолучевых искажений. Структура мешающих многолучевых сигналов заведомо известна, и это во многом облегчает задачу; структура внешних помех не известна заранее, а следовательно, полностью их подавить практически невозможно. И хотя сегодня существует множество способов устранения отдельных видов помех, в целом задача борьбы с ними еще не решена. Кроме того, нет универсального метода, который был бы одинаково эффективен при подавлении различных помех (см. ).

В настоящее время можно выделить несколько основных способов борьбы с помехами:

  • увеличение энергетического потенциала радиолинии (мощности передатчика, коэффициента усиления антенны);
  • снижение уровня собственных шумов приемника;
  • снижение уровня внешних помех на входе приемника за счет их компенсации;
  • применение совместной обработки помехи и сигнала, основанной на определении различий между полезным сигналом и помехой;
  • повышение отношения сигнал/помеха за счет использования помехозащитных методов модуляции и кодирования.

Развитие технических решений, обеспечивающих защиту от помех, идет в направлении комплексного применения указанных выше и других методов, однако реализация таких решений требует определенного усложнения аппаратуры, а значит – увеличения ее стоимости. Поэтому на практике не стремятся создавать устройства с предельно достижимой (потенциальной) помехоустойчивостью. Чаще всего конечный продукт представляет собой компромиссный вариант, оптимизированный по критерию «стоимость – эффективность». Сопоставление реальной и потенциальной помехоустойчивости позволяет судить об эффективности того или иного метода доступа, а также целесообразности его дальнейшего совершенствования.

Основным показателем качества передачи информации в условиях помех, по которому сравнивают различные методы цифровой модуляции и кодирования информации, является безразмерная величина – отношение сигнал/шум, определяемое как h 2 =E b /N о (где E b – энергия на один бит информации, а N o – спектральная плотность мощности шума).

Как известно, пропускная способность CDMA-каналов ограничена уровнем взаимных помех активных абонентов. Это означает, что существует обратно пропорциональная зависимость между числом активных абонентов системы и отношением сигнал/шум. Чем больше абонентов работает в системе, тем меньше значение данного отношения и, соответственно, «запас» помехозащищенности. Безусловно, существует пороговое значение, ниже которого опускаться нельзя и которое определяет предельную дальность связи при заданной мощности передатчика. Скажем, для системы, построенной на базе стандарта cdmaOne, такое значение равно 6–7 дБ, что существенно ниже, чем в других радиосистемах (GSM – 9 дБ, DECT – 12 дБ).

Решающую роль в борьбе с помехами играет выбор структуры сигналов (они должны обладать хорошими взаимокорреляционными свойствами) и оптимального способа приема. Поэтому при планировании структуры сигналов стремятся к тому, чтобы они как можно больше отличались друг от друга, – тогда действующая в системе помеха будет в наименьшей степени влиять на полезный сигнал. Приемник же должен максимально очистить сигнал от искажений, вызванных воздействием помех. Очевидно, что используются различные способы реализации указанных требований, поэтому существующие системы по-разному реагируют на отдельные виды помех.

В случае применения классического метода расширения спектра, основанного на технологии DS-CDMA, помехозащищенность в условиях воздействия шумовых помех с равномерной спектральной плотностью не зависит от типа используемых сигналов, а полностью определяется базой сигнала и отношением сигнал/помеха. Грубо говоря, в системах DS-CDMA в целях подавления помех их мощность «размазывают» по широкой полосе частот.

Если распределение помехи подчиняется нормальному случайному закону с равномерной спектральной плотностью («белый шум»), то различные элементы шумоподобного сигнала (ШПС) «поражаются» в одинаковой степени. Такой вид помех для широкополосных систем особо опасен, причем чем больше мощность помехи, тем сильнее подавляется полезный сигнал.

В наименьшей степени широкополосный сигнал DS-CDMA страдает от узкополосных помех. Одночастотная гармоническая помеха способна исказить сигнал лишь в относительно узкой полосе частот, а полезная информация полностью восстанавливается по «неповрежденным» участкам спектра. Любая сосредоточенная в спектре помеха на выходе корреляционного приемника преобразуется в широкополосную и эффективно подавляется (благодаря тому, что по форме она не соответствует полезному сигналу; см. «Сети», 2000, б№ 5, с. 59, рис. 2). Конечно, в этом случае происходит незначительное снижение отношения сигнал/шум, однако оно настолько мало, что положительный эффект несоизмерим с потерями качества, которые имеют место при использовании других классических методов доступа (TDMA или FDMA).

Таким образом, если помехи имеют распределение, отличное от нормального, то элементы шумоподобного сигнала начинают искажаться по-разному – одни сильнее, а другие слабее. В этой ситуации оптимальный приемник позволит увеличить значение отношения сигнал/помеха. Теоретически доказано, что если известна структура помехи, для нее всегда можно создать такой оптимальный приемник, который обеспечит максимальную величину отношения сигнал/помеха. На практике же все несколько сложнее. Вид помехи не известен заранее, а следовательно, приемник должен «уметь» эффективно бороться с любыми типами помеховых воздействий.

Эффективность работы приемника в условиях помех зависит от выбора методов модуляции, кодирования и схемы приемника. Вопросы кодирования и перемежения символов являются самостоятельными направлениями разработок, поэтому остановимся подробнее лишь на проблемах приема сигналов в условиях помех.

Наиболее эффективно обеспечивает подавление помех так называемый адаптивный приемник. В общем случае он состоит из L каналов (где L равно числу элементов CDMA-сигнала), каждый из которых имеет согласованный фильтр, осуществляющий оптимальный прием одного символа конкретного сигнала (рис.1). Отсчеты принятого сигнала смещаются во времени (за счет создания задержки) таким образом, чтобы совместить их в момент окончания сигнала. Наличие схемы выбора весовых коэффициентов с учетом степени «повреждения» тех или иных элементов ШПС позволяет приемнику адаптивно подстраиваться под помеху, «максимизируя» тем самым величину сигнал/помеха.

С целью подавления импульсных помех на входе приемника используется широкополосный фильтр с полосой пропускания, не меньшей ширины спектра полезного сигнала. Следующий за ним ограничитель предназначен для нейтрализации действия импульсных помех.

Степень помехозащищенности, которую обеспечивает адаптивный приемник, зависит от соотношения числа «пораженных» элементов сигнала и их общего числа. Заметим: если широкополосная помеха одинаковым образом воздействует на все элементы сигнала, то все весовые коэффициенты равны между собой и для приема достаточно одного фильтра, согласованного с сигналом. Таким образом, адаптивный приемник является инвариантным к действию помех, а его эффективность тем выше, чем сильнее спектр мощности помехи отличается от равномерного. Другими словами, любой «провал» в спектре помехи позволяет увеличить значение отношения сигнал/шум за счет изменения весовых коэффициентов сигнала.

Высокая помехозащищенность систем со сложными сигналами обусловлена тем, что сигнал может накапливаться в согласованном фильтре оптимальным образом: его элементы складываются синфазно, а элементы помехи – некогерентно. Вообще говоря, адаптивный приемник способен «извлекать» полезный сигнал из «смеси» шума и помехи, во много раз превосходящей его по мощности, а предел помехозащищенности обычно ограничен собственными шумами приемника.

Однако в прямом и обратном каналах связи помехоустойчивость сигнала DS-CDMA различна. Наиболее сложная ситуация возникает в обратном канале, когда на вход приемника базовой станции (БС) помимо собственных шумов приемника и внутрисистемных помех от активных абонентов (помех многостанционного доступа) действуют еще и внешние помехи (см. врезку ).

Чтобы проиллюстрировать вклад, который вносят активные абоненты других сот в общий помеховый фон, обратимся к рис. 2. Здесь видно, как убывают взаимные помехи в зависимости от удаленности от какой-либо соты (при анализе подразумевалось, что все соты имеют одинаковые размеры, а абоненты равномерно размещены по территории, обслуживаемой сетью). Вклад соседних сот в общий помеховый фон обычно составляет около 36%. Столь высокий уровень обусловлен тем, что на практике имеет место частичное перекрытие диаграмм направленности антенн БС. Суммарный вклад от сот, не являющихся «соседями» данной (т.е. расположенных от нее через одну и далее), не превышает 4%. Наиболее высокий уровень взаимных помех (60%) создают абоненты, одновременно работающие в соте.

В прямом канале взаимные помехи создаются соседними базовыми станциями, а суммарная мощность этих помех пропорциональна числу БС. Считается, что благодаря синхронизации и выбору соответствующей структуры сигналов БС воздействие взаимных помех может быть сведено к нулю.

На отношение сигнал/шум для прямого канала влияет способ регулировки мощности передатчиков БС. При неавтоматической регулировке мощность передатчика БС не зависит от местоположения абонента мобильной станции. Наихудшая ситуация возникает, когда абонент находится на границе трех сот, т.е. когда уровни принимаемых от различных станций сигналов примерно одинаковы.

Подход к подавлению помех в системах FH-CDMA (рис. 3), использующих псевдослучайную перестройку частоты, несколько иной, чем в системах DS-CDMA. Напомним: в системах на базе FH-CDMA каждый информационный символ передается в виде комбинации из N частот, и на каждой из этих частот излучается свой шумоподобный сигнал. Кроме полезного сигнала конкретного пользователя (синий цвет), по системе передаются сигналы от других абонентов (красный цвет), а кроме того, на нее воздействуют узкополосная помеха fп (горизонтальная линия) и импульсная помеха в момент tп (вертикальная линия). Поскольку элемент полезного сигнала FH-CDMA занимает в каждый момент лишь сравнительно небольшую часть спектра, такой метод обеспечивает эффективное подавление как узкополосных, так и импульсных помех.

Помехи от абонентов собственной или соседних сот создают наибольший ущерб, если структура их сигналов одна и та же, а законы перестройки частоты различны. В этом случае возможно наложение сигналов от разных пользователей, что приводит к «поражению» отдельных частотных составляющих сигнала FH-CDMA. Степень помехозащищенности такой системы определяется отношением числа «непораженных» участков спектра к их общему числу. Очевидно, что чем шире полоса частот и больше набор используемых частот, тем меньше вероятность их совпадения и выше степень защищенности от помех.

Методы борьбы с помехами, основанные на структурных различиях сигнала и помехи
Селекция Характерные различия сигнала и помехи Методы подавления помех
Частотная Спектры смещены по частоте Фильтрация
Пространственная Разные направления приема Использование адаптивных антенн
По поляризации Разная поляризация (горизонтальная или вертикальная) Применение поляризационного фильтра
Фазовая Разные фазо-частотные характеристики Использование систем с фазовой автоподстройкой частоты
Временная Разные моменты появления сигнала и помехи Блокирование приемника на время действия мощных импульсных помех, ограничение входного сигнала по уровню (после полосового фильтра)

Классификация помех

Помехи весьма разнообразны по своему происхождению, типу и способу воздействия на систему, приемник и антенну (см. рисунок).

По происхождению они подразделяются на естественные (атмосферные, космические) и искусственные (индустриальные, от работающих передатчиков и др.). Помехи, создаваемые с помощью специальных устройств, относят к преднамеренным , а остальные виды считаются непреднамеренными . Первые из них получили широкое применение в военной технике (в зависимости от соотношения полос передатчиков помех и приемника радиостанции такие помехи подразделяются на заградительные, прицельные и др.).

Среди помех естественного происхождения наиболее опасны атмосферные, обусловленные электрическими процессами, энергия которых сосредоточена главным образом в области длинных и средних волн. Сильные помехи создаются также при работе промышленного и медицинского оборудования (их принято относить к индивидуальным). В настоящее время действуют жесткие нормы, ограничивающие уровень индустриальных помех, особенно если их источники расположены в больших городах или пригородах.

В зависимости от типа различают, скажем, аддитивные и мультипликативные помехи. Помеха считается аддитивной , если ее мешающее действие не зависит от наличия сигнала, и мультипликативной , если она возникает только при наличии сигнала. Примером аддитивной помехи является флуктуационной шум в радиоканале, образующийся в результате одновременной работы большого числа источников помех. Изменение коэффициента передачи при многолучевом распространении сигнала – результат воздействия мультипликативной помехи.

По соотношению ширины спектров помех и сигнала различают узкополосные и широкополосные помехи. Естественно, что одна и та же помеха по отношению к одному сигналу может быть узкополосной, а по отношению к другому – широкополосной.

Помехозащищенность системы зависит от так называемой восприимчивости к помехам ее основных элементов (антенны, приемника и др.). При этом обычно говорят о способе воздействия помехи на какой-либо элемент системы. Например, восприимчивость приемника обусловлена частотой и видом помехи. Наибольший ущерб наносят внутриканальные помехи (попадающие в рабочую полосу приемника), методы борьбы с которыми выбираются в зависимости от применяемых способов доступа и воздействия на сигнал. Помехи по соседнему каналу возникают вследствие нестабильности гетеродинов, недостаточной «чистоты» радиоволны и наличия других нежелательных излучений (на гармониках и субгармониках). Восприимчивость направленной антенны в значительной степени связана с направлением прихода сигнала (по главному, заднему или боковому лепестку).

Основные виды помех

Аддитивная (additive interference). Любая помеха, мешающее действие которой проявляется независимо от присутствия или отсутствия сигнала. При действии аддитивной помехи результирующий сигнал на входе приемника может быть представлен в виде суммы нескольких независимых составляющих – сигнальной и нескольких помеховых.

Атмосферные. 1. atmospheric noise. Помехи, обусловленные электрическими процессами в атмосфере (в основном грозовыми разрядами). Различают два вида атмосферных помех – импульсные (ближние грозы) и флуктуационный шум (дальние грозы). 2. precipitation interference. Помехи, возникающие при выпадении осадков в виде дождя, снега и т.п.

Внутриканальная (cochannel interference). Помеха, приводящая к снижению уровня полезного сигнала при воздействии мешающих сигналов иных станций, которые работают на той же или близкой частоте. В сотовых и транкинговых системах внутриканальные помехи образуются за счет влияния других зон, в которых используются те же рабочие частоты.

Внутрисотовая (intra-cell interferece). Помеха, обусловленная мешающим действием передатчиков абонентских станций, которые работают в зоне действия той же базовой станции.

Следящая (follow me interference). Преднамеренная помеха, предназначенная для подавления систем с быстрой перестройкой рабочей частоты.

Гармоническая (harmonic interference). Помеха, возникающая вследствие нежелательного излучения на частоте гармоники сигнала.

Дезинформирующая (spoof jamming). Преднамеренная помеха, при воздействии которой система остается работоспособной, но не обеспечивает передачи полезной информации.

Заградительная (barrage jamming, full-band jamming). Помехи, излучаемые в полосе частот, которая значительно шире полосы частот подавляемой станции. В качестве такой помехи может использоваться шум с равномерным спектром или сканируемая по частоте помеха.

Имитационная (smart jamming). Помеха, имеющая одинаковую с полезным сигналом структуру, что затрудняет ее обнаружение.

Импульсная (pulse or burst interference). Помеха малой длительности, которая в общем случае состоит из большого числа импульсов, (случайно распределяющихся по времени и амплитуде). К импульсным также относятся помехи от переходных процессов.

Индустриальные (man-made noise, man-made interference). Помехи, которые обусловлены работой различных электрических установок (медицинских, промышленных), а также систем зажигания автомобилей. Спектр побочных излучений обычно имеет импульсный характер, что связано с резкими изменениями тока в связи с контактными явлениями в электрических цепях.

Интермодуляционные (intermodulation interference). 1. Помехи, возникающие в приемнике, причиной которых может стать наличие более одного мешающего сигнала с интенсивностью, достаточной для проявления нелинейных свойств приемного тракта, или сложение мешающих сигналов с гармониками гетеродина. 2. Помехи, возникающие в передатчике при попадании на его вход мощных сигналов от близко расположенных передающих станций.

Космические (cosmic interference). Помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных обюектах.

Многочастотная (multitone interference). Помеха, состоящая из нескольких гармонических сигналов, обычно равномерного спектра.

Мультипликативная (multiplicative interference). Помеха, мешающее действие которой проявляется только при наличии сигнала.

От соседней зоны (adjacent cell interference). Помеха от передатчиков, расположенных в соседней зоне.

По боковому лепестку (sidelobe interference). Помеха, приходящая по любому направлению, кроме главного и заднего лепесков диаграммы направленности антенны.

По главному лепестку (main lobe interference). Помеха, поступающая по главному лепестку диаграммы направленности антенны.

По заднему лепестку (back-lobe interference). Любая помеха, приходящая по направлению, противоположному направлению главного лепестка диаграммы направленности антенны.

По зеркальному каналу (image interference). Помеха, попадающая в полосу побочного канала приема, который отстоит от несущей на величину первой промежуточной частоты.

По соседнему каналу (adjacent channel interference). Помеха от несущих частот других каналов, отстоящих от рабочего канала на шаг сетки частот (обычно 25 или 12,5 кГц). В англоязычной литературе этот термин обычно применяется с уточнениями, конкретизирующими источник помех: next-channel interference (помеха от последующего) и neighboring-channel interference (помеха от соседнего).

Преднамеренная (jamming). Радиопомеха, создаваемая специальными передатчиками для подавления работы средств связи и навигации.

Прицельная (spot jamming). Сосредоточенная преднамеренная помеха на несущей частоте полезного сигнала.

Ретранслируемая (repeat-back jamming). Преднамеренная помеха, образуемая путем переретрансляции исходного полезного сигнала с задержкой.

С расширенным спектром (spread spectrum). Помеха с равномерной спектральной плотностью мощности.

Сосредоточенная (spot). Помеха, мощность которой сосредоточена в очень узкой полосе частот – меньшей, чем спектр полезного сигнала, или соизмеримой с ним.

Структурная. Помеха, подобная по структуре полезным сигналам (т.е. состоящая из тех же элементов), но отличающаяся от них параметрами модуляции. К структурным помехам относятся внутрисистемные помехи имитационные и ретранслируемые.

Узкополосная (narrow-band interference). Помеха, спектр которой значительно уже ширины спектра полезного сигнала.

Флуктуационная (fluctuation noise, fluctuation interference). Помеха, которая представляет собой случайный нормально распределенный шумовой сигнал (Гауссовский шум).

Частично-заградительная (partial-band jamming). Заградительная помеха с частичным перекрытием рабочего диапазона частот подавляемой радиостанции.

Глава 13. OBPAEOTKA СИГНАЛОВ

В ПРИЕМНИКЕ

13.1. ОСНОВНЫЕ ФУНКЦИИ ПРИЕМНИКА

Условия приема . Исходя из особенностей передачи электрических сигналов по линиям электросвязи (см. ч. 3), можно считать, что в подавляющем большинстве случаев наблюдаются следующие условия приема:

1. Принятый сигнал из-за значительного ослабления линий связи (как проводных, так и радио) имеет весьма низкий уровень: 1 ... 10 мкВ в магистральной радиосвязи на метровых волнах, 10-" ...10-"4 Вт - в спутниковых каналах, - 50... - 55 дБо - ;

в канале тональной частоты кабельных линий и т. д.

2. На входе приемника, кроме полезного модулированного сигнала, всегда присутствуют помехи. Это не только внешние и внутренние шумы различного происхождения, но и сигналы посторонних -радиосредств в радиосвязи, других каналов многоканальной электросвязи, которые для заданного сигнала являются помехами. Суммарная мощность всех помех может в сотни и тысячи раз превосходить мощность полезного сигнала. Так, близко расположенный передатчик может наводить в антенне ЭДС до 0,1...05 В.

3. При организации приема всегда имеются предварительные (априорные) сведения о передаваемом сигнале. К ним относятся сведения о несущей частоте, виде модуляции, амплитуде, длительности, коде и т. д. Это весьма важное обстоятельство, так как

абсолютно неизвестный сигнал нельзя принять (как различить, чем сигнал отличается от помехи?).

Известные параметры сигнала используются в приемнике для лучшего отделения сигнала от помехи. Чем больше мы знаем о сигнале, тем совершенней могут быть методы приема. Однако сигнал, о котором заранее все знаем, никакой информации не несет.

Задача приема . В зависимости от вида и назначения системы связи при приеме сигналов возникают следующие основные задачи: 1) обнаружение сигналов, 2) различение сигналов и 3) восстановление сигналов.

При обнаружении сигналов задача сводится к получению ответа на вопрос, имеется на входе приемника сигнал или нет, точнее, имеются ли на входе сигнал плюс помеха или толькопомеха.

Это типичная задача радиолокации, она также имеет место в системах с пассивной паузой, когда при передаче элемента кодовой комбинации 0 сигнал отсутствует (пауза).

При передаче двух и более дискретных сигналов возникает задача не обнаружения, а различения сигналов . Здесь необходимо дать ответ на вопрос: какой из сигналов s>, или s 1 , или s 2 ,....., или s m имеется на входе? Ответ на этот вопрос определяется уже не свойствами каждого сигнала в отдельности, а их различием. Основное значение имеет степень отличия одного сигнала от другого. Естественно стремиться к тому, чтобы это отличие было значительным и устойчивым к воздействию помех. Этими соображениями руководствуются при выборе типа сигнала и вида модуляции.


Случай обнаружения можно рассматривать как частный случай различия двух сигналов, когда один из них тождественно равен нулю.

Задача восстановления первичного сигнала существенно отличается от задач обнаружения и различения сигналов. Она состоит в том, чтобы получить принятый первичный сигнал u пр (t),наименее отличающийся от переданного u(t), т. е. восстановить

форму переданного первичного сигнала. При этом переданный первичный сигнал и(t) заранее неизвестен, известно лишь, к какому классу он принадлежит (речевой, вещательный, телевизионный и др.) и некоторые его параметры. Задача восстановления

возникает и решается при передаче непрерывных (аналоговых) первичных сигналов и является более трудной, так как обычно от приемника требуется высокая точность восстановления.

Главные функции приемника . Условия приема требуют выполнения в приемнике следующих основных операций над принятым совместно с помехами сигналом: обработка, усиление, демодуляция. Эти главные функции приемника взаимосвязаны ме-

(жду собой и выполняются не обязательно в указанной выше последовательности.

Обработка принятого сигнала , под которой понимают процесс выделения сигнала из его смеси с помехами, является одной из важнейших функций приемника. Основная цель обработки - увеличение отношения сигнала к помехе. Только обеспечив превышение сигнала над помехой, можно его усиливать и демодулировать. Обработка сигналов обычно не сосредоточена в какой-то части приемника, а является неотрывной функцией всех его блоков и, как правило, сводится к тем или иным методам фильтрации.

Извлечение из принимаемого сигнала модулирующего первичного сигнала происходит в демодуляторе приемника . Однако неследует думать, что демодуляция всего лишь операция, обратнаямодуляции, выполняемая над пришедшим из канала модулированным сигналом. Эта простейшая обратная операция выделенияинформационного параметра переносчика осуществляется детектором.

Задача демодулятора является более широкой. В результате искажений и

воздействия помех пришедший к детектору сигнал может существенно отличаться от переданного. Для лучшего воспроизведения первичного сигнала принятый сигнал не

только детектируется, а также подвергается анализу с учетом всех априорных сведений о переданном сигнале, поэтому демодулятор, помимо детектора, содержит цепи последетекторной обработки.

Додетекторная обработка обычно осуществляется резонансными усилителями в радиоприемных устройствах различного на- значения, полосовыми фильтрами в аппаратуре многоканальной электросвязи, обеспечивающими необходимую частотную селекцию.

При приеме непрерывных первичных сигналов функцию последетекторной обработки выполняет фильтр нижних частот, дающий улучшение качества подачи детектированного сигнала к воспроизводящему устройству.

При приеме дискретных первичных сигналов в функцию приемника не входит восстановление формы переданного сигнала, поскольку она известна. В демодуляторе в результате анализа принятого сигнала должно быть принято решение, какой из стандарт

ных дискретных сигналов передавался. Это решение поступает к декодеру. Та часть демодулятора, которая осуществляет анализ параметров приходящих сигналов и принимает решение о переданном сигнале, называется решающим устройством (или решающей схемой). Для двоичных сигналов это обычно сравнивающее устройство, подключаемое к целям последетекторной обработки. Цель обработки состоит в таком преобразовании сигналов, чтобы они имели максимальное отличие от помех и друг от друга. Тогда уменьшается вероятность ошибочных решений.

Обобщенная структурная схема демодулятора, осуществляющего вышеприведенные операции над сигналами, приведена на рис. 13.1. В некоторых случаях при приеме дискретных сигналов детектор может отсутствовать. В этом случае в демодуляторе про водятся обработка и анализ дискретно-модулированных сигналов и по их различию принимается решение.

Рис. 13.1 Структурная схема обработки сигналов в демодуляторе: а – непрерывных сигналов; б – дискретных сигналов

Усиление сигналов до величин, при которых могут нормально работать детектор, решающее или воспроизводящее устройства, производится совместно с их обработкой фильтрацией. В настоящее время благодаря освоению транзисторов, микросхем, СВЧ и квантовых приборов особых трудностей в получении требуемого коэффициента усиления не возникает. Главное внимание при проектировании усилителей обращается на линейность АЧХ и ФЧХ в полосе частот сигнала, шумовые свойства и распределение усиления в канале связи.

Когерентный и некогерентный приемы . Любой модулированный сигнал при гармонической несущей характеризуется начальной фазой, которую можно учитывать или не учитывать при приеме. Если прием производится с учетом начальной фазы, то он называется когерентным; прием без учета фазы- некогерентный. Обычно сведения о начальной фазе принимаемого сигнала используются при детектировании.

Детектирование сигнала с учетом начальной фазы (когерентный прием) обеспечивает увеличение отношения сигнал-помеха на выходе детектора в 2 раза по сравнению с некогерентным приемом. Это объясняется тем, что на выходе когерентного детектора напряжение помехи пропорционально косинусу разности фаз сигнала и помехи ,. Составляющие помехи с ослабляются по косинусоидальному закону, а помехи с вообще не оказывают никакого мешающего действия на сигнал, поскольку cos() =0.

Цифро вая обработка . Развитие микроэлектроники и ЭВМ позволяет перейти от аналоговой к цифровой обработке сиг- налов, в первую очередь последетекторной. Для этого непрерыв- ный сигнал одним из способов преобразуется в цифровой (см. ф 16.2). Затем с помощью микропроцессора или специализирован- ной ЭВМ проводятся математические операции над числами. Это и есть цифровая обработка. При этом можно обеспечитывысокую ее точность и быструю адаптацию к изменяющимся внешним ус- ловиям (достаточно сменить программу действий).

Цифровая обработка.не только позволяет осуществлять традиционные операции обработки (фильтрация, интегрирование, частотное и временное разделение сигналов и др.), но и выполнять сложные, ранее трудно реализуемые методы разделения сигнала и помех. За ней будущее техники электросвязи.

13.2. ФИЛЬТРАЦИЯ НЕПРЕРЫВНЫХ СИГНАЛОВ

Оптимальный фильтр . Идея частотной фильтрации основана на отличии спектров полезного сигнала и помехи. При приеме непрерывных сигналов задачей приемника является восстановление формы переданного первичного сигнала. От фильтров обработки требуется не только подавление помехи (узкая полоса пропускания), но и неискаженная передача сигнала (широкая полоса пропускания). Какие же характеристики должен иметь фильтр с такими противоречивыми требованиями к нему?

Естественным является стремление разработчиков реализовать наилучший (оптимальный) фильтр. Общей оценкой качества передачи непрерывных сигналов является среднеквадратическая разность (ошибка) (1,5), поэтому оптимальным будет фильтр, минимизирующий ее.

Задача отыскания оптимального фильтра непрерывных сигналов по критерию минимума в начале 40-х годов была решена независимо выдающимися математиками нашего времени акад. А. Н. Колмогоровым и американским ученым Н.Винером. Найденный ими фильтр называют оптимальным линейным фильтром Колмогорова - Винера . Параметры фильтра определяются спектральными характеристиками сигнала и помех.

Передаточная амплитудно-частотная характеристика фильтра

(13.1)

где G s (), G n () - спектральные плотности мощности сигнала и

помехи соответственно. Фазочастотная характеристика при любых, сигналах и помехах должна быть линейной, поскольку только линейная ФЧХ обеспечивает отсутствие линейных искажений

Анализ АЧХ фильтра Колмогорова- Винер а.

В общем случае из (13.1) следует, что когда спектры сигнала и помехи полностью или частично перекрываются, коэффициент передачи оптимального фильтра уменьшается с увеличением спектра помехи. Тем самым в оптимальном фильтре создаются условия,

при которых подавление спектра помехи сопровождается возможно меньшим подавлением (искажением) спектра сигнала.

На практике в системах электросвязи при фильтрации непрерывных сигналов наиболее часто встречаются следующие случаи:

1. Спектры сигнала и помехи имеют примерно одинаковую интенсивность, но не перекрываются, т. е. для тех частот а, где спектральная плотность мощности сигнала G s () 0, помехи отсутствуют: G n () =0 и наоборот (рис. 13.2,a). Это типичный случай многоканальной электросвязи с частотным разделением каналов, радиосвязи, где помехами являются сигналы других каналов или посторонних радиостанций. Из (13.1) получим

В этом случае оптимальным оказывается идеальный полосовой (или низкочастотный) фильтр , полоса пропускания которогосовпадает с полосой, занимаемой сигналом. Физически этот результатлегко объясним: фильтр выделяет спектр сигнала и полностью подавляет спектр помехи. На выходе такого фильтра оказывается сигнал, полностью «очищенный» от помехи, что и тре-

Рис. 13.2 Амплитудно-частотная характеристика оптимального фильтра: а – спектры сигнала помехи не перекрываются; б – спектры сигнала и помехи перекрываются

буется для получения наилучшего качества восстановления сигнала.

2. Спектры сигнала и помехи перекрываются, но интенсивность (спектральная плотность мощности) помехи намного меньше сигнала, т. е. Такими помехами являются внутренние и внешние помехи типа белого шума в правильно спроектированных каналах связи, когда отношение сигнал-помеха много больше единицы. Тогда в знаменателе уравнения (13.1) значением G n () можно пренебречь и снова получить для Н опт () соотношение (13.2): оптимальным оказывается идеальный фильтр, описанный в п. 1.

3. Спектры сигнала и помехи перекрываются, но помеха является узкополосной по сравнению с сигналом, а ее спектральная плотность мощности намного превышает спектральную плотность мощности сигнала: Это случай воздействия на

сигнал мощных сосредоточенных помех (фон переменного тока 50 Гц, контрольные частоты в многоканальной электросвязи и др.). Из (13.1) следует, что

т. е. в таких случаях в тракт приемника, кроме идеального полосового фильтра, включается идеальный заграждающий фильтр, обеспечивающий подавление помехи в ее полосе (рис. 13.2,б).

Частотные фильтры систем связи . Из теории оптимальной фильтрации следует, что в большинстве случаев для наилучшего разделения сигнала и помехи требуются идеальные полосовые, низкочастотные или режекторные фильтры. Но из теории цепей известно, что идеальные фильтры практически нереализуемы, поэтому в системах передачи непрерывных сигналов используют фильтры с характеристиками, в той или иной степени приближающимися к идеальным. Требования к АЧХ как в полосе пропускания, так и в полосе задерживания обычно задаются ГОСТ на аппаратуру.

Находят применение следующие типы фильтров:

Баттерворта с максимально плоской амплитудно-частотной характеристикой в полосе пропускания;

Чебышева с равновеликими пульсациями амплитуды в полосе пропускания и монотонным затуханием в полосе задерживания либо с равновеликими пульсациями в полосе задерживания и максимально плоской характеристикой в полосе пропускания;

Гаусса (Бесселя) с линейной фазо-частотной характеристикой и некоторые другие.

Традиционно в аппаратуре связи использовались и продолжают использоваться LC-фильтры. Эти фильтры достаточно дешевы, легко перестраиваются по частоте, обладают малыми собственными потерями и, соответственно, малыми собственными шумами. Это позволяет применять их во входных цепях малошумящих усилителей.

В проводных системах связи фильтры обычно реализуются в виде одного фильтра высокого порядка (так называемые полиномиальные фильтры сосредоточенной избирательности). В усилительных трактах радиоприемных устройств с невысокими требованиями к избирательности применяется так называемая распределенная избирательность, когда одноконтурные или двухконтурные фильтры помещаются в, разных каскадах. Параметры таких фильтров хуже полиномиальных, но при заданной добротности звеньев каскадная реализация позволяет получить более узкую полосу пропускания.

Кроме LC-фильтров, в настоящее время на низких и средних частотах (до единиц мегагерц) эффективно используются активные RC-фильтры, на более высоких частотах - отрезки длинных линий (см. ф 8.8).

Большие потенциальные возможности по фильтрации на частотах до десятков мегагерц открываются с применением цифровых фильтров и фильтров на основе пьезотроник и (кварцевые, пьезокерамические, электромеханические пьезофильтры и др.).

Они по некоторым параметрам, в частности по приближению АЧХ к прямоугольной, существенно превышают LC-фильтры.В конкретной аппаратуре применение тех или иных фильтроврашается на основе технико-экономического анализа.

13.3. ОБРАБОТКА ДИСКРЕТНЫХ СИГНАЛОВ

Согласованная фильтрация . Одним из основных методов обработки дискретных сигналов является фильтрация . Цель фильтрации такая же, как и при приеме непрерывных сигналов, но требования к фильтру существенно другие. Конечно, фильтр должен подавлять помеху и чем больше, тем лучше, однако при этом допускается искажение формы сигнала . Напомним, что при приеме дискретных сигналов основной задачей приемника является обнаружение или различение сигналов. На фоне помех сигнал легче обнаружить, если он имеет импульсный характер и по амплитуде превышает помехи (рис. 13.3). Качество обнаружения сигналов будет тем лучше, чем больше отношение пиковой мощности сигнала к дисперсии (средней мощности) помехи.

Фильтр, который обеспечивает максимальное отношение сигнал-помеха на выходе, получил название оптимального согласованного фильтра. Характеристики согласованного фильтра для заданного сигнала s(t) при воздействии на него помехи типа белого шума со спектральной плотностью мощности N 0 следующие: комплексная передаточная функция

Импульсный отклик

(13.4)

отношение сигнал-помеха на выходе

(13.5)

где F" () = - функция, комплексно сопряженная со спектром сигнала; с - произвольный коэффициент пропорциональности, t 0 - момент, при котором амплитуда сигнала на выходе фильтра принимает максимальное значение (задержка в фильтре); W s - энергия сигнала.

Из (13.3) следует, что комплексная передаточная функция согласованного фильтра является величиной, комплексно сопряженной со спектром сигнала (с точностью до постоянной задержки, определяемой множителем ). Если выражение (13.3) переписать в виде двух равенств

то из них видно, что АЧХ согласованного фильтра с точностью до постоянного множителя совпадает с амплитудным спектром сигнала, а ФЧХ - с фазовым спектром сигнала, но имеет противоположный знак. Таким образом, передаточная функция фильтра полностью определяется спектром сигнала, «согласована» с ним. Отсюда и название - согласованный фильтр.

Фаза сигнала на выходе согласованного фильтра

При t=to (t 0) =0, т. е. в момент t 0 все гармонические составля-

Рис. 13.3 Передаточная АЧХ фильтра, согласованного с прямоугольным импульсом: а – нормированный амплитудный спектр прямоугольного импульса; б – АЧХ согласованного фильтра

ющие сигнала имеют одинаковую фазу и складываются арифметически, образуя пик сигнала на выходе фильтра. Спектральные составляющие помехи на входе фильтра имеют случайную фазу, и случайный характер фаз сохранится после прохождения помехи через согласованный фильтр, поэтому результат суммирования спектральных составляющих помехи на выходе фильтра будет случайным и вероятность образования ими большого

выброса в момент t=t 0 мала. Этим физически и объясняется тот факт, что согласованный фильтр максимизирует отношение сигнал-помеха на выходе.

Пример 13.1 . Определить передаточную АЧХ фильтра, согласованного с прямоугольным видеоимпульсом длительностью t и.

Для прямоугольного видеоимпульса и в (t) амплитудный F в () спектр был

определен в примере 2.4 и построен на рис. 2.11. Принимая в (13.3) коэффициент пропорциональности c=1/F в (0), получаем, что в согласованном фильтре АЧХ Н СФ () совпадает с нормированным амплитудным спектром сигнала. Для физически существующих положительных частот эта характеристика изображена на рис. 13.4.

Отношение сигнал-помеха на выходе согласованного фильтра, определяемое равенством (13.5), является максимально достижимым для линейных фильтров и не зависит от формы принимаемого сигнала, а определяется его энергией. Из этого следует, что согласованным фильтром можно выделять сигналы, средняя мощность которых намного меньше средней мощности шума. Численные подтверждения дает нижеприведенный пример.

Рис.13.4 К обнаружению импульсного сигнала

Пример 13.2. Определить отношение сигнал-помеха на выходе согласованного фильтра для сложного сигнала длительностью t s =1 мс, шириной спектра

1 МГц, если отношение сигнал-шум на входе фильтра вх =Р s /Р n =0,01.

Для вычисления в sх по (13.5) необходимо знать энергию сигнала W s и

спектральную плотность мощности помехи N 0 . Из (2.26) W s =Р s t s . При определении отношения сигнал-помеха мощность помехи обычно измеряется в полосе частот сигнала и спектральная плотность мощности N 0 = (см. пример 2.7). Зная W s и N 0 , определяем

Примечание. При отношении сигнал-помеха р вых =20 прием считается уверенным.

Сигнал на выходе согласованного фильтра в предположении, что в отсутствие помех на вход фильтра подается сигнал s вх (t),по отношению к которому данный фильтр является согласованным, можно найти, например, используя интеграл Дюамеля

(13.7)

Сравнив полученную формулу с (2.21), видим, что выходной сигнал с точностью до постоянного множителя совпадает с функцией автокорреляции входного сигнала, сдвинутого в сторону запаздывания на время to, т. е.

Отметим сходства и отличия оптимального фильтра Колмогорова - Винера и оптимального согласованного фильтра.

1. Оба фильтра предназначены для выделения сигнала и подавления помех, оба улучшают отношение сигнал-помеха на выходе, но критерии их работы существенно, различны: фильтр Колмогорова - Винера минимизирует среднеквадратическую разность, согласованный фильтр максимизирует отношение сигнал-помеха.

2. Искажения сигнала на выходе фильтра Колмогорова - Винера минимальны, согласованный фильтр так искажает форму сигнала, чтобы в какой-то момент 4 получить его пик сигнала. Можно сказать, что согласованный фильтр максимально искажает

форму сигнала, но целенаправленно, чтобы максимально выделить его на фоне помех.

3. Согласованный фильтр может быть реализован для детермированных конечных сигналов известной формы, фильтр Колмогорова - Винера - для случайных сигналов с известной спектральной плотностью мощности.

Квазиоптимальные фильтры . Как правило, практически реализовать согласованный фильтр затруднительно, поэтому часто для обработки простых дискретных сигналов применяют фильтры более простой конструкции, но обеспечивающие отношение сигнал-помеха на выходе, близкое к максимально достижимому при согласованной фильтрации. Эти фильтры имеют заданную форму АЧХ, а для максимизации отношения сигнала к

помехе на выходе выбирается оптимальной полоса пропускания фильтра. Такие фильтры принято называть квазиоптимальными. Теорию квазиоптимальной фильтрации разработал чл.-корр. АН СССР В. И. Сифоров.

Как показывает анализ, полоса пропускания квазиоптимальных фильтров зависит от формы сигнала и вида амплитудно-частотной характеристики. Так, для прямоугольного радиоимпульса длительностью t и, оптимальная эффективная шумовая полоса пропускания Пэфф будет равна: для идеального полосового фильтра-1,37/t и; для фильтра в виде одиночного колебательного контура - 0,4/t и; для колоколообразного фильтра - 0,72/t и. Напомним, что эффективная шумовая полоса фильтра (см. $ 2.7) вычисляется по методу равновеликого прямоугольника для квадрата модуля передаточной функции фильтра.

Наличие оптимальной полосы фильтра физически объясняется следующим: с уменьшением полосы пропускания фильтра уменьшается мощность помех на выходе, но при этом будет уменьшаться и сигнал, не достигая своего установившегося значения в силу замедления переходных процессов в фильтре. При увеличении полосы пропускания, мощность шума увеличивается пропорционально полосе, а сигнал, достигший значения, близкого к установившемуся, увеличивается незначительно.

Отношение сигнал-помеха на выходе квазиоптимальных фильтров при простых сигналах,(одиночные радио- или видеоимпульсы) уменьшается по сравнению с соответствующим согласованным фильтром на величину порядка 10 ... 20%. Необходимо отметить, что фильтры с плавной; АЧХ дают лучшие результаты, чем идеальные фильтры, поэтому при приеме дискретных сигналов не следует стремиться к применению фильтров с крутыми скатами (близкими к идеальным).

На выбор полосы пропускания квазиоптимальных фильтров накладывают ограничение также переходные (межсимвольные) помехи , которые возникают при приеме случайной последовательности дискретных сигналов. В момент принятия решения об i

сигнале на вход решающего устройства поступает остаточное напряжение от предыдущих сигналов, так как переходные процессы в квазиоптимальных, фильтрах сравнительно медленные. Это остаточное напряжение и образует межсимвольные помехи.

В согласованных фильтрах межсимвольные помехи отсутствуют, поскольку их импульсный отклик и, соответственно, реакция на сигнал имеют конечную длительность и переходные процессы к моменту принятия решения о следующем сигнале оканчиваются.

Многочисленные расчеты переходных процессов в различных квазиоптимальных фильтрах показывают, что у них при оптимальной полосе пропускания межсимвольные помехи недопустимо велики, поэтому приходится выбирать полосу пропускания больше оптимальной, вследствие чего отношение сигнал-помеха на выходе фильтра может существенно уменьшаться.

При приеме дискретных сигналов в виде прямоугольных импульсов основную фильтрацию часто проводят последетекторным фильтром, который называют манипуляционным. Его полоса пропускания выбирается равной 1,4/t и на уровне затухания б дБ, т. е. примерно в 4 раза шире оптимальной полосы квазиоптимального фильтра для одиночного прямоугольного видеоимпульса.

Стробирование. Стробирование сигналов является наиболее простым методом обработки. Широко применяется.на практике, и его часто называют приемом с однократным отсчетом.

При стробировании в определенный момент, на интервале длительности сигнала t s , отсчитывается текущее значение смеси сигнала и помехи, которое затем подается в решающее устройство. Так как.статистические характеристики помех мало зависят от

выбора момента регистрации, то момент стробирования (отсчета) необходимо выбирать в момент максимального значения сигнала и минимальных его искажений за счет, переходных процессов. Это обычно середина дискретного сигнала. Если стробированию предшествует согласованный фильтр, то отсчет в момент t 0 обеспечит наилучший (оптимальный) прием. При неоптимальной фильтрации до стробирования понижение помехоустойчивости значительно.

Интегральный прием . Стремление увеличить помехоустойчивость приема привело к идее принятия решения на основe не однократного, а многократного или непрерывного анализа

сигнала на интервале его длительности t s . Такой метод обработки называется интегральным и реализуется путем непрерывного интегрирования или дискретного суммирования отсчетов.,

Если на входе интегратора действует сигнал z(t) =s(t)+n(t),

то на его выходе получим величину

где первое слагаемое представляет собой сигнал, а второе - помеху на выходе интегратора. Превышение мощности сигнала над помехой на выходе интегратора

(13.8)

где - отношение сигнал-помеха и Эффективная ширина спектра помехи на входе интегратора соответственно. Интегрирование видео импульсов после детектора может быть выполнено простейшей коммутируемой RС-цепью (рис. 13.5) . Постоянную

времени этой цепи выбирают из соотношения RС 1,25t s чтобы напряжение на емкости в конце интервала интегрирования нахо-

Рис..13.5 Схема простейшего коммутируемого интегратора

дилось в пределах линейного участка переходной характеристики. В конце каждого дискретного сигнала при t=t s отсчитывается напряжение на выходе интегратора, а при

t=t s + емкость разряжается и тем самым подготавливается к приему следующего дискретного сигнала.

Межсимвольные помехи при интегральном приеме отсутствуют, а сравнивая (13.8) и (13.6), видим, что отношение сигнал-помеха на выходе интегратора в 2 раза хуже, чем при обработке дискретного сигнала согласованным фильтром.

Из перечисленных выше методов обработки дискретных сигналов в реальных системах передачи дискретных сообщений нельзя отдать предпочтение каким-то одному-двум. Все зависит от вида модуляции, требуемых качественных показателей, отношения сигнал-помеха на входе приемника и т. д. Но если требуется получить максимально высокую помехоустойчивость при неблагоприятных условиях приема (например, в сверхдальних космических линиях радиосвязи), то необходимо применять согласованную фильтрацию или методы, эквивалентные ей. При невысоких требованиях к качеству или при малых помехах на входе приемника можно ограничиться и более простыми в реализации методами обработки.

Введение

В информационных системах различного назначения полезные сигналы поступают всегда на фоне помех различного происхождения. Под помехой будем понимать любое воздействие на полезный сигнал, затрудняющее его прием и регистрацию. Для уверенного обнаружения полезных сигналов и измерения тех или иных их параметров необходимо обеспечить достаточное превышение энергии сигнала над энергией помех. Но при современном состоянии схемотехники информационных систем резервы повышения энергии полезного сигнала практически исчерпаны. Кроме того, некоторые помехи, например, реверберационная, растут одновременно с увеличением сигнала.

Поэтому наиболее верный путь развития информационных систем заключается в оптимизации режимов обработки принимаемого сигнала с целью максимального увеличения отношения сигнал / помеха. Это может быть достигнуто прежде всего использованием фильтров с оптимальными частотными и импульсными характеристиками. Поскольку все чаще задача обнаружения полезного сигнала возлагается на автоматические устройства, очень важной оказывается также разработка оптимальных алгоритмов обнаружения и обнаружителей, реализующих эти алгоритмы. Это обосновывает необходимость изучения студентами направления «Приборостроение» вопросов обработки сигналов с учетом специфики использования соответствующих приборов и систем.

ФИЛЬТРАЦИЯ СИГНАЛОВ НА ФОНЕ ПОМЕХ

Постановка задачи фильтрации

Пусть на входе системы действует колебание

x (t ) = F [s (t, ), n (t )],

где s (t, ) – полезный сигнал, n (t ) – помеха, – совокупность интересующих нас параметров i (t ), причем сам сигнал s (t, ), или параметр i (t ) – случайные процессы. Помеха n (t ) может быть произвольной; сигнал и помеха не обязательно представляют собой аддитивную смесь. Считается, однако, что вид функции F (т. е. способ комбинирования сигнала и помехи) и некоторые статистические характеристики случайного сигнала и помехи нам известны. С учетом этих априорных сведений нужно решить, какая из возможных реализаций самого сигнала s (t, ) или его параметра содержится в принятом колебании x (t ). Из-за наличия помех и вследствие случайного характера сигнала оценка реализации сигнала или его параметра зачастую не будет совпадать с истинным значением, что приводит к ошибкам фильтрации. К тому же к фильтрам, предназначенным для использования в различных устройствах, предъявляются различные, порой противоречивые требования. Поэтому и характеристики фильтров должны удовлетворять различным критериям. Фильтры, предназначенные для устройств обнаружения, должны обеспечить максимум отношения сигнал/помеха. Фильтры, предназначенные для устройств измерения тех или иных параметров, должны отвечать критерию минимума среднеквадратической погрешности. Возможны и другие виды критериев, по которым строятся характеристики.

Согласованные фильтры

До сих пор на помеху n(t) не налагалось никаких ограничений, кроме стационарности в широком смысле. Рассмотрим теперь помеху в виде гауссовского белого шума. Линейный фильтр, на выходе которого получается максимально возможное пиковое значение отношения сигнал/помеха при приеме полностью известного сигнала на фоне гауссовского белого шума, называется согласованным фильтром. Найдем выражение для комплексной частотной характеристики согласованного фильтра. Для этого положим Тогда выражения (1.7) и (1.8) примут соответственно вид:

(1.9)

где k – постоянная, характеризующая коэффициент передачи фильтра; Es – энергия сигнала:

Запишем спектр входного сигнала и комплексную частотную характеристику фильтра в виде

Здесь j s (w) – фазовый спектр сигнала, j(w) – фазо-частотная характеристика фильтра.

Тогда выражения для амплитудно-частотной и фазочастотной характеристик согласованного фильтра будут иметь вид

Видно, что амплитудно-частотная характеристика (АЧХ) согласованного фильтра пропорциональна амплитудному спектру входного сигнала (АЧХ фильтра «согласована» со спектром сигнала), а фазочастотная характеристика (ФЧХ) равна сумме фазочастотного спектра сигнала, взятого с обратным знаком, и фазового спектра задержки (– wt 0).

Совпадение формы АЧХ фильтра с амплитудным спектром сигнала обеспечивает наилучшее выделение наиболее интенсивных участков спектра сигнала. Фильтр ослабляет участки спектра с относительно низким уровнем спектральных составляющих; в противном случае наряду с ними проходили бы интенсивные шумы. При этом форма сигнала на выходе фильтра искажается. Однако это не имеет существенного значения, так как задача фильтра в данном случае состоит не в точном воспроизведении входного сигнала, а в формировании наибольшего пика выходного сигнала на фоне шума. Существенную роль в этом отношении играет фазочастотная характеристика фильтра j (w).

Подставив в формулу (1.1) выражение (1.9), получим выражение для полезного сигнала на выходе согласованного фильтра:

Отсюда видно, что сигнал на выходе фильтра определяется только амплитудным спектром входного сигнала и не зависит от его фазового спектра. Последнее обусловлено тем, что взаимные фазовые сдвиги спектральных составляющих входного сигнала j s (w) компенсируются ФЧХ фильтра. Поэтому все гармонические составляющие одновременно достигают амплитудных значений в момент времени t = t 0 и, складываясь, дают пик выходного сигнала:

Если бы ФЧХ фильтра не компенсировала фазовых сдвигов спектральных составляющих входного сигнала, то максимумы гармонических составляющих не совпадали бы по времени, что привело бы к уменьшению или раздроблению пика выходного сигнала.

Следует отметить, что согласованным фильтром (1.9) можно пользоваться и при приеме полностью известного сигнала на фоне стационарной помехи с произвольной спектральной плотностью S n (w). Для этого формально достаточно пропустить принимаемое колебание x(t) через дополнительный линейный фильтр, который преобразует помеху n(t) в белый шум. ФЧХ фильтра может быть любой, а АЧХ такого дополнительного “обеляющего” фильтра должна иметь вид

(1.10)

где – постоянная.

На выходе обеляющего фильтра помеха превратится в белый шум с постоянной спектральной плотностью а комплексный спектр сигнала будет

После этого можно воспользоваться полученными ранее формулами. В соответствии с выражением (1.9) комплексная частотная характеристика соответствующего согласованного фильтра

Оптимальный фильтр представляет собой последовательное соединение двух фильтров: обеляющего и согласованного . Его комплексная частотная характеристика естественно совпадает с соотношением (1.8).

Пользуясь допустимой свободой выбора фазовой характеристики обеляющего фильтра, можно попытаться выбрать ее так, чтобы оптимальный фильтр был физически реализуем. Если спектральную плотность помехи S n (w) можно аппроксимировать рациональной функцией частоты (что на практике не ограничивает общности), то для получения физически реализуемого оптимального линейного фильтра используют разложение S n (w)на комплексно-сопряженные сомножители. Рассмотрим пример.

Пусть помехой является гауссовский шум, имеющий спектральную плотность S n (w)= 2aD /(a 2 + w 2), где D – дисперсия шума. Тогда согласно формуле (1.10) имеем

Таким образом, получаем два равноценных варианта обеляющих фильтров:

Найдем импульсную характеристику согласованного фильтра:

Учитывая выражение для входного сигнала

,

получаем

. (1.11)

Следовательно, импульсная характеристика согласованного фильтра целиком определяется формой сигнала («согласована» с сигналом). На рис. 1.1 изображен импульсный сигнал s(t) длительностью и, появившийся в момент времени t = 0 .

Очевидно, что функция s(t 0 +t) появляется на время t 0 раньше, чем сигнал s(t) . Функция же s(t 0 –t) является зеркальным отображением функции s(t 0 +t) относительно оси ординат. Умножив функцию s(t 0 –t) на коэффициент k , получаем импульсную характеристику согласованного фильтра.

Квазиоптимальные фильтры

При практическом построении оптимальных и согласованных линейных фильтров кроме найденных соотношений надо также учитывать условия физической возможности и практической реализуемости фильтров. Условие физической возможности фильтра записывается в виде :

h(t) = 0при t £0;

Если сигнал s(t) , с которым должен быть согласован фильтр, начинается в момент времени 0 и полностью прекращается при t 0 + и, то первое из условий выполняется при t 0 0 + и. Только при этом условии будет использована вся энергия сигнала для формирования сигнального пика на выходе фильтра в момент t 0 . Увеличение t 0 сверх 0 + и, не влияя на значение пика, сдвигает его в сторону большего запаздывания, что обычно нежелательно. Поэтому следует брать t 0 = 0 + и, т. е. момент наблюдения должен совпадать с окончанием входного сигнала. Иногда для аппроксимации реальных импульсных сигналов используют бесконечно длинные импульсы (гауссовский, экспоненциальный и т. д.). Тогда приходится искусственно выбирать конечное значение длительности аппроксимирующего сигнала, содержащей основную долю энергии реального сигнала.

Не всякий физически возможный фильтр можно реализовать практически, т. е. построить из сравнительно небольшого числа элементов, обладающих легко выполнимыми характеристиками. В этом случае нужно либо выбирать такие сигналы, для которых получаются легко реализуемые фильтры, либо использовать практически осуществимые фильтры, отношение сигнал/помеха на выходе которых лишь немного меньше значения, определяемого соотношением (1.17). Такие фильтры называются квазиоптимальными.

Обозначим через rотношение значения сигнал / помеха на выходе произвольного линейного фильтра к значению сигнал / помеха на выходе согласованного фильтра. Используя выражение (1.6) и заменяя S n (w) на N 0 / 2(для белого шума), получаем

.

В таблице приведены максимальные значения max для различных форм полезных радиоимпульсных сигналов и разных видов частотных

характеристик реализуемых фильтров при наилучших значениях их полос пропускания. При этом полоса выбирается из условия и = a, f – ширина полосы пропускания на уровне 0,5 по мощности, t и – эффективная длительность импульса.

Видно, что уменьшение отношения сигнал/помеха при замене оптимального фильтра квазиоптимальным можно сделать весьма небольшим.

При проектировании квазиоптимальных фильтров задаются структурой фильтра исходя из конструктивных соображений, а полосу его пропускания на уровне 0,707 от максимума определяют, максимизируя величину при изменении полосы пропускания. Квазиоптимальные фильтры для радиоимпульсных и вообще для высокочастотных сигналов выполняются на базе колебательных контуров или активных полосовых фильтров. Число контуров обычно задается из конструктивных соображений. Полосу пропускания оптимизируют, изменяя добротность колебательной системы.

На практике часто приходится работать с сигналами, имеющими случайную амплитуду и фазу. Как следует из (1.8) и (1.9), форма частотной характеристики не зависит от амплитуды. Поэтому для сигнала со случайной амплитудой можно использовать тот же фильтр, что и для сигнала с детерминированной амплитудой. Фазочастотная характеристика фильтра зависит от фазы сигнала. Однако при непрерывном случайном изменении фазы сигнала мы в подавляющем большинстве не имеем возможности перестраивать фильтр. Поэтому случайная фаза сигнала при проектировании фильтра принимается равной своему среднему значению, что несколько снижает отношение сигнал/помеха на выходе.

Синтез оптимальных фильтров

Рассмотрим различные способы синтеза оптимальных фильтров. Фильтры для выделения сигнала на фоне коррелированного шума строятся обычно на основе спектрального метода, т. е. при использовании для комплексной частотной характеристики фильтра выражения (1.8).

Для согласованных фильтров, выделяющих сигнал на фоне белого шума, возможны два метода – спектральный и временной. Временной метод основан на использовании связи между импульсной характеристикой фильтра и сигналом согласно формуле (1.11). При этом синтез согласованного фильтра заключается в построении такого линейного устройства, импульсная характеристика которого с точностью до масштабного множителя и с некоторым запаздыванием воспроизводит функцию, являющуюся зеркальным отражением сигнала. Метод особенно удобен для сигналов симметричной формы, так как в этом случае зеркальное отражение сигнала совпадает с самим сигналом. По определению импульсная характеристика есть отклик линейной системы на -функцию. Поэтому нужно так подбирать блоки согласованного фильтра, чтобы при действии на его входе d-функции на выходе воспроизводился сигнал заданной формы и длительности.

1.6.1. Синтез согласованного фильтра для прямоугольного
видеоимпульса

Рассмотрим временной и спектральный методы синтеза фильтра на примере прямоугольного видеоимпульса:

Последовательность действий при синтезе временным методом иллюстрируется рис. 1.2.

Известно, что единичная ступенька (перепад), или функция Хевисайда Y(t), (x 2 (t) ) есть интеграл от -функции (x 1 (t )):

После задержки единичной ступеньки на длительность импульса и (x 3 (t )), ее инвертирования (x 4 (t )) и вычитания из x 2 (t ) получим заданный прямоугольный импульс x 5 (t ), амплитуду которого можно изменять, меняя коэффициент передачи устройства. Отсюда следует, что искомый фильтр (рис. 1.3, а) состоит из интегратора 1, линии задержки на и 2, инвертора 3, сумматора 4 и усилителя 5. Инвертор и сумматор могут быть заменены вычитающим устройством 6 (рис. 1.3, б). Работа обоих вариантов фильтра идентична.

Рассмотрим синтез фильтра спектральным методом. Комплексный спектр прямоугольного видеоимпульса

Для согласованного фильтра

Полагая и = t 0 , окончательно получим

(1.18)

Рассмотрим члены, входящие в выражение (1.18). Оператор , как известно, представляет собой оператор идеального интегрирования гармонического сигнала; kA – коэффициент передачи линейного устройства; – задержку на время t и . Видно, что структурная схема такого фильтра соответствует рис. 1.3.

Механизм работы согласованного фильтра (см. рис. 1.3) можно выяснить, рассматривая прохождение через него импульса сигнала и шума (рис. 1.4).

Рис. 1.4

Входной сигнал x 1 (t )с помощью интегрирующего устройства накапливается в течение времени t и = t 0 до своего пикового значения (x 2 на рис. 1.4). Задержка на t и (x 3) и вычитание прекращают накопление сигнала, который уже дал на выходе максимальное значение, но вместе с тем прекращают и накопление шума. Выходной сигнал (x 4) становится треугольным.

К аналогичному результату можно прийти, найдя аналитическое выражение для выходного полезного сигнала.

Для прямоугольного видеоимпульса ковариационная функция

или, в силу симметрии ковариационной функции: .

Заменяя в последнем выражении на t t 0 и полагая и = t 0 , на основании формулы (1.14) получаем

.

График этой функции совпадает с приведенным на рис. 1.4. Видно, что длительность полезного сигнала на выходе фильтра удваивается.

1.6.2. Синтез оптимального фильтра для приема прямоугольного
импульса на фоне коррелированного шума

Пусть шум на входе фильтра имеет спектральную плотность S n (w), отличную от равномерной:

,

где 2a – спектральная плотность шума при = 0; g–- постоянная, характеризующая ширину энергетического спектра.

В соответствии с выражением (1.8) тогда можно получить формулу для комплексной частотной характеристики оптимального фильтра для приема прямоугольного видеоимпульса на фоне коррелированного шума:

(1.19)

Оператор j соответствует оператору идеального дифференцирования. Структурная схема оптимального фильтра, построенного в соответствии с формулой (1.19), изображена на рис. 1.5:

На рисунке 6,7 – устройства дифференцирования; 8 – вычитатель. Назначение остальных блоков ясно из предыдущего.

Выражение (1.19) может быть преобразовано к виду

Структурная схема фильтра, соответствующая этому выражению, содержит на один блок меньше. Временной метод синтеза оптимальных фильтров для приема сигналов на фоне коррелированного шума используется редко, так как в этом случае передаточная функция фильтра обычно не позволяет построить структурную схему столь же просто, как это было сделано ранее.

Рис. 1.7

Формальная структурная схема, поясняющая выбор критерия оптимальности фильтра, представлена на рис. 1.7. Здесь 1 – сумматор; 2 – идеальный фильтр; 3 – реальный фильтр; 4 – устройство вычисления ошибки. Пусть h(t) – импульсная характеристика реального фильтра. Тогда

,

и среднеквадратическая ошибка

Для стационарных сигнала и помехи – максимальное значение ковариационной функции сигнала; – взаимная ковариационная функция принятой реализации и сигнала; – ковариационная функция принятой реализации.

Если h opt (t) – импульснаяхарактеристика оптимального фильтра, то среднеквадратическая ошибка для любого другого фильтра с импульсной характеристикой, которая представлена в виде

h (t ) = h opt (t )+hg (t ), (1.23)

может быть только больше или равна среднеквадратической ошибке оптимального фильтра. Для фильтра, имеющего характеристику, описываемую формулой (1.23), среднеквадратическая ошибка с учетом сделанных ранее обозначений

Минимум может быть найден из условия

(1.24)

Подробно расписывая условие (1.24), получим

Для любых g() это выражение справедливо лишь при

. (1.25)

Отсюда видно, что импульсная характеристика оптимального фильтра может быть получена при решении интегрального уравнения (1.25). Это решение может быть получено с помощью теоремы о Фурье-преобразовании свертки. Действительно, так как интеграл в правой части есть свертка , то, взяв преобразование Фурье от левой и правой частей этого уравнения, получим

(1.26)

где F – обозначение преобразования Фурье, S xs () – взаимная спектральная плотность принятого сообщения и сигнала; S x () – спектральная плотность принятого сообщения; K opt (j w) оптимальная частотная характеристика фильтра. Тогда уравнение (1.25) с учетом формул (1.26) запишется в виде

При независимых сигнале и помехе

С учетом этих соотношений получаем

Это решение, строго говоря, описывает физически невозможный фильтр. Однако оно имеет практический смысл, так как приближенно применимо в тех случаях и с тем большей точностью, когда можно допустить большую задержку отклика фильтра относительно входного воздействия. Поэтому говорят, что это решение пригодно для фильтров с бесконечной задержкой.

Для физически возможных фильтров импульсная характеристика h(t) в силу принципа причинности существует только для t > 0 , так как сигнал на выходе фильтра не может появиться раньше начала импульса на входе. Для физически возможных фильтров уравнение (1.25) приводится к виду

т. е. к виду интегрального уравнения Винера-Хопфа, и должно решаться соответствующими методами.

НА ФОНЕ ПОМЕХ

Постановка задачи

Обнаружение сигналов практически всегда происходит при необходимости установить факт наличия или отсутствия какого-либо определенного физического объекта. Однако непосредственно установить этот факт мы обычно не можем, а можем лишь воспользоваться тем, что наличие или отсутствие интересующего нас объекта изменяет те или иные параметры некоторого сигнала – амплитуду (или сам факт наличия сигнала), время прихода, частоту, фазу и т. п. Примером может служить сигнал эхо-локационной системы, отраженный от какого-либо объекта. В этом случае сигнал присутствует лишь при наличии объекта. В других случаях объект только изменяет параметры сигнала, который присутствует все время. Общим во всех этих ситуациях является то, что сигнал поступает всегда вместе с помехами, а это может привести к ошибочным решениям. Случайный характер как помех, так и полезных сигналов приводит к тому, что при решении задачи обнаружения следует исходить из положений теории статистических решений.

Рис. 2.4

Участок под кривой p n (x) справа от x 0 определяет условную вероятность ложной тревоги, под кривой p sn (x) – условную вероятность правильного обнаружения. При смещении кривой p sn (x) вправо, что соответствует увеличению сигнала s , вероятность правильного обнаружения возрастает.

Структурная схема простейшего обнаружителя Неймана-Пирсона состоит из одного блока – порогового устройства. На первый вход его подается входной сигнал x(t) , на второй вход – пороговое значение x 0 . Сравнивая значения x(t) c x 0 , пороговое устройство в каждый момент времени вырабатывает решение о наличии или отсутствии сигнала.

Рис. 2.11

Она состоит из согласованного фильтра 1, детектора огибающей 2 и порогового устройства 3. Детектор выполняет функцию выделения огибающей. Характеристики обнаружения такого обнаружителя могут быть определены по формулам (2.17) и (2.18).

И начальной фазой

При работе систем обнаружения слабых сигналов, как правило, приходится иметь дело с сигналами, имеющими случайные значения амплитуд и начальных фаз. Такие сигналы можно записать в виде:

где B и – случайные амплитудный множитель и фаза с плотностями распределения:

.

Аналогично предыдущему, корреляционный интеграл можно представить в виде двух квадратурных составляющих:

Следует отметить, что B – медленно изменяющаяся величина, практически постоянная в интервале . Корреляционный интеграл тогда равен , где .

Энергия флуктуирующего сигнала будет равна

где – энергия нефлуктуирующего сигнала при B = 1. Отсюда можно определить , усреднив (2.19) по B .

Тогда =1/ 2 и .

Используя выражения (2.14) и (2.19), можно записать отношение правдоподобия в виде

.

Теперь необходимо усреднить это выражение по случайным параметрам B и:

Схема оптимального обнаружителя сигнала со случайными амплитудой и начальной фазой не отличается от схемы оптимального обнаружителя сигнала со случайной фазой. По-прежнему оптимальной является квадратурная схема обработки. Плотность распределения вероятностей при отсутствии сигнала, как и ранее, описывается законом Рэлея:

В случае наличия сигнала на входе устройства закон распределения также будет рэлеевским, но с плотностью распределения

.

Это следует из того, что вследствие независимости сигнала и помехи , где – дисперсия сигнальной составляющей корреляционного интеграла.

Тогда условная вероятность ложной тревоги

При обнаружении по стратегии Неймана-Пирсона

Условная вероятность правильного обнаружения

(2.22)

Подставляя сюда выражение (2.21), можно получить

. (2.23)

Выражение (2.23) устанавливает связь между условными вероятностями ложной тревоги и правильного обнаружения. Кривые обнаружения, рассчитанные по формулам (2.20) и (2.22), приведены на рис. 2.6 (штрихпунктирные линии). Из рисунка видно, что при увеличении отношения сигнал/помеха все кривые сначала растут медленно, а потом быстрее. При больших вероятностях правильного обнаружения кривые для сигнала со случайной начальной фазой и особенно для сигнала со случайными амплитудой и фазой смещены в сторону больших значений отношения сигнал/помеха. Наоборот, при малых вероятностях правильного обнаружения (P D 0,2) кривые обнаружения для сигнала со случайными амплитудой и фазой идут выше соответствующих кривых для других двух сигналов. Это объясняется тем, что при равенстве энергий амплитуда сигнала со случайными амплитудой и фазой с вероятностью Р = 0,74будет превышать амплитуду сигнала с полностью известными параметрами .

Значительно проще структурная схема оптимального обнаружителя с согласованным фильтром (рис. 2.11). Характеристики обнаружения такого обнаружителя могут быть определены в соответствии с выражениями (2.20)–(2.23). Однако в ряде случаев удобнее оказывается использовать несколько иной подход. Как указывалось ранее, случайные сигналы (и помехи) на выходе согласованного фильтра обычно можно считать распределенными по гауссовскому закону. При этом на выходе согласованного фильтра можно измерить дисперсии (или пропорциональные им мощности) помехи и смеси сигнала с помехой

Из изложенного видно, что оптимальные обнаружители на базе согласованных фильтров, имея те же характеристики обнаружения, что и корреляционные обнаружители, зачастую оказываются проще в реализации, так как не требуют наличия копии сигнала, задержанной на время распространения.

Постановка задачи

До сих пор мы рассматривали обнаружение сигнала от объекта в одной точке наблюдения. Однако на практике при сканировании пространства сигналы от того или иного объекта обычно поступают в течение некоторого времени: поступает пачка сигналов. Это вызывается, во-первых, конечной протяженностью большинства реальных объектов. Во-вторых, конечные размеры имеет также участок пространства, с которого в данный момент снимается информация о наличии или отсутствии объекта. Размеры этого участка зависят от размеров приемника. В результате при не слишком большом шаге сканирования мы зачастую имеем пачку сигналов конечной длительности, состоящую из нескольких сигналов одинаковой или различной амплитуды, либо (например, при непрерывном излучении) один сигнал большой длительности. Это явление целесообразно использовать для обнаружения сигналов, так как оно позволяет значительно увеличить чувствительность и достоверность обнаружения.

Задача обнаружения пачки сигналов будет решаться по-разному в зависимости от свойств такой пачки. Если зависимость между всеми параметрами импульсов, входящих в пачку, полностью известна, то такие импульсы и такая пачка называются когерентными. В противном случае пачка называется некогерентной. Когерентная пачка импульсов с полностью известными параметрами является частным случаем полностью известного сигнала, и для нее справедливы выражения (2.15) и (2.16), если в них под энергией сигнала понимать сумму энергий всех импульсов пачки.

Зачастую при обнаружении объектов импульсные сигналы в пачке флуктуируют. Эти флуктуации могут быть полностью коррелированными, частично коррелированными и некоррелированными. В первом случае сигналы флуктуируют от пачки к пачке, но соотношение параметров отдельных импульсов между собой от пачки к пачке не меняется: форма пачки одна и та же. Такие флуктуации носят название «дружных». Дружно флуктуирующую пачку можно рассматривать как одиночный сигнал сложной формы со случайными амплитудой и фазой.

В случае некоррелированных флуктуаций амплитуды и начальные фазы отдельных импульсов пачки меняются случайным образом вне связи друг с другом. Зачастую наибольший интерес представляет именно этот случай, а также случай частично коррелированных флуктуаций в пачке. При этом обнаружитель обычно состоит из оптимального фильтра для одиночного сигнала и устройства обработки пачки сигналов.

Список литературы

1. Харкевич А. А. Борьба с помехами. М.: Физматгиз, 1963.

2. Иванов М. Т., Сергиенко А. Б., Ушаков В. Н. Теоретические основы радиотехники. М.: Высш. шк., 2002.

3. Ольшевский В. В. Статистические методы в гидролокации. Л.: Судостроение, 1983.

4. Добротин Д. Д., Пигулевский Е. Д. Случайные сигналы и помехи в системах интроскопии: Учеб. пособие / ЛЭТИ. Л., 1990.

5. Тихонов В. И. Оптимальный прием сигналов. М.: Радио и связь, 1983.

6. Тихонов В. И. Статистическая радиотехника. М.: Радио и связь, 1982.

7. Гоноровский И. С. Радиотехнические цепи и сигналы. М.: Сов.радио, 1977.

8. Кузьмин С. З. Цифровая обработка радиолокационной информации. М.: Сов.радио, 1967.

9. Дымова А. И., Альбац М. Е., Бонч-Бруевич А. М. Радиотехнические системы. М.: Сов.радио, 1975.

10. Ермолов И. Н. Теория и практика ультразвукового контроля. М.: Машиностроение, 1981.

11. Горбунов В. И., Епифанцев Б. И. Автоматические устройства в радиационной дефектоскопии. М.: Атомиздат, 1979.

12. Голубев А. С., Добротин Д. Д., Паврос С. К. О выборе порога срабатывания теневых иммерсионных ультразвуковых дефектоскопов при контроле изделий с шероховатой поверхностью // Дефектоскопия. 1975. № 3. С. 71–77.

13. Добротин Д. Д. К вопросу о надежности ультразвукового теневого контроля горячекатаного металла // Электроакустика и ультразвуковая техника. - Л., 1977. С.47–52 (Изв. ЛЭТИ. Вып. 221).

14. Добротин Д. Д. Надежность сплошного ультразвукового контроля листов с шероховатой поверхностью// Электроакустика и ультразвуковая техника. Л., 1979. С.17–22 (Изв. ЛЭТИ. Вып. 252).


Введение. 3

1.1. Постановка задачи фильтрации. 4

1.2. Оптимальные фильтры устройств обнаружения. 4

1.3. Согласованные фильтры.. 8

1.4. Согласованный фильтр и корреляционный приемник. 12

1. 5. Физически возможные фильтры. 14

Борьба с шумами и помехами является основной задачей во многих областях радиотехники. Обеспечить высокую помехоустойчивость систем передачи информации можно разными путями. Например, создают такие устройства для обработки, которые некоторым наилучшим образом выделяют сигнал, искаженный присутствием помехи. Другой путь заключается в совершенствовании структуры передаваемых сигналов, использовании помехоустойчивых способов кодирования и модуляции. Примерами таких помехоустойчивых сигналов служат коды Баркера и сигналы с линейной частотной модуляцией, изученные в гл. 3, 4.

16.1. Выделение полезного сигнала с помощью линейного частотного фильтра

Чтобы выделить полезный сигнал, искаженный наличием шума, можно прибегнуть к частотной фильтрации. Пусть частотный коэффициент передачи линейного стационарного фильтра выбран так, что значения величины велики в области частот, где сконцентрирована основная доля энергии сигнала, и малы там, где велика спектральная плотность мощности шума. Следует ожидать что, подав на вход такого фильтра сумму сигнала и шума, на выходе можно получить заметное увеличение относительной доли полезного сигнала.

Отношение сигнал/шум.

Придадим данному положению количественную формулировку. Пусть на входе линейного фильтра присутствует входной сигнал

являющийся суммой полезного сигнала и шума Здесь и в дальнейшем предполагается, что оба эти сигнала являются узкополосными с одинаковыми центральными частотами . Считается, что сигналы некоррелированы в том смысле, что среднее значение произведения

Будем также предполагать стационарность этих сигналов на неограниченно протяженном интервале времени.

Интенсивность колебаний на входе фильтра можно характеризовать величиной среднего квадрата (средней мощности) входного сигнала, которая в силу равенства (16.2) есть сумма средних квадратов полезного сигнала и шума:

где - дисперсия входного шума.

Для описания относительного уровня сигнала принято вводить так называемое отношение сигнал/шум на входе фильтра по формуле

или в логарифмических единицах (дБ)

Отметим, что безразмерное число характеризует уровень сигнала по отношению к уровню шума весьма приближенно и неполно. Пользоваться этим отношением целесообразно лишь тогда, когда заранее известно, что реализации сигнала и шума в каком-нибудь содержательном смысле «схожи» между собой. Так, входной шум обычно хорошо описывается моделью нормального узкополосного случайного процесса. Отдельные реализации данного шума представляют собой квазигармонические колебания. Естественно, что в этом случае можно пользоваться формулой (16.4) для оценки уровня полезных модулированных сигналов вида AM или ЧМ.

Пример 16.1. На входе фильтра присутствует однотональный AM-сигнал и гауссов шум односторонний спектр мощности которого

Найти отношение сигнал/шум на входе фильтра.

Среднюю мощность сигнала получим, усредняя его квадрат по времени:

Здесь первое слагаемое соответствует средней мощности несущего колебания, которое не содержит информации о передаваемом сообщении. Поэтому при расчетах помехоустойчивости принято опускать эту составляющую и считать, что

Дисперсия шума на входе фильтра

Отношение сигнал/шум

оказывается прямо пропорциональным квадрату коэффициента модуляции и обратно пропорциональным частоте модуляции.

Отношение сигнал/шум на выходе фильтра.

Линейный фильтр подчиняется принципу суперпозиции. Сигнал и шум обрабатываются таким фильтром независимо и создают на выходе сигнал со средним квадратом

Это дает возможность ввести отношение сигнал/шум на выходе фильтра:

Будем называть выигрышем фильтра по отношению сигнал/шум величину

которая также может быть выражена в децибелах:

(16.10)

Ясно, что если то фильтрация суммы сигнала и шума приводит к благоприятному результату в смысле принятого нами критерия - повышению относительного уровня полезного сигнала на выходе.

Ответ на вопрос о том, какое отношение сигнал/шум следует считать достаточным для нормального функционирования радиосистемы, целиком зависит от назначения этой системы и всей совокупности предъявляемых технических требований.

Средняя мощность узкополосного сигнала.

Понятие средней мощности целесообразно вводить только по отношению к узкополосным сигналам, неограниченно протяженным во времени. Удобной и достаточно общей математической моделью такого сигнала является сумма

(16.11)

в которой амплитуды и фазы произвольны, а все частоты сосредоточены в узкой полосе вокруг опорной частоты Мгновенная мощность такого сигнала

Среднюю мощность полезного сигнала можно получить, проведя усреднение по времени:

Очевидно, что вклад в сумму дадут только слагаемые с совпадающими индексами, когда Отсюда следует, что

(16.12)

Влияние частотного коэффициента переда и фильтра на отношение сигнал/шум.

Если сигнал вида (16.11) проходит через линейный фильтр с частотным коэффициентом передачи , то средняя мощность сигнала на выходе

Дисперсия выходного шума

Отсюда находим выражение для отношения сигнал/шум на выходе фильтра:

Данная формула содержит полное решение поставленной задачи и позволяет в принципе, зная спектры сигнала и шума, так подобрать АЧХ фильтра, чтобы получить ощутимый выигрыш. Следует, однако, иметь в виду, что полезный сигнал, как правило, сам претерпевает некоторые, порой значительные искажения.

  • 3.3. Основные свойства преобразования Фурье:
  • 1) Линейность.
  • 4) Теорема запаздывания.
  • 10) Спектры мощности.
  • 4. Сигналы с ограниченным спектром. Теорема Котельникова
  • 4.1. Разложение непрерывных сигналов в ряд Котельникова
  • Спектр периодической последовательности дельта-импульсов в соответствии с формулой для u(t) имеет следующий вид:
  • 4.2. Спектр дискретизированного сигнала
  • 4.3. Спектр дискретизированного сигнала при дискретизации импульсами конечной длительности (сигнал амплитудно-импульсной модуляции или аим сигнал)
  • 4.4. Восстановление непрерывного сигнала из отсчётов
  • 4.5. Погрешности дискретизации и восстановления непрерывных сигналов
  • 5. Случайные процессы
  • 5.1. Характеристики случайных процессов
  • Функция распределения вероятностей сп (фрв).
  • Двумерная фрв.
  • Функция плотности вероятностей случайного процесса (фпв)
  • Стационарность.
  • Эргодичность.
  • 5.2. Нормальный случайный процесс (гауссов процесс)
  • 5.3. Фпв и фрв для гармонического колебания со случайной начальной фазой
  • 5.4. Фпв для суммы нормального случайного процесса и гармонического колебания со случайной начальной фазой
  • 5.5. Огибающая и фаза узкополосного случайного процесса
  • 5.6. Флуктуационный шум
  • 6. Комплексное представление сигналов и помех
  • 6.1. Понятие аналитического сигнала
  • 6.2. Огибающая, мгновенная фаза и мгновенная частота узкополосного случайного процесса
  • 7. Корреляционная функция детерминированных сигналов
  • 7.1. Автокорреляция вещественного сигнала
  • Свойства автокорреляционной функции вещественного сигнала:
  • 7.2. Автокорреляция дискретного сигнала
  • 7.3. Связь корреляционной функции с энергетическим спектром
  • 7.4. Практическое применение корреляционной функции
  • II. Методы формирования и преобразования сигналов
  • 8. Модуляция сигналов
  • 8.1. Общие положения
  • 8.2. Амплитудная модуляция гармонического колебания
  • 8.3. Балансная и однополосная модуляция гармонической несущей
  • 9. Методы угловой модуляции
  • 9.1. Принципы частотной и фазовой (угловой) модуляции
  • 9.2. Спектр сигналов угловой модуляции
  • 9.3. Формирование и детектирование сигналов амплитудной и однополосной амплитудной модуляции
  • 9.4. Формирование и детектирование сигналов угловой модуляции
  • 10. Манипуляция сигналов
  • 10.1. Временные и спектральные характеристики амплитудно- манипулированных сигналов
  • 10.2. Временные и спектральные характеристики частотно-манипулированных сигналов
  • 10.3. Фазовая (относительно-фазовая) манипуляция сигналов
  • III. Алгоритмы цифровой обработки сигналов
  • 11. Основы цифровой обработки сигналов
  • 11.1. Общие понятия о цифровой обработке
  • 11.2. Квантование сигнала
  • 11.3. Кодирование сигнала
  • 11.4. Декодирование сигнала
  • 12. Обработка дискретных сигналов
  • 12.1. Алгоритмы дискретного и быстрого преобразований Фурье
  • 12.2. Стационарные линейные дискретные цепи
  • 12.3. Цепи с конечной импульсной характеристикой (ких-цепи)
  • 12.4. Рекурсивные цепи
  • 12.5. Устойчивость лис-цепей
  • 13. Цифровые фильтры
  • 13.1. Методы синтеза ких-фильтров
  • 13.2. Синтез бих-фильтров на основе аналого-цифровой трансформации
  • IV. Каналы связи
  • 14. Каналы связи
  • 14.1. Модели непрерывных каналов
  • 14.2. Модели дискретных каналов
  • V. Теория передачи и кодирования сообщений
  • 15. Теория передачи информации
  • 15.1. Количество информации переданной по дискретному каналу
  • 15.2. Пропускная способность дискретного канала
  • 15.3. Пропускная способность симметричного дискретного канала без памяти
  • 15.4. Методы сжатия дискретных сообщений
  • 15.4.1. Условия существования оптимального неравномерного кода
  • 15.4.2. Показатели эффективности сжатия
  • 15.5. Количество информации, переданной по непрерывному каналу
  • 15.6. Пропускная способность непрерывного канала
  • 16. Теория кодирования сообщений
  • Классификация помехоустойчивых кодов
  • 16.1. Коды с обнаружением ошибок
  • 16.1.1. Код с проверкой на четность.
  • 16.1.2. Код с постоянным весом.
  • 16.1.3. Корреляционный код (Код с удвоением).
  • 16.1.4. Инверсный код.
  • 16.2. Корректирующие коды
  • 16.2.1. Код Хэмминга
  • 16.2.2. Циклические коды
  • 16.2.3. Коды Рида-Соломона
  • V. Помехоустойчивость
  • 17. Помехоустойчивость систем передачи дискретных сообщений
  • 17.1. Основные понятия и термины
  • 17.2. Бинарная задача проверки простых гипотез
  • 17.3. Приём полностью известного сигнала (когерентный приём)
  • 17.4. Согласованная фильтрация
  • 17.5. Потенциальная помехоустойчивость когерентного приёма
  • 17.6. Некогерентный приём
  • 17.7. Потенциальная помехоустойчивость некогерентного приёма
  • 18. Помехоустойчивость систем передачи непрерывных сообщений
  • 18.1. Оптимальное оценивание сигнала
  • 18.2. Оптимальная фильтрация случайного сигнала
  • 18.3. Потенциальной помехоустойчивости передачи непрерывных сообщений
  • 19. Адаптивные устройства подавления помех
  • 19.1. Основы адаптивного подавления помех
  • 19.2. Подавление стационарных помех
  • 19.3. Адаптивный режекторный фильтр
  • 19.4. Адаптивный высокочастотный фильтр
  • 19.5. Подавление периодической помехи с помощью адаптивного устройства предсказания
  • 19.6. Адаптивный следящий фильтр
  • 19.7. Адаптивный накопитель
  • VI. Многоканальная связь и распределение информации
  • 20. Многоканальная связь и распределение информации
  • 20.1. Частотное разделение каналов
  • 20.2. Временное разделение каналов
  • 20.3. Кодовое разделение каналов
  • 20.4. Синхронизация в спи с многостанционным доступом
  • 20.5. Коммутация в сетях связи
  • VII. Эффективность систем связи
  • 21. Оценка эффективности и оптимизация параметров телекоммуникационных систем (ткс)
  • 21.1. Критерии эффективности
  • 21.2. Эффективность аналоговых и цифровых систем
  • 21.3. Выбор сигналов и помехоустойчивых кодов
  • 22. Оценка эффективности радиотехнической системы связи
  • 22. 1. Тактико-технические параметры радиотехнической системы связи
  • 22.2. Оценка отношения сигнал/помеха на входе радиоприемники радиотехнической системы связи
  • 22.3. Оптимальная фильтрация непрерывных сигналов
  • 22.4. Количество информации при приёме дискретных сигналов радиотехнической системы связи
  • 22.5. Количество информации при оптимальном приёме непрерывных сигналов
  • 22.6. Выигрыш в отношении сигнал/помеха
  • 22.7. Пропускная способность каналов радиотехнической системы связи
  • VIII. Теоретико-информационная концепция криптозащиты сообщений в телекоммуникационных системах
  • 23. Основы криптозащиты сообщений в системах связи
  • 23.1. Основные понятия криптографии
  • 23.2. Метод замены
  • 23.3. Методы шифрования на основе датчика псевдослучайных чисел
  • 23.4. Методы перемешивания
  • 23.5. Криптосистемы с открытым ключом
  • 13.6. Цифровая подпись
  • Заключение
  • Список сокращений
  • Основные обозначения
  • Литература
  • Теория электрической связи
  • I. Сообщения, сигналы и помехи, их математические модели

    1. Общие сведения о системах электрической связи

    1.1. Информация, сообщения, сигналы и помехи

    Системы связи предназначены для передачи информации. Информация передается посредством сообщений. Таким образом, сообщение – форма представления информации.

    Примерами сообщений могут служить текст телеграммы, фраза в телефонном разговоре, последовательность цифр при передаче данных, изображение в системе фототелеграфии, последовательность изображений (кадров) в системе телевидения и т.п. Сообщение представляет собой совокупность знаков (символов).

    Например, текст телеграммы состоит из букв, цифр, пробелов и специальных знаков, а телеграфное сообщение, готовое для передачи по каналу связи, – из канальных символов (например, из «точек», «тире» и пауз при использовании «азбуки Морзе»).

    В системе черно-белого телевидения сообщением является последовательность кадров, каждый из которых, в свою очередь, представляет собой последовательность значений яркости, упорядоченных согласно схеме телевизионной развертки. В телефонии сообщение – непрерывная последовательность значений напряжения (тока), отображающая изменение во времени звукового давления на мембрану микрофона.

    Из приведенных примеров становится ясно, что сообщения могут быть дискретными (состоящими из символов, принадлежащих конечному множеству – алфавиту) или непрерывными (континуальными, аналоговыми), описываемыми функциями непрерывного времени.

    Для передачи сообщения необходим материальный носитель, называемый сигналом. Сигналом может быть свет костра, удар барабана, звук речи или свистка, предмет, находящийся в условленном месте, взмах флажка или шпаги и т.п.

    В радиотехнике и электрической связи используются электрические сигналы, которые благодаря простоте их генерирования и преобразования наилучшим образом приспособлены для передачи больших объемов данных на большие расстояния. Заметим, что в современных каналах связи и устройствах хранения данных электрические сигналы зачастую преобразуются в оптические или магнитные, но, как правило, предполагается их обратное преобразование.

    Естественной формой представления сигнала считается его описание некоторой функцией времени (зависимой переменной чаще всего является напряжение или ток).

    В современных системах связи используются разнообразные сигналы с различными свойствами. Эти сигналы могут быть классифицированы, хотя любая классификация достаточна условна. На рис. 1.1. представлена классификация, в основу которой положен принцип математического описания сигналов, используемый для теоретического изучения и проведения расчетов.

    Математическое описание и представление сигналов позволяет создать математическую модель сигнала.

    Если математическая модель позволяет точно описать сигнал, то такой сигнал называется детерминированным. В случае невозможности точного описания сигнала в любые моменты времени, сигнал называется случайным.

    Высокочастотное модулированное колебание называется радиосигналом.

    Сигнал без высокочастотного заполнения является видеосигналом.

    Если сигнал может быть описан функцией s (t ) = s (t + T ), где T – период, он называется периодическим.

    Рис. 1.1. Классификация сигналов

    При невозможности такого представления, сигнал является непериодическим.

    Сигнал, описывающий во времени непрерывно изменяющийся процесс, называется аналоговым. Сигнал конечной длительности является импульсным.

    Иногда удобно передавать только значения непрерывного сигнала (отсчеты или выборки), взятые в отдельные моменты времени. Такой квантованный по времени сигнал называется дискретным. Если же передавать не сами выборки в виде коротких импульсов, а их числовые значения, то сначала необходимо эти значения получить. Эта процедура в технике связи называется квантованием по уровню. Таким образом, сигнал, квантованный по времени и уровню, называется цифровым.

    Интересно отметить, что детерминированные сигналы не несут в себе никакой информации. Однако с их помощью возможно передавать информацию, если случайным будет расположение сигналов на временной оси. Например, телеграфный сигнал состоит из семи импульсов прямоугольной формы с заданными параметрами рис. 1.3, г. Первый (стартовый) и последний (стоповый) импульсы обозначают начало и конец посылки. Информационное содержание посылки зависит от передаваемой в данный момент буквы алфавита и представляет соответствующую этой букве комбинацию токовых и безтоковых посылок.

    На рис. 1.2. представлена другая возможная классификация сигналов.

    Рис. 1.2. Классификация сигналов

    По виду передаваемых сообщений сигналы, например, можно разделить на радиовещательные, телевизионные, телеграфные и т. д.

    По полосе частот сигналы обычно подразделяются на узкополосные и широкополосные.

    Для широкополосных сигналов ΔF /F ср >> 1, где

    ΔF = F max - F min – абсолютная ширина спектра сигнала,

    F ср = (F max + F min)/2 – средняя частота спектра сигнала,

    F max – максимальная частота в спектре сигнала,

    F min – минимальная частота в спектре сигнала.

    Для узкополосных сигналов ΔF /F ср < 1.

    Сигналы так же делятся на сложные и простые в зависимости от величины базы сигнала В (произведение длительности сигнала на ширину полосы его спектра).

    Для сложных сигналов В > 1,

    где ΔF ∙ΔТ – база сигнала, ΔF – абсолютная ширина спектра сигнала, ΔТ – длительность сигнала.

    Для простых сигналов В = 1.

    По виду модуляции сигналы различаются по признаку того параметра, который изменяется по закону передаваемого сообщения. Так как любое гармоническое колебание характеризуется амплитудой, частотой и мгновенной фазой, то и радиосигналы бывают с амплитудной модуляцией (АМ), с частотной (ЧМ) и фазовой модуляцией (ФМ). В настоящее время в системах связи используется большое разнообразие сигналов со сложными видами модуляции, например, с амплитудно-импульсной модуляцией (АИМ), Кодово-импульсной модуляцией (КИМ), широтно-импульсной модуляцией (ШИМ). К настоящему времени разработан не один десяток сложных видов модуляции и, естественно, большое количество соответствующих сигналов с различными характеристиками.

    На рис. 1.3 приведены осциллограммы различных, широко применяемых в системах связи, сигналов.

    На этом рисунке изображены следующие сигналы: а – периодический импульсный, б – непрерывный (аналоговый) радиосигнал с АМ, в – дискретный, г – случайный, д – цифровой кодированный, е – цифровой с АМ, ж – цифровой с ЧМ, з – цифровой с ФМ, и – цифровой с фазовой манипуляцией.

    Необходимо также отметить, что жесткой классификации к реальным сигналам применить невозможно. Например, сигнал (рис. 1.3, а) можно классифицировать как детерминированный периодический импульсный видеосигнал, а сигнал (рис. 1.3, з) как случайный цифровой радиосигнал с ЧМ.

    Рис. 1.3. Осциллограммы сигналов, применяемых в системах связи

    Кроме перечисленных, используются и другие признаки классификации сигналов, например, иногда различают информационные и управляющие сигналы (колебания) и т. д. Некоторые из перечисленных типов сигналов будут в дальнейшем рассмотрены подробнее.

    В теории электрической связи принято рассматривать сигнал как «объект транспортировки». С этой точки зрения сигнал можно описать тремя «габаритными характеристиками», подобными длине, ширине и высоте груза, перевозимого, скажем, по железной дороге. Первая из таких характеристик – длительность сигнала T с, измеряемая в секундах (с). Любой сигнал можно представить суммой (суперпозицией) гармонических колебаний с определенными частотами, поэтому вторая «габаритная характеристика» – ширина спектра, или полоса частот сигнала ΔF с, равная разности наивысшей и низшей частот его гармонических составляющих и измеряемая в герцах (Гц). Третьей «габаритной» характеристикой служит динамический диапазон, измеряемый в децибелах (дБ) и определяемый формулой

    D c = 20lg(Х max / Х min),

    где Х max и Х min – соответственно максимальное и минимальное возможные значения сигнала (напряжения или тока). Произведение этих трех величин называется объемом сигнала:

    V c =T c ΔF c D c

    Полезные сигналы отличаются от мешающих тем, что полезные сигналы служат для передачи сообщений, в то время как мешающие являются причиной их искажения (потери информации).

    Часто полезный сигнал называют просто сигналом, а мешающий – помехой. Сигналы и помехи, рассматриваемые в совокупности, будем называть колебаниями.

    Помехи могут быть естественными и преднамеренными (искусственными), шумовыми (флюктуационными) и импульсными, активными и пассивными и т.д.

    Необходимо отметить, что одно и то же колебание может быть полезным сигналом по отношению, например, к одной системе связи или радиолокации и помехой – по отношению к другой.

    Стоит также отметить, что все помехи, как и все сигналы, являются случайными (если помеха детерминированна, то её можно исключить из наблюдаемого колебания и таким образом избавиться от её вредного воздействия на сообщение).

    На рис. 1.4 приведены примеры случайного сигнала и случайной (шумовой) помехи.

    Рис. 1.4. Случайный (речевой) сигнал (а) и случайная помеха (шум) (б)

    По способу взаимодействия с сигналом помехи подразделяются на аддитивные (от английского add – складывать), мультипликативные (от английского multiply – умножать) и смешанные (сюда относятся все взаимодействия, не сводимые к аддитивному или мультипликативному).