Выделение контура у объекта в UE4.

Работая над проектом, архитекторы и дизайнеры прибегают к такому способу подачи, как 3D визуализация. Чаще всего это статичное изображение, полученное с помощью визуализаторов vRay, MentalRay, Corona и других.

В данной статье речь пойдет о визуализации архитектурных проектов на движке Unreal Engine. Рассмотрим все плюсы и минусы, а также поделюсь своими впечатлениями и опытом на примере готового проекта:

Моделирование

UE4 принимает 3D модели в формате.obj и.fbx.

Моделировать и экспортировать объекты можно в любом 3D редакторе (3ds Max, Blender, Maya и пр.) Желательно, чтобы модель имела хорошую топологию и полигонаж в разумных пределах (если говорить об интерьерах, то основные объекты, такие как диван, кровать и др. не должны превышать 100 тысяч треугольников, т.к. это сильно сказывается на производительности). Лучше, конечно, делать ретопологию каждой модели вручную, но для достижения приемлемого результата можно обойтись и автоматическими средствами, программами или плагинами.

Все модели должны иметь развёртку, чем ровнее она будет, тем качественнее на неё ляжет текстура и, забегая вперёд, свет с тенями, которые предварительно считаются в Unreal Engine.

Материалы

Для построения логики в UE4 используют нодовую систему Blueprint . Она заменяет собой необходимость в программировании, но не исключает возможность писать на C++.

Ниже показаны основные шейдеры, используеммые в сцене, построенных на Blueprint :

Дерево:



Так-как для создания рельефных поверхностей движок требует только normal карту, то есть возможность процедурно создать эту карту из чёрно-белого изображения c помощью нода NormalFromHeightmap

Испачканный металл:



В данном примере была использована чёрно-белая карта, смешанная с числовыми значениями и применена в свойства Metallic и Roughness

Стекло:



На прозрачность материала влияет свойство Opacity, которое регулируется float нодом (значение от 0 до 1)

Далее приведены примеры четырёх основных свойств, которые определяют физическую природу материала. Объединение их вместе различными способами позволяет создавать практически любой возможный тип физической поверхности в реальном мире.

Base Color Metallic Specular Roughness

Освещение

В сцене используется три типа освещения:

После того, как все объекты и источники света были размещены, необходимо просчитать сцену:

Это некий аналог рендера, который просчитывает взаимодействия всех статичных источников света со статичными моделями. Проще говоря, отбрасывает и запекает тени.

Если после просчёта модель или источник света были передвинуты или удалены, тень останется и придётся заново пересчитать сцену.

Пример:

Интерактив

Для улучшения архитектурного проекта, рекомендую добавить некоторые интерактивные элементы, такие как открывание и закрывание дверей, музыкальное сопровождение, различные звуковые и визуальные эффекты. Ниже мы рассмотрим некоторые из них.

1. Открывание и закрывание двери
Рассмотрим простой вариант, когда дверь открывается автоматически, если приближается игрок и закрывается, если игрок отдаляется:

Сама дверь состоит из двух элементов: статичная модель дверного проёма и интерактивное дверное полотно, логика которого описана в Blueprint .

В компоненты чертежа входит статичная 3D модель дверного полотна и фигура Box , которая играет роль триггера:

Нодовая структура выглядит следующим образом:


Ноды OnComponentBeginOverlap и OnComponentEndOverlap отвечают за коллизию с триггером.
Timeline_0 - это анимация с функцией Float Track (New Track 0).
Make Rot создаёт вращение по любой оси, в данном случае по оси Z (Yaw).

Функция Float Track (New Track 0):


Значение от 0 до -90 градусов изменяется в течение 1 секунды

Нам остаётся скомпилировать Blueprint и добавить его в сцену, выровняв точно под дверной проём.

2. Звуковые эффекты
Вы можете оживить ваш проект, добавив в сцену Ambient Sound . Например, пустить ненавязчивую музыку на задний план или добавить звуковой эффект при открывании/закрывании дверей.

3. Постобработка
В широком смысле, постобработка - это все то, что происходит после основных действий по построению изображения.
Выполнить постобработку вы можете либо в камере, либо блоком Post Process Volume , добавив его в проект и корректируя габариты. Войдя в этот блок, начнётся процесс постобработки.

К примеру, блок Post Process Volume с увеличенной яркостью рекомендуется ставить в плохо-освещённые помещения:

Так Post Process Volume выглядит в сцене:

Unreal Engine 4 поддерживает множество эффектов для постобработки, далеко не все они могут вам пригодиться, но некоторые из них я перечислю:

  • Vignette (Виньетка) - затемнение или осветление краёв кадра
  • Depth of Field (Глубина резкости) - всё, что находится ближе или дальше дистанции фокусировки, постепенно теряет резкость и размывается
  • Bloom (Свечение) - засвет, получаемый от ярких источников освещения
  • Lens Flare (Блик) - воспроизводит эффект преломления солнечных лучей в объектив камеры
  • Film (Шум) - даёт анимированный шум, имитируя плёночную кинокамеру

Подведём итоги

Несмотря на кажущуюся сложность работы, редактор Unreal Editor 4 выглядит приветливым. А с ростом производительности компьютерного оборудования GPU рендер может изменить традиционный подход к работе визуализаторов, дизайнеров и архитекторов.

Из минусов хочу отметить пару моментов. На данный момент добиться фотореалистичной картинки не просто, но если уйти в проект с головой и потратить больше времени, то

Тени дают объектам ощущения контакта с поверхностью, тем самым позволяя ощутить глубину и пространство.Статические тени отображаются настолько далеко, насколько идёт рендеринг, но динамические тени могут сильнее сказатся на производительности.Данный документ покажет базовые виды теней которые есть в Unreal Engine 4.

Static Lights

Статическое освещение отбрасывает полностью статические тени и свет, это означает, что такой тип освещения не имеет прямого влияния на динамические объекты (статическое освещение запечено в кеш непрямого освещения, поэтому оно имеет некоторый эффект), как на примере ниже.

Персонаж на картинке выше, тот что слева, стоит под статическим светом, свет и тени никак не взаимодействуют с ним; а тот что справа, стоит под стационарным источником света.

Прямое освещение каскадными картами теней(затенение всей сцены)

Directional Stationary Lights — специальные источники света, т.к. они поддерживают затенение всей сцены посредством Cascaded Shadow Maps , в момент использования статического затенения.Это очень удобно на уровнях с множеством анимированной растительности; вы хотите движущиеся тени вокруг игрока, но не хотите переплачивать за чрезмерное количество каскадов, для покрытия больших дистанций обзора.С увеличением расстояния, динамические тени растворяются среди статических теней настолько, что переход практически незаметен.Чтобы применить данную возможность, просто измените значение Dynamic Shadow Distance StationaryLight в DirectionalLightStationary , чтобы изменить дистанцию растворения.

Тени Стационарных источников света

Динамические объекты (такие как StaticMeshComponents и SkeletalMeshComponents с подвижностью установленной в Movable ) должны быть интегрированны в мировое статическое затенение на дистанции полей карт затенения.Это достигается с помощью теней для каждого объекта.Каждый подвижный объект создаёт 2 динамические тени от стационарного источника света: одну, для управления статической тени проецируемой на объект и вторую, для управления тени проецируемую на остальной мир.С такой настройкой, затенение для стационарных источников света происходит от динамических объектов,которое оно затрагивает.Это означает, что стоимость может варьироваться от очень маленькой, до огромной, в зависимости от того, сколько присутствует динамических объектов.При наличии достаточного количества динамических объектов, более эффективным будет использование Movable освещения. На сцене ниже, сферы — подвижный объект, и все они получают тени от статического мира и проецируют собственные тени, которые соединяются с остальными тенями на отдалении.Фруструм Per Object теней для каждого подвижного объекта также показан.

Per Object тени используются для подвижных компонентов используя теневую карту границ объекта, поэтому границы должны быть точными. Для скелетал мешей это значит, что они должны иметь physics asset . Для частиц — любой фиксированный ограничивающий бокс должен быть настолько велик, чтобы вместить в себя все частицы.

Динамические тени

Подвижные источники света проецируют полностью динамические тени (и освещение) на всём.Информация об освещении не будет запекатся в лайтмапы.Статик меши, Скелетал меши, эффекты, прочее — будут получать и проецировать динамические тени от подвижных источников света.

Динамические тени самые ресурсоёмкие.

Превью теней

Когда редактируете стационарное или статическое освещение, тени могут стать «незапечёнными», Preview Shadowing показывает вам как будут выглядеть ваши тени после запекания.

Такие (имеется ввиду незапечённые) тени показываются в редакторе с наложенным поверх текстом «Preview «, для распознавания их среди других теней.

Если вы протестируете свою игру в редакторе, до того как перезапечёте освещение, то превью тени исчезнут, так как они существуют только лишь в режиме редактирования, но никак не в режиме игры в редакторе.

Для того, чтобы получить тени из превью теней, вам необходимо выбрать опцию Build Lighting из меню Build .

Вы можете отключить превью теней посредством снятия галочки с Preview Shadows Indicator во вьюпорте Show/Visualize меню.

Если вы хотите изменить текст материал функции освещения, которая проецирует этот текст, то вы можете его найти в: Engine/EditorMaterials/PreviewShadowIndicator.

Всё вместе

Когда все тени собраны вместе, каждая из которых привносит свои сильные стороны и компенсирует слабые стороны других — они впечатляют своим видом.

Имитирует небесное освещение путем захватывания панорамного изображения (так же именуемое как Cubemap ) дальних частей сцены (которые дальше параметра SkyDistanceThreshold ), и применения его в качестве освещения. Это значит, что освещение от будет схож с окружением сцены. В том числе будет захватывать и побочные объекты, вроде наложенных облаков на скайбокс или гор вокруг сцены. Вы так же можете вручную установить Cubemap’у, которая будет освещать пространство.

Изображение будет изменено только тогда, когда вы перепросчитываете освещение или обновляете сцену при помощи команды Build -> Update Reflection Captures . Вы также можете обновить SkyLight при помощи кнопки Recapture Scene в параметрах . Учтите, что если вы измените текстуру неба или окружение, дальше параметра SkyDistanceThreshold, освещение не изменится автоматически.

Можно использовать вместо Ambient Cubemap , потому что Sky Light поддерживает локальное затенение, которое препятствует освещению внутренних помещений от небесного освещения.

Бывает двух типов в зависимости от подвижности:

Отражения окружающей среды работают посредством захвата статической сцены во многих точках и перепроицировании их на простые формы, как в сферах отражений.Пользователь выбирает точку захвата размещением эктора ReflectionCapture .Отражения обновляются в режиме реального времени, для помощи в настройке их положения, но статичны в момент выпонения.Проецирование захваченных сцены в простые формы даёт приблизительный параллакс для отражений.Каждый пиксель смешивается между несколькими кубмапами, чтобы получить конечный результат.Меньшие ReflectionCapture экторы переопределяют крупные, поэтому вы можете уточнить отражения в областях по мере необходимости. Для например, вы можете разместить захват в центр комнаты, а затем уточнять его отражения поместив меньшие захваты в углах помещения.

Материалы с разной глянцевитостью поддерживаются путем создания размытых мипмап из захваченных кубмап.

Однако, использования одних лишь кубмап отражений на очень шероховатых поверхностях приводит к чрезмерно ярким отражениям, что имеет значительные утечки из-за отсутствия локальной окклюзии.Это решается за счёт использования данных лайтмапы созданной посредством Lightmass .Отражения кубмап смешиваются вместе с лайтмапой непрямой зеркальности основанной на шероховатости материала.Очень шероховатый материал (полностью диффузный) будет сходится с результатом лайтмапы.Такое смешивание, по факту, является комбинированием частей данных об освещении — высокодетализированной (кубмапы) и низкочастотной (лайтмапы).Для того, чтобы это работало корректно, в лайтмапе может быть лишь непрямоей освещение.Это означает, что только рассеянное освещение от стационарных источников света может улучшить качество отражений на шероховатой поверхности.Статический тип освещения не может быть использован вместе с отражениями окружающей среды, так как он даст прямое освещение на лайтмапу. Учтите, что для того чтобы увидеть результат этого смешивания, лайтмапа должна быть хотя бы раз построена,и карта должна иметь значимое непрямое диффузное освещение.

Формы захвата отражений

На данный момент существует 2 формы захвата отражений: сфера и коробка.Форма захвата очень важна, так как она контролирует, какая часть сцены будет захвачена в кубмапу,как форма сцены будет перепроецирована в отражениях, и кака часть сцены сможет получать отражения из кубмапы (зоны влияния).

Форма сферы

Форма сферы наиболее используемая.Она никогда не совпадает с формой отражаемой геометрии, но она не имеет разрывов и углов, следовательно искажение равномерное.

Форма сферы имеет оранжевый радиус влияния который контролирует какие пиксели могут быть затронуты и захвачены в кубмапу и перепроецированы в сферу.

Точки захвата с меньшим радиусом перезаписывают данные больших по размеру точек захвата.

Форма коробки

Форма коробки довольно ограниченна в применении, и в основном применяется для корридоров и прямоугольных комнат.В причина в том, что только пиксели внутри коробки, могут захватить отражения, и в то же время вся геометрия внутри коробки проецируется по форме этой самой коробки, создавая значительные артефакты во многих случаях.

Когда коробка выделена, она имеет оранжевую окантовку формы проецирования.Форма коробки захватывает лишь то, что находится внутри коробки,и с удалением от центра захват затухает.

Редактирование

Важно отметить, что захват отражение не происходит автоматически.Перезахват отражений происходит только лишь при загрузке карты,прямом редактировании, перезапечении освещения.Если вы изменили яркость света или передвинули геометрию в сцене, то вам необходимо выбрать точку захвата и нажать Update Captures, чтобы обновить данные захвата.

Режим отображения Reflection Override был добавлен, чтобы легче было увидеть, как настроены отражения.Этот режим перекрывает все нормали сглаживая варшины нормалей, и делает все поверхности полностью зеркальными и полнстью гладкими (как зеркало).В этот режиме хорошо видны ограничения и артефакты, поэтому стоит иногда переключатся в этот режим, чтобы видеть как ведут себя отражения нормальных условиях.

Были добавлены несколько новых полезных флажков для изоляции некоторых компонентов освещения:

Настройка уровня для использования отражений окрущающей среды


Вопросы производительности

Стоимость отражение окружающей среды зависит только от того, сколько захватов влияет на пиксель на экране.Это очень похоже на отсроченного освещение.Захваты отражений ограничены своими радиусами влияния.Зеркальность реализуется через кубмапу мипмапов, поэтому разница в производительности между резкими и грубыми отражениями невелика.

Ограничения

  • Отражения с помощью этого метода, являются приблизительными.В частности, отражение объекта редко совпадает с фактической формой объекта в сцене из-за проекции его на простые формы.Это приводит к созданию нескольких видов этого объекта в отражениях, так как много кубмап смешивается вместе.Плоские, гладкие поверхности, которые дають зеркальные отражения, более заметно покажут ошибки.Используйте детальные карты нормалей и отражений, чтобы разбить отражения.
  • Захват сцены в кубмапы — медленный процесс, который должен быть выполнен вне игры.Это значит, что динамические объекты не могут быть отображены в отражениях, но тем не меннее, они могут получать отражения от статической сцены.
  • Для уменьшения ошибки, захватывается лишь диффуз сцены.Чисто зеркальные поверхности (металлы) будут иметь своё зеркальное применение, как будто бы если это было их диффузом во время захвата.
  • Затенение

    Подвижные источники света настроены на отбрасывание динамических теней, которые, в значительной мере, влияют на производительность. Стоит заметить, что потребляемые ресурсы растут, в основном, от количества объектов, освещенных подвижными источниками света, а также от сложности геометрии на них. Получается, источник освещения с малым радиусом будет влиять на производительность гораздо меньше, чем с большим радиусом, так как, обычно, в малый радиус попадает гораздо меньше объектов.

    В категории «Transform » в настройках любого источника света вы можете найти параметр «Mobility » («Подвижность»). Измените его на «Movable » («Подвижный»). Это свойство влияет также на источники света, добавленные в блупринт.

Динамическое (Подвижное) Освещение

Некорректное качество теней


В данной части пособия мы рассмотрим решения, направленные на улучшение качества теней соответствующих геометрии.Это также поможет улучшить качество динамических теней.

Пример некорректного затенения геометрии.

Только! для Directional Light: Настройки Cascaded Shadow Maps:

Cascaded Shadow Maps настройки, в Directional Light Details

Dynamic Shadow Distance Movable: Расстояние от камеры, на котором тени будут исчезать.Значение 0 отключает их.

Dynamic Shadow Distance Stationary: Расстояние от камеры, на котором тени будут исчезать.По умолчанию стоит 0 для Directional Stationary Lights.

Num Dynamic Shadow Cascades: Количество каскадов на которое будет делится фрустум.Больше каскакодов- лучше качество, но и ресурсоёмкость возрастает.
Внимание! обязательно тыкните в ссылочку ниже, ибо наверняка не все знают что такое фрустум.

Количество каскадов = 0

Количество каскадов = 1

Количество каскадов = 2

Количество каскадов = 3

Количество каскадов = 4

Cascade Distribution Exponent: Параметр регулирующий, на каком расстоянии от камеры распределение ближе (выше значение) или дальше (меньше значение) от камеры.Значение 1 означает, что переход будет пропорционален разрешению экрана.

Cascade Distribution Exponent Примеры:

Распределение = 1

Распределение = 2

Распределение = 3

Распределение = 4

Cascade Transition Exponent: Параметр регулирующий затухающий регион между каскадами. Низкое значение даст жёсткие грани, высокое- мягкие.
Cascade Transition Exponent Пример:

Эффект перехода

Cascade Transition Exponent

Жёсткая грань (низкое значение)

Смешивание граней (высокое значение)

Shadow Distance Fadeout Fraction: Параметр регулирующий на каком расстоянии тени будут затухать. Высокое значение ослабляет тени, в то время как низкое значение оставляет тени тёмными.
Shadow Distance Fadeout Fraction Пример:

Затухание = 0

Затухание = 1

Far Shadow Cascade Count: Coming in 4.8. More information to follow soon.
Far Shadow Distance: Coming in 4.8. More information to follow soon.

Регулирование Cascades для лучшего качества:


Просачивание теней и их точность, можно настроить с регулированием параметров указанных выше.Данный раздел покажет как лучше настроить параметры, чтобы получить наилучший результат в момент приближённой камеры и когда она отдаляется.Нахождение баланса для каждой отдельной игры- путь проб и ошибок без которого нельзя обойтись.

Это базовая сцена с одними лишь настройками по умолчанию:

Базовая сцена дефолтные настройки:

Тут у нас уже есть некоторые проблемы с точностью теней на гранях объектов.

Проблемные зоны выделены красными рамками

Проблемные зоны, вид поближе

Сфокусируем внимание на минимизации просветов теней, в пределах разумного. По умолчанию, дистанция динамических теней установлена в 20000 юнитов.Данное значение не всегда обязательно и может быть изменено в большую или меньшую сторону.
В этой сцене настройки распределения, дистанции теней и количество каскадов просветов и их точность — на приемлемом уровне.

Базовая сцена финальный результат

Всё динамическое освещение (панель настройки освещения):


Также имеются ещё 2 настройки которые могут улучшить точность освещения.

Местонахождение этих настроек:

Те самые 2 настройки — Shadow Bias и Filter Sharpness

Shadow Bias — контролирует точность теней в сцене, но может выдать артефакты, если значение будет слишком низким.По умолчанию стоит значение 0.5 которое даёт хороший результат между точностью и эффективность.

Shadow Filter Sharpness — помогает скрыть некоторые артефакты при низких значениях и помогает создавать более резкие тени на краях.

Принимая во внимание то, что предыдущие настройки не были применены для текущих примеров, то ниже идут 2 примера с демонстрацией этих параметров (Shadow Bias и Shadow Filter Sharpen):

Shadow Bias

Shadow Bias = 0.5 (Дефолтное значение)

Shadow Bias = 0, установлено слишком низкое значение и поэтому появляются артефакты

Решение данной проблемы- нахождение баланса между установкой не слишком низкого значения и подбором нужного значения в Cascaded Shadows

Shadow Filter Sharpen — делает края тени более резкими при высоких значениях.

Filter Sharpen = 0

Filter Sharpen = 1


Высокое значение параметра даёт резкий край тени, низкое- плавный край тени.

Почему мой подвижный источник света светится сквозь меш на дистанции?


Динамическое освещение, в частности точечные ИС,могут создавать проблемы такого рода.Unreal Engine 4 достаточно хорошо справляется с подобной оптимизацией, поэтому вам не стоит сильно об этом волноваться.Но иногда возникает подобная проблема и метод её решения не всегда очевиден.

Результат который мы хотим.Камера в близи.

Что получается в итоге.Камера в отдалении.

Что же делать?

Чтобы понять что происходит, нужно учитывать, что движок использует глубину сцены, дабы определить, что будет видимым и что будет невидимым при рендере.Тут же мы имеем точечный источник света который испускает свет по всему радиусу до тех пор пока не встретит преграду или пока не столкнётся с границей сферы.

На картинке ниже вы можете наблюдать, как при отдалении камеры появляется halo эффект вокруг внешних граней меша из-за того, что свет не встречает преград на своём пути и исходит во всех направлениях.

Проход света сквозь меш

Вы можете заметить, что если вы на дистанции выберете/выделите такой меш, то освещение вернётся в нормальное состояние.Это объясняется тем, что вы сфокусировались в данный момент на данном меше.

Местонахождение Bounds Scale

По умолчанию значение установлено в 1.0 . Увеличивайте данный параметр на небольшие значение (1.1, 1.2 и тд.). Используя значение = 2 ,удваивает дистанцию которая может стать излишней. Нет необходимости использовать значение больше необходимого, так как это может повлиять на производительность и качество теней.

Вы можете увидеть/визуализировать границы вашего меша перейдя во вьюпорте > Show > Advanced > Bounds

Увидите нечто такое:

Визуализированные границы объекта.

Дополнительная заметка:

Если у вас есть вышеописанная проблема, но вы не хотите увеличивать размеры границ вашего меша из-за проблем с производительностью — попробуйте использовать Spotlight. Данный ИС пускает свет лишь в одном направлении, в отличии от point light который пускает свет по всем направлениям когда меш пропускает свет.Пусть это и возымеет некоторый положительный/требуемый эффект, но лишь методом проб и ошибок вы сможете добиться идеального решения.

Как вариант, мы можете попробовать использовать Стационарное освещение, а не динамическое/подвижное, это позволит вам запечь тени, что в итоге сохранит производительность,и не потребует каждый раз обновлять информацию о тенях.

Alternatively, you could forego a fully movable/dynamic light and use a stationary light that bakes a lightmap texture, which can also save on performance by having zero overhead during runtime for rendering shadow information.

Статическое освещение


Разрешение лайтмапы /Качество теней


Каждый проект уникален и имеет собственные цели, поэтому этот раздел даст вам основные концепции и базисы для познания того, что вы хотите получить от статического освещения.
Представленные настройки ни в коем случае не будут работать всегда и для всех проектов.

Простенькая сцена с 3 статическими мешами.

В данной сцене 3 объекта: 2 стены и пол.Каждый объект имеет собственную тень, которая запечена в текстуру именуемую — лайтмапой (lightmap).Данная лайтмапа хранит в себе информацию о тенях/освещении, которые проецируются на эту текстуру.Она, как правило, создаётся художником в процессе создания ассета.
Что нужно знать про лайтмапы и как их эффективно создавать?

Другими словами, если я хочу увеличить разрешение тени отбрасываемой стеной с дверным проёмом,я буду настраивать не стену с дверным проёмом, а увеличу разрешение лайтмапы пола.Там куда проецируется тень и запекается в лайтмапу.

Теперь нам надо увеличить разрешение лайтмапы для некоторых мешей.Каждый меш имеет свою собственную лайтмапу, разрешение которой можно установить в details panel, когда наш меш выбран в mesh editor.

В данном примере рассматриваем разрешение лайпмапы пола, и только его.
Когда изменяете разрешение лайтмапы, используйте значения только кратные двум (32(по умолчанию),64,128,и т.д.) за исключением BSP представленных ниже.

Качество разрешения лайтмапы зависит от двух факторов: размер меша и размер UV шела на развёртке лайтмапы.

Разрешение = 64

Разрешение = 128

Разрешение = 256

Разрешение = 512

Разница лайтмапы BSP от статического меша в том, что значение лайтмапы BSP уменьшается в пользу лучшего качества.

Resolution = 32

Resolution = 24

Resolution = 16

Resolution = 8

Как и везде, при настройке лайтмапы есть свои ухищрения.Использование маленького меша позволит вам добиться лучшего качества для пола с низким разрешением лайтмапы, в то время как для большего меша вам понадобится увеличить разрешение лайтмапы, что в свою очередь затребует больше ресурсов.

Что такое Overlapping UV
Когда используете статическое или стационарное освещение, необходимо использовать 2 развёртки, иначе вы получите такое сообщение:

Лог после запекания освещения

В данном случае вам надо установить 2й канал развёртки для вашей лайтмапы. В противном случае редактор будет использовать имеющуюся развёртку со всеми имеющимися ошибками.
Вы можете сделать это прямо в редакторе (картинка ниже) либо же с вашем 3d редакторе.

Оригинальные UV и результаты

Перекрывающиеся UVs

Результат в редакторе

Правильные UV и результаты

Правильные UVs

Результат в редакторе

Заметьте, что финальные UV не имеют перекрытий что даёт теням/свету правильно запечся в текстуру.

Как сгенерировать UV в редакторе

Откройте меш, лайтмапу которого ваш нужно отредактировать.
Найдите панельку похожую на эту:

Generate Lightmap UVs = удостоверьтесь в том, что данная галочка стоит.
Min Lightmap Resolution =Минимальный размер разрешения лайтмапы которое вы хотите.
Source Lightmap Index = Источник с которого генерируем лайтмапу
Destination Lightmap Index = Индекс развёртки которую мы хотим использовать в качестве лайтмапы.

Для большинства ассетов это достаточно хорошие настройки.Ключевой момент тут- выбор нужного индекса источника лайтмапы.Это UV который обычной используют для текстур.UV шелы в этой UV будут перепакованы, и не будут образовывать перекрытия поверхностей.Разрешение лайтмапы не влияет на качество развёртки, этот параметр влияет лишь на качество теней которые будут запекаться на эту развёртку.Если вы хотите проверить, какая у вас получилась развёртка после генерации, выберите UV channel 1 (показано на картинке):

Редактор статик мешей, выбор UV Channel

Теперь, после генерации лайтмап UV, осталось выбрать нужный id в настройках самого меша.
В редакторе меша перейдите в details panel, во вкладку “Static Mesh Settings”

В этой вкладке нужно установить разрешение лайтмапы которое нам нужно.
32 — дефолтное разрешение.для маленьких объектов оно вполне подходит, но чем больше объект, тем больше разрешение нужно указывать.
Удостоверьтесь, что значение кратно 2 (пример: 32, 64, 128, 256, и тд.)
В следующем параметре, удостоверьтесь, что индекс координат лайтмапы установлен на правильный канал.
Обычно для лайтмапы стоит значение 1.

Static Mesh Editor Details, Настройки лайтмапы

После использования данных настроек у вас есть правильное разрешение лайтмапы.

А вообще, лайтмапы лучше создавать прямо в 3d редакторе который вы используете, там вы сможете сделать идеальную развёртку для лайтмапы.Какой бы автогенерация не была, но ошибки будут всегда.
Если вы используете в своём пайплайне 3ds max или maya, посмотрите видео ниже, на них человек доступным языком объясняет как сделать отличную развёртку для лайтмапы.
Сказать автору видео «Спасибо» можете в виде like’ов и подписки на канал (там ещё много полезного видео на РУССКОМ языке (всё как вы любите)).


Как контролировать Глобальное Освещение при использовании статического освещения

Когда вы используете статическое освещение, вам необходимо забилдить освещение чтобы увидеть результаты.Лайтмасс (Lightmass) используют для генерации и компиляции текстур, которые будут хранить информацию об освещении и тенях запечённую в лайтмапы.

По умолчанию, значение лайтмасс = 3 световых отскока, дабы получить GI (глобальная иллюминация/освещение) используя статическое освещение.Если необходимо изменить данное значение, то его можно найти во вкладке World Settings.

Здесь вы можете видеть множество настроек того, как освещение будет реагировать в вашей сцене.Для GI мы сфокусируемся лишь на “Num of Indirect Lighting Bounces”. Ползунок ограничен в пределах от 1 до 4.Но вы можете установить любое значение просто вписав его туда

Lightmass World Settings по умолчанию

Global Illumination пример сцены.Одинарный источник света в 250 единиц (15w примерно)

Настройки сцены

0 отскоков

1 отскок

2 отскока

3 отскока

100 отскоков

Первый отскок занимает наибольшее время просчёта.Последующие отскоки будут меньше влиять на время просчёта, но и их влияние будет меньше заметно.

Почему тени пятнистые или как избавится от загрязнения лайтмап?
Пятна, загрязнения, ну или как вы там это называете, не суть;данная ошибка часто возникает при использовании статического освещения в ue4.Не стоит паниковать, ведь исправить это можно через настройки лайтмасс.
Первое что приходит на ум- это то, что это связанно с непрямым освещением от отскоков GI при построении лайтмасс.
Что бы показать как это наиболее эффективно исправить, будем использовать 2 комнаты в качестве примера.

Экстерьер

Интерьер

В данной сцене будет использоваться продакшн (PRODUCTION ) качество освещения.В данной сцене используются ассеты из Starter Content pack .Все меши в этой сцене используют разрешение лайтмап = 256, в других случаях об этом будет написано.Пост процессы установлены в дефолтные значения, с адаптацией глаз для того, чтобы лучше видеть тёмные места комнаты.

После постройки освещения получаются такие вот результаты:

Интерьер 1й комнаты,освещается прямым светом с одним отскоком.

интерьер 2й комнаты, освещается полностью непрямым светом

Brute force может быть использовано для удаления некоторых артефактов путём увеличения разрешения лайтмапы, но это решение не всегда верно и не всегда помогает.
Как пример, во второй интерьерной комнате, разрешение лайтмапы увеличили до 1024:

Первоначальное освещение, дефолтные настройки

интерьер 2й комнаты, разрешение лайтмапы 256

интерьер 2й комнаты, разрешение лайтмапы 1024

В этом примере множество артефактов было исправлено за счёт повышения разрешения лайтмапы, но это также увеличивает потребление памяти.Это наиболее дружественное к производительности решение для непрямого освещения.

World Settings находится тут:

Настройки Lightmass изменяются тут:

Indirect Lighting Quality: увеличивает значение Global Illumination для получения требуемого качества.
Indirect Lighting Smoothness: фактор сглаживания применяемого в Indirect Lighting.
Осторожно! используя значение более чем 1 в Indirect Lighting Quality сильно увеличивает время билдинга

Настройки по умолчанию

Пример настроек #1

Вы также можете настроить количество отскоков непрямого освещения для получения требуемого результа:

количество отскоков непрямого освещения = 4

количество отскоков непрямого освещения= 5

На данный момент настройки освещения установлены в достаточных значениях для сокрытия любых артефактов с текстурами. Но если нет возможности производить данные манипуляции, то можно просто поднять значение разрешение лайтмапы. Тут это значение изменили с 256 до 512 и получили такой вот результат.

Изменённые косвенные параметры с разрешением лайтмапы = 512.

Не изменённые косвенные параметры с разрешением лайтмапы = 1024.

В начале этого урока было показано, как с помощию разрешения лайтмапы в 1024 исправить некоторые артефакты.Но подкрутив некоторые настройки лайтмасс можно добиться лучшего результата с меньшим значением разрешения лайтмапы.

Хотя этот метод и показывает методы решения проблем с «загрязнением» лайтмап без использования света, следует помнить,что добавление в нужное место небольшого источника света, пусть и с низкой интенсивность, без теней- может дать результат получше.Методы описанные выше являются лишь отправной точкой, и лишь методом проб и ошибок вы можете добиться требуемого результата.

Что такое “Lighting needs to be rebuilt” в левом верхнем углу?
Если вы в режиме: игра в редакторе, симуляция, standalone, в левом верхнем углу видиту надпись Lighting needs to be rebuilt, это означает, что вы должны заново запечь/простроить освещение в вашей сцене.Данное явление происходит только при статическом и стационарном освещении.Динамическое освещение не требует билдить освещение.Данное сообщение появляется в случае если источник света был передвинут или модифицирован.


Сообщение об ошибке

Сравнение качества освещения


Когда вам требуется запечь освещение в необходимом качестве, вы можете выбрать качество перейдя во вкладку Build>Lighting Quality>выбрать нужное качество.
По умолчанию качество установлено в Preview .Данный уровень качества быстрее при просчёте нежели Production , но не столь аккуратное.

Превью

Среднее

Высокое

Продакшн

В данном примере легко заметить разницу между качеством превью и продакшн. По сравнению с другими настройками, в продакшине исчезают недочёты/баги, которые имеют место быть в предыдущих качествах.Именно поэтому, если вы наблюдаете при запекании света ошибки/баги/артефакты, рекомендуется забилдить освещение на продакшине, и в том случае, если баги/ошибки не исчезли, идти в лайтмапы и проверять уже их на правильность.

На примере этой статуи заметить разницу между качествами не так уж и легко.Но разница есть.

Качество освещения

Превью

Среднее

Высокое

Продакшн

Улучшение развёртки лайтмапы — залог качественных теней.


качество освещения статуи

Мы разрабатываем виртуальные шоурумы для недвижимости. В этой статье я расскажу, как мы настраиваем освещение в наших проектах.

Подготовка сцены

Сначала настраиваем Light Map Resolution всех объектов на сцене. Для игр обычно разрешение Light Map оставляют синего или увеличивают до зеленого цвета (если смотреть в режиме Lightmap Density). Но нам придется делать максимально большую Light Map, так как мы будем использовать только статический свет. Например, для комнаты я ставлю разрешение Light Map от 1024 до 2048, для стола — 512-1024. Если разрешение недостаточное, появляются "пиксельные" тени, а нам этого не надо. Самое главное  —  найти баланс между хорошим результатом и не перегруженной билдатой. Лучше избегать размера билдаты больше 512 Мб, иначе могут быть проблемы с компилированием экзешника.

Mode Lightmap Density

Размещаем на сцене Box Reflections, Lightmass Portals, Lightmass Importance Volume.

Box Reflections ставим в каждую комнату по ее размеру, чтобы получить отражения на полу и металлических объектах. Planar Reflection мы используем только на зеркалах, которые выносим в свой уровень и подгружаем потом через Level Streaming Volume, так как это сильно влияет на FPS. А в VR самое главное  —  стабильные 90 FPS!

Lightmass Portals ставим на окнах и дверях. Portals увеличивают время билда, поэтому их можно ставить только в затемненных местах, чтобы увеличить количество света.

Lightmass Importance Volume делаем максимально большим, чтобы он не пересекался с внешней оболочкой, иначе могут быть засветы на Movable объектах. Здесь главное экспериментировать с размером самого Importance Volume и количеством Volumetric Lightmap Detail Cell size. Мы используем значение Lightmap Detail Cell size в диапазоне от 25-50  —  большее количество может давать грубые переходы в черный, меньшее  —  дает эффект помятости.

Иногда есть проблемы с тем, что появляются проплешины (leaks) при построении Cells, тогда можно изменить в файле BaseLightmass.ini параметр MinBrickError=0.

Box Reflections, Lightmass Portals, Lightmass Importance Volume

Проверьте свои материалы в моде Shader Complexity . Если есть материалы светло-розового цвета  —  исправьте их.

Mode Shader Complexity

Освещение

Ставим сферу с материалом неба. Размер сферы приблизительно R=15000м. Материал делаем Unlit.

Материал для неба

Ставим на сцену SkyLight , делаем его Static. Отключаем в нем галочку Lower Hemisphere. Не забудьте настроить Sky Distance Treshhold, если его значение будет слишком большим, а внешняя сфера слишком маленькая, свет от SkyLight будет считаться некорректно, и вся сцена будет черной. Intensity оставляем единичку.

Ставим Post Process Volume . Отключаем Ambient Occlusion  —  он влияет на FPS, так как SSAO строится поверх изображения. Тонкие тени мы будем делать через настройки Lightmass. Настраиваем экспозицию. Все остальное я меняю по желанию после билда света, в основном это баланс белого и контраст.

SkyLight and Post Process Settings

Расставляем локальные источники света. Все светильники — статичные! Для большей реалистичности можно использовать значения температуры, как у реальных лампочек. 2700 Кельвинов  —  теплый белый, 4000 Кельвинов  —  прохладный белый.

DirectionalLight  —  в этой квартире мы решили не ставить солнце, чтобы получить более естественное для нашего климата освещение:) От SkyLight получается ровный рассеянный свет, что соответствует зимнему виду из окна. Но я оставлю ниже настройки солнца, которые обычно использую.

DirectionalLight

Lightmass Settings

  1. Static Lighting Level Scale . Этот параметр делает красивые собственные тени, но из-за него могут вылезти артефакты. Мы используем значение 0,2-0,3. Важно помнить, что чем значение ближе к 0, тем большее время занимает билд. Если хотите все супер красивое, используйте значение 0,1, но тогда билд займет больше времени, также нужно увеличить значение Indirect Lighting Quality.
  2. Indirect and Sky Lighting Bounces  —  мы ставим по 10 отскоков. Мне кажется, это оптимальное минимальное значение. Можно сделать Indirect Bounces = 100 и Sky Bounces = 15, но я не вижу значительной разницы между 100 и 10. Долго считаются только первые 3 отскока.
  3. Indirect Lighting Quality  —  мы используем значение 10, оно дает всегда хороший результат. Вообще считается, что перемноженные значения Static Lighting Level Scale и Indirect Lighting Quality должны равняться 1, я советую, по крайней мере, не использовать значения меньше.
  4. Indirect Lighting Smoothness . Можно не менять этот параметр, значение 0,75 делает картинку более четкой.
  5. Отключаем Use Ambient Occlusion . Отключаем галочку Compress Lightmass  —  это сильно увеличивает время билда, но зато не будет никакого песка на стенах.

Lightmass Settings

Итог

Все дверцы на кухонных шкафчиках — Movable. Свет посчитался достаточно ровно, есть небольшой градиент на белых дверцах, но так всегда происходит с белым цветом, по возможности лучше использовать более темные тона.

Кстати, обратите внимание на стол и тени от тарелок. Тени размытые, тарелки как будто левитируют. Это вышло из-за того, что у этого стола неправильная UV-развертка и к тому же недостаточно большой Light Map Resolution  —  64. На первое время можно просто увеличить Light Map Resolution до 512, однако это все равно не даст хорошего результата. Развертка где-то пережата, где-то растянута, и плотность не будет равномерной, что может привести к артефактам. О том как правильно подготовить 3D-контент я напишу в следующей статье.

Дополнительная информация

Про освещение:

Советую посмотреть на ютубе Unreal Lighting Academy . Канал ведет Senior Lighting Artist Dice Tilmann Milde, который отвечает за освещение в Battlefront. Очень полезные видео, но на английском и длительностью больше часа.

В этой статье я расскажу, как создать в UE4 выделение контура. Как правило, разработчики используются для этого двумя разными способами:

  • Рендерят сетку дважды. В этом случае сначала рендерится одна сетка (со стандартным материалом), а затем вторая (со слегка увеличенным масштабом и эмиссионным материалом)
  • Используют алгоритм распознавания контура. Он задается в виде материала пост-обработки

В этой статье я расскажу о втором методе, т.к. он легче интегрируется в уже существующие проекты. Данное руководство написано с учетом того, что вы знакомы с основами UE4 (в частности, с тем, как работает редактор материалов). Кроме того, чтобы было понятно, как реализовать алгоритм распознавания контура в виде UE4-материала, также пригодятся базовые знания в области обработки изображений.

Основные шаги

Реализация эффекта выделения контура в виде материала пост-обработки проходит в несколько этапов:

  • Создание материала пост-обработки, который выделит контур у объектов со включенным параметром Render Custom Depth.
  • Добавление этого материала пост-обработки в список Blendables, который находится в параметрах блока Post Process Volume.
  • Включение параметра Render Custom Depth у всех скелетных и статичных сеток, у которых нужно выделить контур

Ниже я подробнее объясню каждый из этих шагов. Если вы здесь лишь затем, чтобы скачать материал, можете сразу перейти к разделу «Загрузки», который находится в самом конце статьи.

Карта глубины

В UE4 есть отличная функция, позволяющая рендерить отдельные сетки в отдельную карту глубины, а затем использовать ее в материалах. Эта карта глубины содержит информацию о дистанции между каждым пикселем – и в мировых координатах, и в поле зрения камеры. Типичная карта глубины выглядит примерно так:

Наша карта глубины выглядит похожим образом, за исключением того, что в ней видны лишь объекты, у которых включен параметр «Render Custom Depth»:

Карта глубины заметно упрощает применение эффектов вроде выделения контура, созданию которого и посвящена эта статья.

Создание материала

Самый сложный этап. Мы создадим материал, в котором будет реализован оператор Собеля, свернутый с кастомной картой глубины. Другими словами, мы применим на кастомную карту глубины фильтр распознавания контура.

Начнем с алгоритма свертки. В его основе лежит довольно мудреная математика, но на самом деле все сводится к нескольким простым шагам

  • Берем пиксель P
  • Берем 8 пикселей PN, прилегающих к пикселю P
  • Умножаем значения в пикселях P и PN на значения в ядре свертки (т.е. делаем 9 умножений)
  • Складываем полученные значения
  • Возвращаем результат

Сначала нужно задействовать карту глубины. Делается это просто: добавьте нод Scene Texture и подключите его к Emissive Color материала. Также выставьте настройку Scene Texture ID на CustomDepth.

Теперь давайте задействуем прилегающие пиксели. Для этого можно использовать параметр UVs в ноде Scene Texture. Но проблема в том, что UV-параметры работают в текстурных координатах, т.е. используют значения от «0,0» (левый верхний угол текстуры) до «1,1» (правый нижний угол текстуры). Поэтому нам нужно взять инвертированные значения высоты и ширины текстуры, умножить их на смещение от центра ячейки (-1,-1), а затем прибавить к UV-координатам текущего пикселя. Таким образом мы выберем левый верхний пиксель.

В редакторе материалов это будет выглядеть следующим образом:

Теперь делаем то же самое для оставшихся семи прилегающих пикселей. В итоге расчет смещения для всех восьми прилегающих пикселей будет выглядеть следующим образом:

Итак, у нас есть набор UV-параметров для всех прилегающих пикселей, поэтому теперь можно задействовать данные из кастомной карты глубины. Я создал для этого простую функцию материала: в качестве входных параметров она принимает UV-координаты, а затем возвращает значение обработанного пикселя.

Если воспользоваться этой функцией для обработки данных от прилегающих пикселей, то у нас, собственно, будут все необходимые данные для распознавания контура. Теперь давайте создадим еще одну функцию материала, которая будет выполнять свертку.

С левой стороны – два набора входных параметров. Первые 9 векторов – это просто значения пикселей, которые мы будем обрабатывать. Другие 3 вектора служат для значений ядра свертки. По сути, это просто матрица 3х3, но поскольку в редакторе материалов UE4 нет типа данных для матрицы, я сделал собственную при помощи параметров Vector3.

Итак мы собрали все кусочки алгоритма. Теперь осталось лишь объединить их внутри итогового материала.

В операторе Собеля, по сути, задействованы две функции свертки: вертикальная и горизонтальная. Вы, вероятно, заметили, что единственная разница между ними – это входные данные о ядре свертки.

Теперь давайте объединим два этих значения.

Далее открываем редактор материалов, при помощи рассчитанных значений создаем вектор, а затем возвращаем длину вектора. Результатом будет черное изображение с контуром вокруг сеток, у которых включен параметр Render Custom Depth. Осталось лишь смешать полученный эффект с финальной картинкой. В моем случае будет использоваться оператор «IF», но вы можете встроить алгоритм и по-своему. Ничего сложного в этом нет.

ПРИМЕЧАНИЕ: Убедитесь, что ваш материал находится в домене Post Process, а не Surface (имеется в виду «material domain»; это параметр, через который настраивается, для чего будет использоваться материал). Это можно поменять в свойствах материала.

Настройка сцены

Теперь, когда материал готов, нам нужно добавить его в список пост-обработочных эффектов сцены. Выберите у своей сцены блок Post Process Volume и найдите пункт Blendables. Добавьте в список Blendables новый компонент, а затем выберите из списка созданный нами материал. Если блока пост-обработки в вашей сцене нет, создайте его. Также убедитесь, что у блока Post Process свойство Unbound выставлено на «true». В противном случае игрок будет видеть эффект строки только в том случае, если будет находиться внутри блока Post Process Volume.

Чтобы проверить результат, поместите в сцену какую-нибудь сетку и включите у нее параметр Render Custom Depth.

Блюпринт

Я настроил сцену таким образом, что эффект строки будет появляться у статической сетки только в том случае, если игрок наведет на нее прицел. Я решил воспользоваться шаблоном для FPS. Кроме того, я добавил в блюпринт MyCharacter функцию Trace. Она вызывается таймером, тикающим каждые 0,1 секунды, и проверяет, смотрит ли игрок на статичную сетку. Если смотрит, параметр Render Custom Depth выставляется на «true». Если игрок перестает целиться в сетку, значение в переменной Render Custom Depth меняется на «false». Посмотреть, как это все работает, можно в файле, ссылку на который можно найти ниже, в разделе «Загрузки».