Процессоры интел 4 поколения для пк. Процессоры Intel® Core™ i7

Спустя месяц после анонса процессоров Core восьмого поколения для ноутбуков корпорация Intel официально представила новую формацию чипов и для настольных компьютеров, известную под кодовым названием Coffee Lake. Они производятся по усовершенствованному 14-нм техпроцессу и, как и в случае с мобильными Kaby Lake Refresh, содержат большее по сравнению с предшественниками количество вычислительных ядер. Если не принимать во внимание решения класса HEDT, то это первое увеличение числа ядер в «десктопных» CPU Intel с 2006 года, когда был выпущен Core 2 Extreme QX6700.

В Core i7 и i5 ядер насчитывается шесть, в Core i3 — четыре. При этом в моделях серии i7 реализована технология HyperThreading, благодаря которой они исполняют 12 потоков одновременно. Все шесть новинок, перечень которых представлен на слайде ниже, оснащаются интегрированным GPU Intel HD Graphics 630 и могут работать с накопителями Intel Optane. Заявлена также поддержка DDR4-2666, исключение составляют лишь Core i3, совместимые с DDR4-2400.

Номинальная тактовая частота самого мощного представителя семейства — Core i7-8700K — составляет 3,7 ГГц, что на 500 МГц меньше, чем у прошлогоднего Core i7-7700K. В то же время под нагрузкой чип развивает на 200 МГц больше — 4,7 ГГц. Разница между «паспортной» частотой и турбо-режимом достигает почти 27 %, но динамический разгон Turbo Boost Max 3.0 здесь не используется, речь идёт лишь об обычном Turbo Boost 2.0. Очевидно, к новой частотной формуле Intel прибегла с целью добиться повышения производительности без серьёзного роста требований к теплоотводу: TDP Core i7-8700K равен 95 Вт, что лишь на 4 Вт больше данного показателя i7-7700K.

Говоря о быстродействии новых процессоров, разработчики обещают прирост кадровой частоты в современных играх на 25 %, на 65 % большую скорость в таких приложениях для создания контента, как Adobe Photoshop, и на 32 % более быструю обработку 4K-видео. Вместе с вычислительной мощностью выросли и цены: к примеру, стоимость i7-8700K в партиях от 1000 штук составляет $359, что на 18 % дороже модели 7700K. В розничную продажу новинки поступят 5 октября текущего года, поставки производителям компьютеров начнутся в четвёртом квартале.

Одновременно с CPU Coffee Lake компания Intel анонсировала поддерживающий их набор системной логики Z370. В пресс-релизе сообщается, что материнские платы на базе чипсета соответствуют повышенным требованиям к электропитанию шестиядерных процессоров Core восьмого поколения и позволяют устанавливать оперативную память стандарта DDR4-2666. Первые решения на базе Z370 также будут анонсированы 5 октября, но некоторые из них уже успели в сети до срока.

Почти в 3 раза выше скорость: 802.11ax 2x2 160 МГц позволяет развить максимальную теоретическую скорость передачи данных до 2402 Мбит/с, почти в 3 раза (2,8 раза) выше, чем у стандарта 802.11ac 2x2 80 МГц (867 Мбит/с), как задокументировано в спецификациях беспроводного стандарта IEEE 802.11. Требуется использование беспроводного маршрутизатора 802.11ax со схожей конфигурацией.

По сравнению с другими технологиями ввода/вывода для ПК, включая eSATA, USB, и IEEE 1394 Firewire*. Реальные значения производительности могут различаться в зависимости от используемых аппаратных средств и программного обеспечения. Обязательно использование устройства с технологией Thunderbolt™. Дополнительную информацию можно найти на сайте .

Лучшая в своем классе технология Wi-Fi 6: адаптеры Intel® Wi-Fi 6 (Gig+) поддерживают дополнительные каналы 160 МГц, что позволяет достичь максимально возможной теоретической скорости (2402 Мбит/с) для типичных адаптеров Wi-Fi 2x2 802.11ax PC. Адаптеры премиум-класса Intel® Wi-Fi 6 (Gig+) позволяют в 2–4 раза увеличить максимальную теоретическую скорость по сравнению со стандартными адаптерами Wi-Fi 802.11ax PC 2x2 (1201 Мбит/с) или 1x1 (600 Мбит/с), которые поддерживают только соответствующие обязательному требованию каналы 80 МГц.

Согласно результатам сравнительного теста рабочей нагрузки AIXprt, выполненного для предсерийного процессора Intel® Core™ i7-1065G7 10-го поколения и процессора Intel® Core™ i7-8565U 8-го поколения (результаты INT8). Результаты тестов производительности основаны на тестировании по состоянию на 23 мая 2019 г. и могут не отражать всех общедоступных обновлений безопасности. Подробная информация представлена в описании конфигурации. Ни одна система не может быть полностью защищена.

Корпорация Intel является спонсором и участником сообщества разработчиков Benchmark XPRT, а также основным разработчиком тестов производительности XPRT. Principled Technologies - это издатель семейства тестов производительности XPRT. Необходимо обращаться к другим источникам информации и тестам производительности, чтобы получить полную оценку продукции, которую вы планируете купить.

Изменение тактовой частоты или напряжения может привести к повреждениям или сократить срок службы процессора и других системных компонентов, а также может привести к ухудшению стабильности и производительности системы. В случае изменения спецификаций процессора продукция может не подлежать гарантийному обслуживанию. За дополнительной информацией обращайтесь к производителям системы и компонентов.

Intel и логотип Intel являются товарными знаками корпорации Intel или ее подразделений в США и/или других странах.

* Другие наименования и товарные знаки являются собственностью своих законных владельцев. (если используются сторонние наименования и товарные знаки)

Компания Intel прошла очень длинный путь развития, от небольшого производителя микросхем до мирового лидера по производству процессоров. За это время было разработано множество технологий производства процессоров, очень сильно оптимизирован технологический процесс и характеристики устройств.

Множество показателей работы процессоров зависит от расположения транзисторов на кристалле кремния. Технологию расположения транзисторов называют микроархитектурой или просто архитектурой. В этой статье мы рассмотрим какие архитектуры процессора Intel использовались на протяжении развития компании и чем они отличаются друг от друга. Начнем с самых древних микроархитектур и рассмотрим весь путь до новых процессоров и планов на будущее.

Как я уже сказал, в этой статье мы не будем рассматривать разрядность процессоров. Под словом архитектура мы будем понимать микроархитектуру микросхемы, расположение транзисторов на печатной плате, их размер, расстояние, технологический процесс, все это охватывается этим понятием. Наборы инструкций RISC и CISC тоже трогать не будем.

Второе, на что нужно обратить внимание, это поколения процессора Intel. Наверное, вы уже много раз слышали - этот процессор пятого поколения, тот четвертого, а это седьмого. Многие думают что это обозначается i3, i5, i7. Но на самом деле нет i3, и так далее - это марки процессора. А поколение зависит от используемой архитектуры.

С каждым новым поколением улучшалась архитектура, процессоры становились быстрее, экономнее и меньше, они выделяли меньше тепла, но вместе с тем стоили дороже. В интернете мало статей, которые бы описывали все это полностью. А теперь рассмотрим с чего все начиналось.

Архитектуры процессора Intel

Сразу говорю, что вам не стоит ждать от статьи технических подробностей, мы рассмотрим только базовые отличия, которые будут интересны обычным пользователям.

Первые процессоры

Сначала кратко окунемся в историю чтобы понять с чего все началось. Не будем углубятся далеко и начнем с 32-битных процессоров. Первым был Intel 80386, он появился в 1986 году и мог работать на частоте до 40 МГц. Старые процессоры имели тоже отсчет поколений. Этот процессор относиться к третьему поколению, и тут использовался техпроцесс 1500 нм.

Следующим, четвертым поколением был 80486. Используемая в нем архитектура так и называлась 486. Процессор работал на частоте 50 МГц и мог выполнять 40 миллионов команд в секунду. Процессор имел 8 кб кэша первого уровня, а для изготовления использовался техпроцесс 1000 нм.

Следующей архитектурой была P5 или Pentium. Эти процессоры появились в 1993 году, здесь был увеличен кэш до 32 кб, частота до 60 МГц, а техпроцесс уменьшен до 800 нм. В шестом поколении P6 размер кэша составлял 32 кб, а частота достигла 450 МГц. Тех процесс был уменьшен до 180 нм.

Дальше компания начала выпускать процессоры на архитектуре NetBurst. Здесь использовалось 16 кб кэша первого уровня на каждое ядро, и до 2 Мб кэша второго уровня. Частота выросла до 3 ГГц, а техпроцесс остался на том же уровне - 180 нм. Уже здесь появились 64 битные процессоры, которые поддерживали адресацию большего количества памяти. Также было внесено множество расширений команд, а также добавлена технология Hyper-Threading, которая позволяла создавать два потока из одного ядра, что повышало производительность.

Естественно, каждая архитектура улучшалась со временем, увеличивалась частота и уменьшался техпроцесс. Также существовали и промежуточные архитектуры, но здесь все было немного упрощено, поскольку это не является нашей основной темой.

Intel Core

На смену NetBurst в 2006 году пришла архитектура Intel Core. Одной из причин разработки этой архитектуры была невозможность увеличения частоты в NetBrust, а также ее очень большое тепловыделение. Эта архитектура была рассчитана на разработку многоядерных процессоров, размер кэша первого уровня был увеличен до 64 Кб. Частота осталась на уровне 3 ГГц, но зато была сильно снижена потребляемая мощность, а также техпроцесс, до 60 нм.

Процессоры на архитектуре Core поддерживали аппаратную виртуализацию Intel-VT, а также некоторые расширения команд, но не поддерживали Hyper-Threading, поскольку были разработаны на основе архитектуры P6, где такой возможности еще не было.

Первое поколение - Nehalem

Дальше нумерация поколений была начата сначала, потому что все следующие архитектуры - это улучшенные версии Intel Core. Архитектура Nehalem пришла на смену Core, у которой были некоторые ограничения, такие как невозможность увеличить тактовую частоту. Она появилась в 2007 году. Здесь используется 45 нм тех процесс и была добавлена поддержка технологии Hyper-Therading.

Процессоры Nehalem имеют размер L1 кэша 64 Кб, 4 Мб L2 кэша и 12 Мб кєша L3. Кэш доступен для всех ядер процессора. Также появилась возможность встраивать графический ускоритель в процессор. Частота не изменилась, зато выросла производительность и размер печатной платы.

Второе поколение - Sandy Bridge

Sandy Bridge появилась в 2011 году для замены Nehalem. Здесь уже используется техпроцесс 32 нм, здесь используется столько же кэша первого уровня, 256 Мб кэша второго уровня и 8 Мб кэша третьего уровня. В экспериментальных моделях использовалось до 15 Мб общего кэша.

Также теперь все устройства выпускаются со встроенным графическим ускорителем. Была увеличена максимальная частота, а также общая производительность.

Третье поколение - Ivy Bridge

Процессоры Ivy Bridge работают быстрее чем Sandy Bridge, а для их изготовления используется техпроцесс 22 нм. Они потребляют на 50% меньше энергии чем предыдущие модели, а также дают на 25-60% высшую производительность. Также процессоры поддерживают технологию Intel Quick Sync, которая позволяет кодировать видео в несколько раз быстрее.

Четвертое поколение - Haswell

Поколение процессора Intel Haswell было разработано в 2012 году. Здесь использовался тот же техпроцесс - 22 нм, изменен дизайн кэша, улучшены механизмы энергопотребления и немного производительность. Но зато процессор поддерживает множество новых разъемов: LGA 1150, BGA 1364, LGA 2011-3, технологии DDR4 и так далее. Основное преимущество Haswell в том, что она может использоваться в портативных устройствах из-за очень низкого энергопотребления.

Пятое поколение - Broadwell

Это улучшенная версия архитектуры Haswell, которая использует техпроцесс 14 нм. Кроме того, в архитектуру было внесено несколько улучшений, которые позволили повысить производительность в среднем на 5%.

Шестое поколение - Skylake

Следующая архитектура процессоров intel core - шестое поколение Skylake вышла в 2015 году. Это одно из самых значительных обновлений архитектуры Core. Для установки процессора на материнскую плату используется сокет LGA 1151, теперь поддерживается память DDR4, но сохранилась поддержка DDR3. Поддерживается Thunderbolt 3.0, а также шина DMI 3.0, которая дает в два раза большую скорость. И уже по традиции была увеличенная производительность, а также снижено энергопотребление.

Седьмое поколение - Kaby Lake

Новое, седьмое поколение Core - Kaby Lake вышло в этом году, первые процессоры появились в середине января. Здесь было не так много изменений. Сохранен техпроцесс 14 нм, а также тот же сокет LGA 1151. Поддерживаются планки памяти DDR3L SDRAM и DDR4 SDRAM, шины PCI Express 3.0, USB 3.1. Кроме того, была немного увеличена частота, а также уменьшена плотность расположения транзисторов. Максимальная частота 4,2 ГГц.

Выводы

В этой статье мы рассмотрели архитектуры процессора Intel, которые использовались раньше, а также те, которые применяются сейчас. Дальше компания планирует переход на техпроцесс 10 нм и это поколение процессоров intel будет называться CanonLake. Но пока что Intel к этому не готова.

Поэтому в 2017 планируется еще выпустить улучшенную версию SkyLake под кодовым именем Coffe Lake. Также, возможно, будут и другие микроархитектуры процессора Intel пока компания полностью освоит новый техпроцесс. Но обо всем этом мы узнаем со временем. Надеюсь, эта информация была вам полезной.

Об авторе

Основатель и администратор сайта сайт, увлекаюсь открытым программным обеспечением и операционной системой Linux. В качестве основной ОС сейчас использую Ubuntu. Кроме Linux интересуюсь всем, что связано с информационными технологиями и современной наукой.

В процессе сборки или покупки нового компьютера перед пользователями обязательно встает вопрос . В данной статье мы рассмотрим процессоры Intel Core i3, i5 и i7, а также расскажем в чем разница между этими чипами и что лучше выбрать для своего компьютера.

Отличие № 1. Количество ядер и поддержка Hyper-threading.

Пожалуй, основное отличие процессоров Intel Core i3, i5 и i7 это количество физических ядер и поддержка технологии Hyper-threading , которая создает по два потока вычислений на каждое реально существующее физическое ядро. Создание двух потоков вычислений на каждое ядро позволяет более эффективно использовать вычислительную мощность процессорного ядра. Поэтому процессоры с поддержкой Hyper-threading имеет некоторый плюс в производительности.

Количество ядер и поддержку технологии Hyper-threading для большинства процессоров Intel Core i3, i5 и i7 можно свести к следующей таблице.

Количество физических ядер Поддержка технологии Hyper-threading Количество потоков
Intel Core i3 2 Да 4
Intel Core i5 4 Нет 4
Intel Core i7 4 Да 8

Но, из этой таблицы есть исключения . Во-первых, это процессоры Intel Core i7 их линейки «Extreme». Эти процессоры могут иметь по 6 или 8 физических вычислительных ядер. При этом у них, как и у всех процессоров Core i7, есть поддержка технологии Hyper-threading, а значит количество потоков в два раза больше количества ядер. Во-вторых, к исключениям относятся некоторые мобильные процессоры (процессоры для ноутбуков). Так некоторые мобильные процессоры Intel Core i5 имеют только 2 физических ядра, но при этом имеют поддержку Hyper-threading.

Также нужно отметить, что компания Intel уже запланировала увеличение количества ядер в своих процессорах . Согласно последним новостям, процессоры Intel Core i5 и i7 с архитектурой Coffee Lake, релиз которых запланирован на 2018 год, будут иметь по 6 физических ядер и 12 потоков.

Поэтому не стоит полностью доверять приведенной таблице. Если вас интересует количество ядер в каком-то конкретном процессоре Intel, то лучше свериться с официальной информацией на сайте .

Отличие № 2. Объем кэш памяти.

Также процессоры Intel Core i3, i5 и i7 отличаются по объему кэш памяти. Чем выше класс процессора, тем больший объем кэш памяти он получает. Процессоры Intel Core i7 получают больше всего кэш памяти, Intel Core i5 немного меньше, а Intel Core i3 еще меньше. Конкретные значения нужно смотреть в характеристиках процессоров. Но для примера можно сравнить несколько процессоров из 6 поколения.

Кэш 1 уровня Кэш 2 уровня Кэш 3 уровня
Intel Core i7-6700 4 x 32 KБ 4 x 256 KБ 8 МБ
Intel Core i5-6500 4 x 32 KБ 4 x 256 KБ 6 МБ
Intel Core i3-6100 2 x 32 KБ 2 x 256 KБ 3 МБ

Нужно понимать, что уменьшение объема кэш памяти связано с уменьшением количества ядер и потоков. Но, тем не менее, такое отличие есть.

Отличие № 3. Тактовые частоты.

Обычно процессоры более высокого класса выпускаются с более высокими тактовыми частотами. Но, здесь не все так однозначно. Не редко Intel Core i3 могут иметь более высокие частоты чем Intel Core i7. Для примера приведем 3 процессора из линейки 6 поколения.

Тактовая частота
Intel Core i7-6700 3.4 GHz
Intel Core i5-6500 3.2 GHz
Intel Core i3-6100 3.7 GHz

Таким образом компания Intel пытается поддерживать производительность процессоров Intel Core i3 на нужном уровне.

Отличие № 4. Тепловыделение.

Еще одно важное отличие между процессорами Intel Core i3, i5 и i7 это уровень тепловыделения. За это отвечает характеристика известная как TDP или thermal design power. Данная характеристика сообщает, какое количество тепла должна отводить система охлаждения процессора. Для примера приведем TDP трех процессоров Intel 6 поколения. Как видно из таблицы чем выше класс процессора, тем больше тепла он производит и, тем более мощная система охлаждения нужна.

TDP
Intel Core i7-6700 65 Вт
Intel Core i5-6500 65 Вт
Intel Core i3-6100 51 Вт

Нужно отметить, что TDP имеет тенденцию к снижению. С каждым поколением процессоров TDP становится все ниже. Например, TDP процессора Intel Core i5 2 поколения составлял 95 Вт. Сейчас же, как видим, всего 65 Вт.

Что лучше Intel Core i3, i5 или i7?

Ответ на этот вопрос зависит от того, какая производительность вам нужна. Разница в количестве ядер, потоков, кэш памяти и тактовых частотах создает заметную разницу в производительности между Core i3, i5 и i7.

  • Процессор Intel Core i3 – отличный вариант для офисного или для бюджетного домашнего компьютера. При наличии видеокарты соответствующего уровня, на компьютере с процессором Intel Core i3 вполне можно играть в компьютерные игры.
  • Процессор Intel Core i5 – подойдет для мощного рабочего или игрового компьютера. Современный Intel Core i5 без проблем справится с любой видеокартой, поэтому на компьютере с таким процессором можно играть в любые игры даже на максимальных настройках.
  • Процессор Intel Core i7 – вариант для тех, кто точно знает зачем ему такая производительность. Компьютер с таким процессором подойдет, например, для монтирования видео или проведения игровых стримов.

Haswell – четвертое поколение ЦП микроархитектуры Intel Core. Этакий «так» для Ivy Bridge, с типичной 22 нм технологией производства. Но мне хотелось бы начать обзор с одной причины, а вернее – следствия того, куда направлен вектор развития процессоров.

реклама

«Темный кремний»

Полвека назад один из основателей Intel Гордон Мур сформулировал закон, согласно которому количество транзисторов на кристалле удваивается приблизительно каждые два года. Правило соблюдалось на протяжении половины столетия, поскольку появлялись новые технические процессы, и производство постепенно переходило с 150 нм на 28 нм, продолжая постоянно уменьшаться. Еще несколько лет тому назад считалось, что после 45 нм перейти на 28 нм будет трудно, а до 14-10 нм доберутся только самые продвинутые и богатые производители.

Но в этом году AMD готовится освоить 20-22 нм техпроцесс, а Intel изготавливает 22-нанометровые решения уже больше года. К 2018-2020 годам число слоев металлизации достигнет 18-20, а количество транзисторов внутри процессора превысит триллион! Сумасшедшие цифры, говорящие о практически достигнутом пределе технологий.

Обратная сторона медали – это растущие токи утечки, протекающие через закрытый транзистор, что является основным фактором роста энергопотребления, которое в идеальном случае не должно меняться. Но в существующей реальности в результате глобального роста энергопотребления, а значит, и тепловыделения, процессоры постепенно превращаются в маленькие ядерные реакторы. И на этом этапе инженерам пришлось искать варианты решения проблемы.

Существует несколько подходов, позволяющих микроэлектронике процветать в эпоху темного кремния: внедрение новых технологических достижений, специализация и управление энергопотреблением и оптимизация на системном уровне, параллелизация для повышения энергоэффективности.

Так как процессор в разный период времени своей работы задействуется не полностью, а лишь частично, появилась идея отключать неиспользуемые блоки, которые получили название «темный кремний». И чем больше погасших участков (те, что работают на значительно пониженной тактовой частоте или полностью отключены), тем меньше энергопотребление CPU.

В будущем микроэлектронике потребуется совершить прорыв в использовании транзисторов, которые изготовлены не по традиционной MOSFET-технологии. Изобретение Tri-Gate- и FinFET-транзисторов, а также High-K-диэлектриков позволило на одно-два поколения процессоров отсрочить неизбежное, все же микроэлектроника приближается к финальной стадии развития. Хотя бы потому, что недавно внедренные технологии являются, по сути, разовыми улучшениями.

Попытки найти замену MOSFET предпринимаются давно, и часть из них уже существует в кремнии. Сейчас есть как минимум два кандидата: TFET-транзисторы и наноэлектромеханические транзисторы. От них ожидают радикального уменьшения токов утечки, но промышленное изготовление пока не освоено. По той же причине из-за роста токов утечки увеличивать число ядер по мере уменьшения размера ячеек невозможно. Иначе одновременное включение всех исполнительных устройств приведет к чрезвычайно высокому уровню энергопотребления.

По мнению современных аналитиков, это недопустимо. Да и снабжать такие ЦП двухкилограммовыми радиаторами глупо. Не стоит забывать и о силовой части, расположенной на материнской плате. Ей придется выдавать ток огромный силы. Поэтому внедрение «темного кремния» в процессоры на данный момент единственный способ сдержать TDP в разумных рамках и не уменьшить удельную производительность CPU. Фактически это ответ на рост частоты, энергопотребления и числа транзисторов.

Отдельного внимания требует оговорка о финансовой стороне вопроса производства процессоров. Теоретически, чем больше кристаллов помещается (поскольку их размер уменьшился), тем выгоднее производить новые модели. Но на практике это становится практически бессмысленным: появляются проблемы корпусирования, затраты на разработку и изготовление новых литографических масок составляют до трети себестоимости производства, что приводит к росту стоимости за единицу площади кремния. И, в конечном счете, делает переход на новый техпроцесс финансово непривлекательным. Не забудьте и о возврате потраченных средств. Чем быстрее и чаще вы переходите с большего на меньший техпроцесс, тем дольше вам надо выпускать и продавать товар. С другой стороны, выход годных кристаллов выше.

Второй сценарий развития процессоров – это уменьшение площади кристалла. Что и происходит каждые два-три года. Сам по себе вариант неплохой, разве что придется усложнять разводку микросхемы, закупать дорогостоящее оборудование, проводить исследования. Помимо этого, на определенном этапе разработчики получат сильно перегретые участки в процессоре и столкнутся с проблемой охлаждения. Явный тому пример – переход от Sandy Bridge к Ivy Bridge.

А с выходом Haswell дополнительный нагрев создают элементы управления питанием, расположенные теперь под крышкой. Вероятнее всего оставшаяся часть площади при переходе на более тонкий техпроцесс будет использована для снижения энергопотребления – с девизом «Больше темного кремния – значит лучше!».

И в итоге ввод нового понятия («темный кремний») позволяет производителям экономить пиковое и среднее энергопотребление, оставаясь в рамках фиксированного размера кристалла и ограниченного TDP. Так что в ближайшем будущем процессоры будут сохранять полезную площадь и постепенно сокращать энергопотребление.

Haswell: вид снаружи

Двух- и четырехъядерный варианты Haswell.

Решения поколения Haswell создавались с оглядкой на постоянно растущий сектор ноутбуков и ультрабуков. Поэтому к новым процессорам выдвигались соответствующие требования. А десктопный вариант – это адаптированный к настольным системам ЦП с большими частотами. Увы, но вычислительная часть Haswell не является его преимуществом по отношению к Ivy Bridge. Вообще, говоря о производительности новых моделей Intel, в первую очередь обращают внимание на структурные изменения (система питания перебралась в CPU, новое графическое ядро), а не на удельную скорость выполнения 2D задач.

Революционных изменений архитектуры Intel HD Graphics в Haswell по сравнению с Ivy Bridge нет, но есть новые возможности (в том числе увеличенное количество исполнительных устройств и некоторые архитектурные улучшения), приводящие к росту производительности и существенному снижению энергопотребления.

реклама

Поддерживаемые API:

  • Haswell – DirectX 11.1, OpenGL 4.0 и OpenCL 1.2;
  • Ivy Bridge – DirectX 11.0, OpenGL 3.3 и OpenCL 1.1.

В зависимости от модели процессора GPU Haswell будут выпускаться в разных модификациях, отличающихся количеством исполнительных устройств (EU). К модификациям GT1 и GT2 добавится новая - GT3. Она будет включать не только вдвое больше EU, чем GT2, но и двукратное увеличение количества блоков растеризации, операций с пикселями (Stensil buffer, Color Blend), и кэша третьего уровня. Такой подход теоретически на 50-70% поднимет пиковую производительность встроенной графики, которая, как вы знаете, все еще существенно проигрывает APU (Accelerated Processing Unit) AMD.

Смотрим вглубь

Для того чтобы понять, насколько серьезно Intel расширила отведенную для GPU часть процессора, сначала надо оценить количественные улучшения. Так, Command Streamer (CS) дополнен одним блоком Resource Streamer (RS). Блок сам по себе уникален для современной архитектуры Intel, потому как отлично вписывается в концепцию переложения работы с CPU на GPU. Частично он делает то, что раньше делали драйверы, но, увы, полностью заменить программную сущность он не в силах.

Продолжается и развитие управлением Ring Bus. Еще со времен Sandy Bridge Intel уловила направление развития технологий и высокую значимость энергопотребления, и «отвязала» частоту кольцевой шины от вычислительных блоков ЦП. Теперь Ring Bus изменяет свою частоту в более широких пределах и даже независимо от частоты процессора, что дополнительно экономит энергию.

реклама


Обновились и блоки медиасистемы - в целом они такие же, как и в Ivy Bridge, но, как всегда , лучше.

  • Кодирование MPEG2;
  • Улучшение качества кодирования видео, возможность выбора между производительностью и качеством (режимы Fast, Normal и Quality);
  • Декодирование SVC (Scalable Video Coding) в AVC, VC1 и MPEG2;
  • Декодирование Motion JPEG;
  • Декодирование видео высокого разрешения - до 4096х2304 пикселей.

В процессоре появилось новое исполнительное устройство – Video Quality Engine («Блок качества видео»), которое отвечает за различные улучшения качества (шумоподавление, деинтерлейсинг, коррекция тона кожи, адаптивное изменение контраста). Но только в Haswell к ним добавили еще две особенности: стабилизацию изображения и преобразование частоты кадров.

Со стабилизацией изображения мы знакомы давно, поскольку GPU и APU AMD давно предложили ее нам, а преобразование частоты кадров фишка гораздо более интересная. Это аппаратное решение, которое преобразует 24-30 кадровое видео в 60 кадров! В компании Intel заявляют об интеллектуальном совмещении и добавлении кадров, а не о простом размножении или интерполировании кадров. Если кратко, технология вычисляет движение соседних кадров и с помощью блока «преобразования частоты кадров» делается интерполяция и вставка.

реклама

Помимо этого появились следующие возможности:
  • Работа трех мониторов одновременно;
  • Display Port 1.2 с последовательным подключением панелей;
  • Поддержка дисплеев высокого разрешения до 3840х2160 @ 60 Гц через Display Port 1.2 и 4096х2304 @ 24 Гц через HDMI включительно;
  • Расположение «Коллаж».

Режим «Коллаж» соединяет четыре монитора, превращая всю доступную поверхность в 4К дисплей. Для этого предполагается использовать специальные разветвители.

Что касается самой архитектуры, то блочная схема, когда все процессоры построены из отдельных унифицированных блоков, никуда не делась. Но самое главное то, что процессоры Haswell просто-таки требуют нового разъема, очевидно тоже энергоэффективного .

Новая архитектура Haswell по-прежнему отлично справляется с моно- и многопоточной нагрузкой. Ревизии подверглись две вещи: очередь декодированных инструкций и емкость буферов (в сторону увеличения). Это дало некоторое увеличение точности предсказания переходов и повышение оптимизации разделения потоков в режиме Hyper-Threading. Важным элементом в строении стали новые инструкции, призванные в нужный момент дать двукратный рост скорости. К сожалению, увеличенная пропускная способность кэш-памяти (первого и второго уровней) соседствует со старой латентностью.

реклама

Процессоры Intel Core выполняли до шести микроопераций параллельно. Хотя внутренняя организация и содержит более шести исполнительных устройств, в системе есть только шесть стеков исполнительных блоков. Три порта задействуются для операций с памятью, оставшиеся три – для других вычислений (математических).

На протяжении многих лет Intel добавляла дополнительные типы инструкций и меняла ширину исполнительных блоков (например, в Sandy Bridge были добавлены 256-битные AVX операции), но она не пересматривала количество портов. А вот Haswell наконец-то обзавелся еще двумя исполнительными портами.

Для модельного ряда Haswell Intel ввела новое условие по части питания. Процессоры будут работать с интегрированными регуляторами напряжения, которые установлены внутри. Хотя нет никаких преград для полной интеграции питания в кремний, разработчики ограничились отдельной микросхемой рядом с кристаллом CPU.

В Haswell установлено двадцать ячеек, каждая из которых размером 2.8 мм 2 и создает виртуальные 16 фаз с максимальной силой тока 25 ампер. Несложно подсчитать, что в общей сложности регулятор содержит 320 фаз для питания процессора и обеспечивает очень точную регулировку напряжения. Возможно, в следующем поколении ЦП Broadwell эти компоненты питания будут окончательно перенесены внутрь кристалла CPU.

реклама

Новый набор логики

Модель Седьмая
серия
Восьмая
серия
Количество USB портов 14 14
Порты USB 3.0 до 4 до 6
xHCI порты 4 USB 3.0 20 USB (14+6)