Клиент серверная архитектура. Таким образом, все вышеперечисленные недостатки файл-серверной схемы устраняются в архитектуре клиент-сервер

Архитектура клиент-сервер предназначена для разрешения проблем файл-серверных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, понимающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации.

Отличительная черта серверов БД - наличие справочника данных, в котором записана структура БД, ограничения целостности данных, форматы и даже серверные процедуры обработки данных по вызову или по событиям в программе.

Объектами разработки в таких приложениях помимо диалога и логики обработки являются, прежде всего, реляционная модель данных и связанный с ней набор SQL-операторов для типовых запросов к базе данных.

Большинство конфигураций клиент-сервер использует двухуровневую модель, в которой клиент обращается к услугам сервера. Предполагается, что диалоговые компоненты PS и PL размещаются на клиенте, что позволяет обеспечить графический интерфейс. Компоненты управления данными DS и FS размещаются на сервере, а диалог (PS, PL), логика BL и DL - на клиенте. Двухуровневое определение архитектуры клиент-сервер использует именно этот вариант: приложение работает у клиента, СУБД - на сервере (рис. 1.4.).

Рис. 6 . Классический вариант клиент-серверной информационной системы

Поскольку эта схема предъявляет наименьшие требования к серверу, она обладает наилучшей масштабируемостью. Однако сложные приложения, вызывающие большое взаимодействие с БД, могут жестко загрузить как клиента, так и сеть. Результаты SQL-запроса должны вернуться клиенту для обработки, потому что там находится логика принятия решения. Такая схема приводит к дополнительному усложнению администрирования приложений, разбросанных по различным клиентским узлам. Для сокращения нагрузки на сеть и упрощения администрирования приложений компонент BL можно разместить на сервере. При этом вся логика принятия решений оформляется в виде хранимых процедур и выполняется на сервере БД.

Хранимая процедура - процедура с операторами SQL для доступа к БД, вызываемая по имени с передачей требуемых параметров и выполняемая на сервере БД.

Хранимые процедуры могут компилироваться, что повышает скорость их выполнения и сокращает нагрузку на сервер. Хранимые процедуры улучшают целостность приложений и БД, гарантируют актуальность коллективно используемых операций и вычислений. Улучшается сопровождение таких процедур, а также безопасность (нет прямого доступа к данным).

ПРИМЕЧАНИЕ

Следует помнить, что перегрузка хранимых процедур прикладной логикой может перегрузить сервер, что приведет к потере производительности. Эта проблема особенно актуальна при разработке крупных информационных систем, в которых к серверу может одновременно обращаться большое количество клиентов. Поэтому в большинстве случаев следует принимать компромиссные решения: часть логики приложения размещать на стороне сервера, часть - на стороне клиента. Такие клиент-серверные системы называются системами с разделенной логикой. Данная схема при удачном разделении логики позволяет получить более сбалансированную загрузку клиентов и сервера, но при этом затрудняется сопровождение приложений.

Создание архитектуры клиент-сервер возможно и на основе многотерминальной системы. В этом случае в многозадачной среде сервера приложений выполняются программы пользователей, а клиентские узлы вырождены и представлены терминалами. Подобная схема информационной системы характерна для UNIX.

В настоящее время архитектура клиент-сервер получила признание и широкое распространение как способ организации приложений для рабочих групп и информационных систем корпоративного уровня. Подобная организация работы повышает эффективность выполнения приложений за счет использования возможностей сервера БД, разгрузки сети и обеспечения контроля целостности данных.

Двухуровневые схемы архитектуры клиент-сервер могут привести к некоторым проблемам в сложных информационных приложениях с множеством пользователей и запутанной логикой. Решением этих проблем может стать использование многоуровневой архитектуры.

Многоуровневая архитектура

Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:

· нижний уровень представляет собой приложения клиентов, выделенные для выполнения функций и логики представлений PS и PL и имеющие программный интерфейс для вызова приложения на среднем уровне;

· средний уровень представляет собой сервер приложений, на котором выполняется прикладная логика BL и с которого логика обработки данных DL вызывает операции с базой данных DS;

· верхний уровень представляет собой удаленный специализированный сервер базы данных, выделенный для услуг обработки данных DS и файловых операций FS (без риска использования хранимых процедур).

Подобную концепцию обработки данных пропагандируют, в частности, фирмы Oracle, Sun, Borland и др.

Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для разработки приложений и устраняет недостатки двухуровневой модели клиент-сервер.

Централизация логики приложения упрощает администрирование и сопровождение. Четко разделяются платформы и инструменты для реализации интерфейса и прикладной логики, что позволяет с наибольшей отдачей реализовывать их специалистам узкого профиля. Наконец, изменения прикладной логики не затрагивают интерфейса, и наоборот. Но поскольку границы между компонентами PL, BL и DL размыты, прикладная логика может появиться на всех трех уровнях. Сервер приложений с помощью монитора транзакций обеспечивает интерфейс с клиентами и другими серверами, может управлять транзакциями и гарантировать целостность распределенной базы данных. Средства удаленного вызова процедур наиболее соответствуют идее распределенных вычислений: они обеспечивают из любого узла сети вызов прикладной процедуры, расположенной на другом узле, передачу параметров, удаленную обработку и возврат результатов.

С ростом систем клиент-сервер необходимость трех уровней становится все более очевидной. Продукты для трехзвенной архитектуры, так называемые мониторы транзакций, являются относительно новыми. Эти инструменты в основном ориентированы на среду UNIX, однако прикладные серверы можно строить на базе Мicrosoft Windows NT с использованием вызова удаленных процедур для организации связи клиентов с сервером приложений. На практике в локальной сети могут использоваться смешанные архитектуры (двухуровневые и трехуровневые) с одним и тем же сервером базы данных. С учетом глобальных связей архитектура может иметь больше трех звеньев. В настоящее время появились новые инструментальные средства для гибкой сегментации приложений клиент-сервер по различным узлам сети.

Таким образом, многоуровневая архитектура распределенных приложений позволяет повысить эффективность работы корпоративной информационной системы и оптимизировать распределение ее программно-аппаратных ресурсов. Но пока на российском рынке по-прежнему доминирует архитектура клиент- сервер.

Интернет/интранет-технологии

В развитии технологии Интернет/интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных.

Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер - сервер приложений - сервер баз данных - сервер динамических страниц - web-сервер. Благодаря интеграции Интернет/интранет-технологии и архитектуры клиент-сервер процесс внедрения и сопровождения корпоративной информационной системы существенно упрощается при сохранении достаточно высокой эффективности и простоты совместного использования информации.

Области применения и примеры реализации информационных систем

В последние несколько лет компьютер стал неотъемлемой частью управленческой системы предприятий. Однако современный подход к управлению предполагает еще и вложение денег в информационные технологии. Причем чем крупнее предприятие, тем больше должны быть подобные вложения.

Благодаря стремительному развитию информационных технологий наблюдается расширение области их применения. Если раньше чуть ли не единственной областью, в которой применялись информационные системы, была автоматизация бухгалтерского учета, то сейчас наблюдается внедрение информационных технологий во множество других областей. Эффективное использование корпоративных информационных систем позволяет делать более точные прогнозы и избегать возможных ошибок в управлении. Из любых данных и отчетов о работе предприятия можно извлечь массу полезных сведений. И информационные системы как раз и позволяют извлекать максимум пользы из всей имеющейся в компании информации. Именно этим фактом и объясняются жизнеспособность и бурное развитие информационных технологий - современный бизнес крайне чувствителен к ошибкам в управлении, и для принятия грамотного управленческого решения в условиях неопределенности и риска необходимо постоянно держать под контролем различные аспекты финансово-хозяйственной деятельности предприятия (независимо от профиля его деятельности).

Поэтому можно вполне обоснованно утверждать, что в жесткой конкурентной борьбе большие шансы на победу имеет предприятие, использующее в управлении современные информационные технологии.

Рассмотрим наиболее важные задачи, решаемые с помощью специальных программных средств.

Клиент-серверная двухуровневая архитектура ИС

Ключевым отличием архитектуры клиент-сервер от архитектуры файл-сервер является абстрагирование от внутреннего представления данных (физической схемы данных). При такой архитектуре клиентские программы манипулируют данными на уровне логической схемы. Для реализации архитектуры клиент-сервер обычно используют многопользовательские СУБД, например, Oracle или Microsoft SQL Server.

Клиент-серверная информационная система состоит из трех основных компонент: программное обеспечение сервера; программное обеспечение конечного пользователя; промежуточное программное обеспечение (рис.1.7). Программное обеспечение сервера, кроме управления базами данных обеспечивает обслуживание клиентов.

В таких СУБД предусмотрены механизмы блокировки и элементы управления многопользовательским доступом, которые обеспечивают защиту данных от рисков, присущих параллельному доступу. Кроме этого, серверу баз данных приходится защищать данные от несанкционированного доступа, оптимизировать запросы к базе данных, обеспечивать целостность данных и контроль завершение транзакций. В клиент-серверной организации клиенты могут быть достаточно "тонкими", а сервер должен быть "толстым" настолько, чтобы удовлетворять потребности всех клиентов.К программному обеспечению конечного пользователя относятся средства разработки прикладных программ и генераторы отчетов, в том числе электронные таблицы и текстовые процессоры С помощью этого программного обеспечения пользователи устанавливают связь с сервером, формируют запросы, которые автоматически генерируются в запросы на языке SQL и отправляются на сервер. Сервер принимает и обрабатывает запросы, а затем передает полученные результаты клиентам. Промежуточное программное обеспечение ― часть системы клиент-сервер, которая связывает программное обеспечение конечного пользователя с сервером.

Использование архитектуры клиент-сервер позволило создавать надежные (в смысле целостности данных) многопользовательские ИС с централизованной базой данных, независимые от аппаратной (а часто и программной) части сервера БД и поддерживающие графический интерфейс пользователя на клиентских станциях, связанных локальной сетью. Причем издержки на разработку приложений существенно сокращались.

Такая архитектура имеет два уровня, характерной особенностью которой является то, что клиентские программы работает с данными через запросы к серверному ПО, а базовые функции приложения разделены между клиентом и сервером (рис.1.8).

К достоинствам этой архитектуры относятся:

· полная поддержка многопользовательской работы;

· обеспечение целостности данных.

Двухуровневую архитектуру целесообразно использовать на предприятиях с количеством пользователей несколько десятков, поскольку операционная система сервера при обслуживании большого количества клиентов слишком перегружается управлением многочисленными соединениями с сервером.

Недостатками двухуровневой клиент-серверной архитектуры являются:

· Бизнес логика приложений осталась в клиентском ПО. При любом изменении алгоритмов, надо обновлять пользовательское ПО на каждом клиенте.

· Высокие требования к пропускной способности коммуникационных каналов с сервером, что препятствует использование клиентских станций иначе как в локальной сети.

· Слабая защита данных от взлома, в особенности от недобросовестных пользователей системы.

· Высокая сложность администрирования и настройки рабочих мест пользователей системы.

· Необходимость использовать мощные ПК на клиентских местах.

· Высокая сложность разработки системы из-за необходимости выполнять бизнес-логику и обеспечивать пользовательский интерфейс в одной программе.

БД, работающие по технологии ФАЙЛ-СЕРВЕР;

БД, работающие по технологии КЛИЕНТ-СЕРВЕР.

Файл-сервер


- Обращение к БД (запрос)
- Перекачка данных с блокировкой доступа других пользователей
- Обработка данных на компьютере пользователя

Для наглядности рассмотрим конкретные примеры. Допустим, Вам необходимо просмотреть отправленные платежные поручения за период с 19 по 25 мая на сумму 5000 рублей. Пользователю необходимо будет запустить на своем компьютере клиентское приложение, работающее в БД с платежными поручениями, и ввести нужные критерии отбора. После чего на Ваш компьютер перекачается с сервера базы данных и загрузится в оперативную память файл, содержащий все документы данного вида за весь период на любые суммы. Запущенное на компьютере пользователя клиентское приложение, работающее с БД, само проведет обработку этой информации (отсортирует их), после чего выдаст ответ (на экране появится список платежных поручений, удовлетворяющих Вашим критериям). После этого Вы выберете нужное платежное поручение и попытаетесь отредактировать (изменить) в нем одно поле - например, дату. Во время редактирования происходит блокировка источника данных, то есть всего файла, содержащего этот документ. Это означает, что файл будет либо совсем не доступен остальным пользователям, либо доступен только в режиме просмотра. Причем подобного рода захват происходит даже не на уровне записи, то есть одного документа, а заблокированным является целый файл - то есть вся таблица, содержащая аналогичные документы. Только после полной обработки этого поля и выхода из режима редактирования данный файл платежных поручений будет разблокирован от захвата пользователем. Если же данные хранятся в более объемных объектах, например, в одном файле содержатся платежные поручения и о поступлении средств, и об отправке, то еще большая часть информации будет не доступна. Вы будете работать с одним полем "дата" в одном документе - остальные сотрудники предприятия будут ждать, пока Вы не закончите.

Недостатки ФАЙЛ-СЕРВЕРНОЙ системы очевидны:

    Очень большая нагрузка на сеть, повышенные требования к пропускной способности. На практике это делает практически невозможной одновременную работу большого числа пользователей с большими объемами данных.

    Обработка данных осуществляется на компьютере пользователей. Это влечет повышенные требования к аппаратному обеспечению каждого пользователя. Чем больше пользователей, тем больше денег придется потратить на оснащение их компьютеров.

    Блокировка данных при редактировании одним пользователем делает невозможной работу с этими данными других пользователей.

    Безопасность. Для обеспечения возможности работы с такой системой Вам будет необходимо дать каждому пользователю полный доступ к целому файлу, в котором его может интересовать только одно поле.

    Клиент-сервер

    Обработка запроса одного пользователя:
    - Обращение к БД (SQL-запрос)
    - Передача ответа - результата обработки


    При необходимости произвести обработку информации, хранящейся в БД, запущенное на компьютере пользователя клиентское приложение, работающее с БД, формирует запрос на языке SQL (название от начальных букв - Structured Query Language). Сервер базы данных принимает запрос и обрабатывает его самостоятельно. Никакой массив данных (файл) по сети не передается. После обработки запроса на компьютер пользователя передается только результат - то есть, в предыдущем примере, - список платежных поручений, удовлетворяющих нужным критериям. Сам же файл, в котором хранились данные, послужившие источником для обработки, остается незаблокированным для доступа самого сервера по запросам других пользователей.

    В серьезных клиент-серверных СУБД существуют дополнительные механизмы, снижающие нагрузку на сеть, снижающие требования к пользовательским компьютерам. В качестве примера приведем хранимые процедуры - то есть целые программы обработки данных, хранящихся в БД. В этом случае от пользователя к серверу не передается даже SQL выражения - передается вызов функции с параметрами вызова. Таким образом, рабочее место пользователя еще сильнее упрощается, логика работы программы переносится на сервер. Пользовательское место становится всего лишь средством отображения информации. Все это означает дальнейшее снижение нагрузки на сеть и пользовательские рабочие станции.

    Таким образом, все вышеперечисленные недостатки ФАЙЛ-СЕРВЕРНОЙ схемы устраняются в архитектуре КЛИЕНТ-СЕРВЕР:

      Массивы данных не перекачиваются по сети от сервера БД на компьютер пользователя. Требования к пропускной способности сети понижаются. Это делает возможным одновременную работу большого числа пользователей с большими объемами данных.

      Обработка данных осуществляется на сервере БД, а не в компьютере пользователей. Что позволяет использовать более простые, а значит, дешевые компьютеры на клиентских местах.

      Блокировки (захвата) данных одним пользователем не происходит.

      Обеспечивается доступ пользователя не к целому файлу, а только к тем данным из него, с которыми пользователь имеет право работать.

      Рассмотрев отличие ФАЙЛ-СЕРВЕРА от КЛИЕНТ-СЕРВЕРА, можно завершить рассмотрение понятия "хранилище информации". Важно подчеркнуть, что от вида используемой СУБД во многом зависит работа корпоративной системы. Совершенно очевидно, что для крупных предприятий, с большим количеством пользователей, с огромным числом записей в БД, файл-серверная схема совершенно неприемлема. С другой стороны, отличия в базах данных есть и по другим параметрам и возможностям:

        типам данных, которые могут храниться в БД (числа, даты, текст, рисунки, видео, звук и т.д);

        по организуемым самой БД технологиям доступа к данным в базе и уровню защиты информации от несанкционированного доступа;

        по предоставляемым средствам и методикам разработки, которые могут быть применены для проектирования какой-либо информационной системы на основе данной БД;

        по предоставляемым средствам и методикам анализа информации (данных), которые могут быть применены в информационной системы на основе данной БД;

        по надежности и устойчивости, то есть (грубо) количеству записей (заполненных полей) в БД, при которых обеспечивается надежная и бесперебойная возможность доступа, изменения, анализа информации в БД;

        по быстродействию - времени, затраченному на доступ и обработку информации;

        по возможности организации работы на компьютерах разных производителей, то есть по совместимости с другими платформами и операционными системами;

        по уровню поддержки (сервиса), предоставляемого разработчиком базы данных или его авторизованным дилером;

        по наличию хороших средств создания приложений, использующих данную базу данных и т.д.

        Почему сегодня не выгодно вкладывать деньги в решение файл-сервер? Сегодня уже очевиден дальнейший путь развития баз данных. Появляются многоуровневые клиент-серверные системы, с очень тонкими клиентами, снимающие какие-либо ограничения с клиентских станций, как по производительности, так и по платформе, операционной системе. Если для решения клиент-сервер дальнейшее развитие видится совершенно ясно, и переход с клиент-сервера на многоуровневый клиент-сервер не является проблематичным, то для файл-сервера простой переход в клиент-сервер представляет огромную проблему и колоссальные трудозатраты, если это вдруг окажется возможным вообще.

5 Особенности и преимущества архитектуры "клиент/сервер"

Что же представляет собой архитектура клиент/сервер? В определенной степени ее можно назвать возвратом к модели "хост-компьютер + терминалы", так как ядром такой системы является сервер баз данных , представляющий собой приложение, осуществляющее комплекс действий по управлению данными - выполнение запросов, хранение и резервное копирование данных, отслеживание ссылочной целостности, проверка прав и привилегий пользователей, ведение журнала транзакций. При этом в качестве рабочего места может быть использован обычный персональный компьютер, что позволяет не отказываться от привычной рабочей среды (рис.5).

Рис.5. Этап 4: обработка данных в архитектуре "клиент/сервер"

В чем преимущества клиент-серверных информационных систем по сравнению с их аналогами, созданными на основе сетевых версий настольных СУБД?

Одним из важнейших преимуществ является снижение сетевого трафика при выполнении запросов. Например, при необходимости выбора пяти записей из таблицы, содержащей миллион, клиентское приложение посылает лает серверу запрос, который сервером компилируется, оптимизируется и выполняется, после чего результат запроса (те самые пять записей, а вовсе не вся таблица) передается обратно на рабочую станцию (если, конечно клиентское приложение корректно формулирует запросы к серверу). При этом нередко в первом приближении можно не задумываться, а есть ли во обще индекс, способный облегчить поиск нужных записей, - если он есть он будет использован сервером, если нет - запрос все равно будет выполнен, хотя, скорее всего, за большее количество времени.

Вторым преимуществом архитектуры "клиент/сервер" является возможность хранения бизнес-правил на сервере, что позволяет избежать дублирования кода в различных приложениях, использующих общую базу данных Кроме того, в этом случае любое редактирование данных, в том числе и редактирование нештатными средствами, может быть произведено только в рамках этих правил.

Кроме того, для описания серверных бизнес-правил, в наиболее типичных ситуациях (как в примере с заказчиками и заказами) существуют весьма удобные инструменты - так называемые CASE-средства (CASE означает Computer-Aided System Engineering), позволяющие описать подобные правила и создавать реализующие их объекты базы данных (индексы, триггеры), буквально рисуя мышью связи между таблицами, без какого бы то ни было программирования. В этом случае клиентское приложение будет избавлено от значительной части кода, связанного с реализацией бизнес-правил непосредственно в приложении. Отметим также, что часть кода, связанного с обработкой данных, также может быть реализована в виде хранимых проце дур сервера, что позволяет еще более "облегчить" клиентское приложение, г это означает, что требования к рабочим станциям могут быть не столь высоки. Это в конечном итоге удешевляет стоимость информационной системы даже при использовании дорогостоящей серверной СУБД и мощного сервера баз данных.

Помимо перечисленных возможностей современные серверные СУБД обладают многочисленными средствами управления пользовательскими привилегиями и правами доступа к различным объектам базы данных. Как правило, в базе данных хранятся сведения о ее пользователях, их паролях и привилегиях, а каждый объект базы данных, такой, как, например, таблица, принадлежит какому-либо пользователю. Владелец объекта может предоставить другим пользователям право тем или иным способом использовать объект (например, позволить читать из него данные какому-либо другому пользователю).

Некоторые серверные СУБД поддерживают так называемые роли, представляющие собой совокупность прав на доступ к тем или иным объектам базы данных. Это бывает удобно в случае большого количества пользователей с однотипными должностными обязанностями. Возьмем, к примеру, коммерческий банк . Очевидно, что операционистов такого банка может добавлять записи в таблицу, в которой хранятся сведения об операциях по счетам, но не должна редактировать план счетов банка, тогда как другие сотрудники банка в общем случае не должны вносить изменения в таблицу операций по счетам. В случае наличия в банке нескольких десятков операционисток имеет смысл, если данный сервер позволяет, определить соответствующую роль, описать для нее совокупность прав на объекты базы данных и раздать ее нужному контингенту пользователей.

Современные серверные СУБД обладают также широкими возможностями резервного копирования и архивации данных, а нередко и" оптимизации выполнения запросов. Они также, как правило, предоставляют возможность параллельной обработки данных, особенно в случае использования многопроцессорных компьютеров в качестве сервера баз данных.

Итак, клиент-серверная информационная система состоит в простейшем случае из трех основных компонентов:

Сервера баз данных, управляющего хранением данных, доступом и защитой, резервным копированием, отслеживающего целостность данных в соответствии с бизнес-правилами и, самое главное, выполняющего запросы клиента;

Клиента, предоставляющего другим клиентам интерфейс пользователя, выполняющий логику приложения, проверяющий допустимость данных, посылающий запросы к серверу и получающий ответы от него;

Сети и коммуникационного программного обеспечения , осуществляющего взаимодействие между клиентом и сервером посредством сетевых протоколов.

Есть и более сложные реализации архитектуры "клиент/сервер", например трехуровневые информационные системы с использованием сервере приложений, а также информационные системы, использующие Web-сервер, под управлением которого выполняются приложения, доставляющие данные в Web-браузер пользователя.

1.6. Компоненты системы

Клиент

Компьютер-Клиент является входной точкой конечного пользователя в среду клиент-сервер. Для этого рабочая станция должна быть довольно хорошими вычислительными возможностями и быть способной делать запросы общих ресурсов системы. Клиент использует ресурсы, предоставляемые ему одним или более серверов-обработчиков. Клиент является активным членом этой связки - отправляет запросы и получает ответы. Компьютер- клиент в данном случае относится к конкретному пользователю. В некоторых случаях сама рабочая станция может функционировать как клиент, а в некоторых - как сервер. Клиент может быть как на базе Intel 386, так и на мощном RISC процессоре. Эти рабочие станции работают под графическим пользовательским интерфейсом GUI и перед пользователем предстают в не отличающемся друг от друга виде. Взаимодействуя с пользователем, клиент эффективно скрывает сервер и сеть от пользователя, что создает иллюзию целостности приложения и независимости от всех остальных процессов, машин или сетей.

Сервер

Сервер выполняет ряд заданий для многочисленных клиентов. Суть его функционирования в обработке множественных и зачастую спонтанных запросов клиентов. Тем не менее, сервер должен обеспечивать многозадачность и совместный доступ к памяти. Программное обеспечение операционной системы на сервере выполняет те же функции, что и на компьютере-клиенте (например, обработка прерываний и связь), а так же физические процессы записи-чтения данных. Серверы обеспечивают работу программ, обработку баз данных и файлов, печать, факс-передачу, связь, системы ограничения доступа и систему управления сетью. Сервер довольно специфичен, т. е. выполняет определенные заранее функционально связанные процессы.

Сеть

Суть сети системы к/с - в ее неразрывности с внешней средой. Сеть соединяет рабочие станции общими ресурсами и является системой, в которой передаются данные. Сети могут быть классифицированы по их географической протяженности. Локальные сети обслуживают отдельные 1| строения или несколько отдельно стоящих зданий (к примеру, студ. городок). Городские сети обслуживают целые города или метрополии. Далее идут областные и республиканские сети.

Приложения

Программное обеспечение связывает воедино остальные три компонента архитектуры. Основной отличительной чертой является наличие возможностей обработки данных, физически распределяющих их между клиентом и сервером, но для пользователя представляющего единое целое (так называемая совмещенная обработка).

Есть два различного рода программного обеспечения для технологии клиент-сервер. Программное обеспечение, установленное на сервере (back-end tool), обеспечивает сбор, хранение и обработку данных. Примером подобных программ может служить Oracle, Sybase и Ingres.

Программное обеспечение на компьютере-клиенте (front-end application, фронтальное, предварительной обработки данных) более интерактивное, простое в использовании и более дружественное к пользователю. В качестве примера можно привести такие программы, как Developer 2000, Power Builder и Designer 2000.

С ростом популярности технологии к/с на рынке появилось много фирм-производителей соответствующего ПО. Это не могло не привести к хаосу и беспорядку. По мере роста хаоса были выработаны правила, обязующие разработчиков следовать определенным стандартам. В этих стандартах отражено требование совместимости программного обеспечения, используемого на фронтальных машинах и машинах баз данных.

Каждая машина обработки данных имеет свое фронтальное программное обеспечение. Для Oracle это Developer 2000, а для Sybase – Power Builder. Особенностью системы является то, что каждый фронтальный компьютер может общаться с компьютером базы данных. Так, в случае базы данных Oracle, может использоваться приложение Power Builder с небольшими изменениями.

1.6.1 Соберем все части вместе

Система клиент-сервер - это гармоничная композиция трех отдельных технологий, работающих в неразрывной связке, чтобы обеспечить эффективное хранение и быстрый доступ к данным.

Программное обеспечение на компьютере клиенте, так называемое фронтальное ПО, отвечает за экран и ввод-вывод информации пользователем. Программное обеспечение на сервере несет ответственность за обработку введенной информации и доступ к дискам данных. К примеру, пользователь на машине-клиенте создает запрос данных в базе, фронтальная программа посылает данный запрос через сеть к серверу. Сервер базы данных проводит поиск, и отправляет обратно соответствующие запросу данные (см. устройство системы на рис.6).

Рис.6. Устройство системы «клиент-сервер»

1.7 Многозвенные информационные системы Internet

Распределенные информационные системы представляют собой следующий этап развития архитектуры информационных систем. Потребность в ни появляется при дальнейшем укрупнении информационных систем, связанное с увеличением количества пользователей, появлением удаленных филиалов необходимостью в централизованном хранении и обработке данных. В случае большого числа пользователей возникают проблемы своевременной и синхронной замены версий клиентских приложений на рабочих станция (особенно в случае территориальной разбросанности предприятия), проблемы поддержания настроек, а также перегрузки сети и сервера баз данных.

Эти проблемы решаются путем создания многозвенных информационных систем с "тонким" клиентом (рис.7).

В этом случае проблема поддержки настроек решается за счет переноса и на промежуточное звено (такое программное обеспечение носит название middleware), называемое сервером приложений. На него же можно возложит и другие функции, например проведение расчетов, обработку данных, генерацию отчетов. Соответственно эти же функции изымаются из клиентского приложения, поэтому снижаются требования, как к ресурсам рабочей станции так и к частоте обновления самого клиентского приложения. При разумном распределении функций между сервером приложений и клиентом последний, обычно содержит лишь функциональность, связанную с предоставлением пользователю интерфейса для просмотра и редактирования. По этой причине обычно называется "тонким" клиентом (в отличие от классического "толстого клиента, характерного для традиционной архитектуры "клиент/сервер").

Что касается своевременного обновления версий "тонкого" клиента, эта проблема нередко решается путем поставки приложений с помощью технологий, применяемых в Internet (использование Web-серверов, Web-браузеров, Internet-протоколов). Если речь идет о сети масштаба предприятия, в которой используются для корпоративных целей подобные технологии, то обычно употребляется термин intranet.

Рис.7. Этап 5: обработка данных в многозвенной архитектуре

Наиболее распространенными на сегодняшний день способами поставки "тонких" клиентов с помощью таких технологий являются копирование или установка приложений с Web-сервера, и как один из вариантов - копирование компонента ActiveX, полностью реализующего функциональность "тонкого" клиента, с целью отображения его в браузере.

Говоря об использовании Internet/Intranet, нельзя не остановиться на возможностях создания приложений для Web-серверов. Такие приложения, с одной стороны, могут являться клиентами серверных СУБД, а с другой стороны, обычно генерируют динамические HTML-страницы (в том числе с данными из этих СУБД) по запросу клиентского приложения, роль которого в данном случае выполняет Web-браузер (называемый в этом случае "ультратонким" клиентом, рис.8). Отметим, что в последнее время такие приложения получают все большее распространение.

Рис.8. Принципы работы Web-приложения

1.8 Зачем нужны многозвенные информационные системы

Информационные системы, созданные на основе классической архитектуры "клиент/сервер", называемые двухзвенными системами или системами с "толстым" клиентом, состоят из сервера баз данных, содержащего сгенерированные тем или иным способом таблицы, индексы, триггеры и другие объекты, реализующие бизнес-правила данной информационной системы, и одного или нескольких клиентских приложений, предоставляющих интерфейс пользователя и производящих проверку допустимости и обработку данных, согласно содержащимся в них алгоритмам. Если говорить о клиентских приложениях, созданных для доступа к источникам данных они применяют вызовы функций прикладных программных интерфейсов клиентских частей соответствующих серверных СУБД. Эти вызовы осуществляются например посредством использования библиотеки Borland Database Engine (BDE), хотя в целом это не является обязательным (например, некоторые пользователи Oracle непосредственно вызывают функции Oracle Call Interfase в своих приложениях). Соответственно подобное клиентское приложение требует наличия на компьютере Конечного пользователя клиентской части применяемой серверной СУБД (и наличия лицензии на ее использование) и присутствия в оперативной памяти набора динамически загружаемых библиотек как из клиентской части, так и из ВDE (либо иной заменяющей ее библиотеки), таких, как драйверы баз данных, библиотеки, содержащие функции API клиентских частей и др. При использовании доступа посредством ООВС требуется также наличие на рабочей станции соответствующего ODBC-драйвера и ODBC администратора. Это усложняет технические требования, предъявляемые аппаратной части клиентской рабочей станции, и в конечном итоге приводит к удорожанию всей системы в целом (рис.9).

Другим фактором, приводящим к удорожанию эксплуатации информационной системы, является необходимость инсталляции и конфигурации BDE, ODBC и клиентской части серверной СУБД, что нередко является весьма трудоемким процессом, особенно при большом количестве и неоднородном парке рабочих станций. Отметим, что при создании дистрибутива клиентского приложения, как правило, можно включить в него BDI, но в подавляющем большинстве случаев в него нельзя включить клиентскую часть серверной СУБД, так как она должна быть установлена в соответствии с правилами, указанными в лицензионном соглашении производителя серверной СУБД.

Есть и еще один немаловажный фактор: чем сложнее конфигурация, обеспечивающая доступ к данным рабочей станции, тем чаще происходят нарушения в ее работе. По данным некоторых западных источников, переконфигурация и сопровождение программного обеспечения, позволяющего рабочим станциям получить доступ к данным, приводит в среднем к четырем дням простоя рабочей станции в год.

Имеется еще один фактор, напрямую связанный с немалой популярностью средств разработки, использующих BDE. На сегодняшний день как на российском, так и на мировом рынке имеется немалое количество различных программных продуктов (в особенности энциклопедий и справочников), при инсталляции которых устанавливается и BDE. В этом случае нет никакой гарантии, что версия BDE, входящая в комплект поставки такого продукта, окажется новее, чем используемая в корпоративной информационной системе, и что программа установки не перепишет файл конфигурации BDE, заменив его своим (это, конечно, противоречит правилам создания дистрибутивов, но такие случаи время от времени случаются даже с неплохими коммерческими продуктами). И то и другое обычно приводит к нарушению работоспособности программного обеспечения, предоставляющего доступ к данным.

Рис.-9. Классическое клиентское приложение («толстый» клиент).

Выходом из этой ситуации является создание систем с так называемым "тонким" клиентом, в частности с клиентом, не содержащим в своем составе BDE и клиентскую часть серверной СУБД. В этом случае функциональность, связанная с доступом к данным (а нередко и какая-либо иная функциональность), возлагается на другое приложение, называемое обычно сервером приложений и являющееся клиентом серверной СУБД. В свою очередь, клиентские приложения обращаются не непосредственно к серверной СУБД с помощью вызова функций клиентских API, а к серверу приложений, являющемуся для них источником данных, при этом собственно клиентская часть серверной СУБД и библиотеки типа BDE на рабочей станции, где используется такое клиентское приложение, присутствовать не обязаны. Вместо них (например) применяется одна-единственная динамически загружаемая библиотека. Таким образом, созданная информационная система становится трехзвенной, а сервер приложений является средним звеном в цепи "тонкий клиент - сервер приложений - сервер баз данных" и, соответственно, относится к классу продуктов middleware (рис.10).

Рис.10. Решение проблем: "тонкий" клиент и сервер приложении

Как может быть практически реализована данная технология? С одно стороны, с помощью набора компонентов и классов, обеспечивающих создание серверов приложений и клиентских частей, а с другой стороны, с помощью MIDAS, позволяющего осуществлять запуск удаленных серверов приложений, осуществлять межреестровый обмен сведениями об OLE-серверах и оптимизировать нагрузку в случае использования нескольких серверов приложений. В данной главе будут рассмотрены простейшие практические примеры реализации подобной трехзвенной системы.

1.9 ТЕРМИНОЛОГИЯ РАСПРЕДЕЛЕННЫХ СУБД

В этом разделе в общих чертах описываются специфичные термины, которые используются в книге и касаются взаимодействия компонентов и программ. Такое взаимодействие неизбежно для распределенных СУБД, поэтому, если вы собираетесь разрабатывать только локальные СУБД, можете пропустить этот раздел.

На сегодняшний день существуют три параллельно развивающиеся и конкурирующие технологии взаимодействия объектов и программ: MIDAS (Multitier Distributed Application Srevices Suite), СОМ (Common Object Model - компонентная модель объектов) корпорации Microsoft, CORBA (Common Object Require Broken Architecture - архитектура с поставщиком требуемых общих объектов) независимой группы OMG. Основные принципы этих технологий и использующиеся в них термины описываются ниже.

1.10 Технология MIDAS

Midas (Multitier Distributed Application Srevices Suite) - новый продукт компании Inprise (Borland), предназначенный для эксплуатации сервера приложений, созданных с помощью C++ Builder 3 и Delphi 3. Этот продукт расширяет возможности, предоставляемые разработчикам технологией Microsoft DCOM (Distributed Component Object Model). Этот продукт позволяет обеспечить высокую производительность, надежность и защиту от сбоев при эксплуатации подобных систем.

Архитектура трехзвенной информационной системы, построенной с использованием MIDAS, представлена на рис. 11.

Рис.11. Архитектура трехзвенной информационной системы с использованием MIDAS

Рассмотрим, что представляют собой технологии, используемые в MIDAS.

Remote Data Broker позволяет создавать распределенные трехзвенные информационные системы, состоящие из серверной СУБД, среднего звена и "тонкого" клиента, при этом среднее звено может в общем случае состоять из нескольких серверов приложений и функционировать на нескольких компьютерах. Заметим, что "тонкий" клиент (пример создания которого был рассмотрен выше) представляет собой приложение, не содержащее бизнес-правил, а лишь предоставляющее интерфейс пользователя.

Источником данных для "тонкого" клиента является сервер приложений, получающий от клиента запросы на выборку или изменение данных. При получении такого запроса сервер приложений обращается к серверу баз данных, клиентом которого он является, со своим собственным запросом. Получив от сервера результат выполнения собственного запроса, сервер приложений передает данные клиенту.

Компонент для хранения данных, полученных от сервера приложений, в кэше клиента и обладает как навигационными методами, так и методами, осуществляющими редактирование данных. Кроме того, этот компонент обладает методами позволяющими сохранять данные из кэша в файле и восстанавливать их оттуда, реализуя так называемую "briefcase model"- модель обработки данных, основанную на том, что "тонкий" клиент осуществляет редактирование данных по большей части при отсутствии соединения с сервером, используя лишь кэш или локальные внешние устройства, и лишь иногда соединяется с сервером приложений для передачи ему измененных данных с целью дальнейшей обработки.

Как только клиент получает набор данных от сервера приложений, этот набор может быть использован компонентом, который наряду с другими компонентами, а также поддерживающими их функционирование библиотеками составляет клиентскую часть Remote Data Broker.

Отметим, что Remote Data Broker предоставляет разработчикам широкие возможности для решения характерных для многопользовательского доступа к данным проблем, связанных с попытками одновременного редактирования несколькими пользователями одних и тех же данных. В данном случае механизм блокировок, применяемый в традиционной двухзвенной модели "клиент/сервер", может оказаться неэффективным или даже неприемлемым, так как промежуток времени между редактированием записи и сохранением ее в базе данных может быть весьма длительным. Поэтому при попытке сохранения сервером приложений измененной записи в базе данных производится поиск изменяемой записи либо по ключевому полю, либо по всем полям в зависимости от значения свойства ответственного за этот процесс компонента на сервере приложений и сравнение всех полей изменяемой записи с исходными значениями (т. е. теми, которые были в кэше клиента на момент получения этой записи с сервера до того, как пользователь изменил в кэше эту запись). Если какие-либо поля за время между получением оригинала записи клиентом и попыткой сохранить изменения были модифицированы другим пользователем, запись может быть передана обратно в клиентское приложение для дальнейшей обработки пользователем.

Отметим также, что удаленные модули данных (объекты Remote Data Module), входящие в состав серверной части Remote Data Broker, позволяют предоставить DCOM-интерфейс для| соответствующих объектов, делая их управляемыми извне и превращая, таким образом, сервер приложений в DCOM-сервер. Осуществляется такая публикация объектов путем выбора опции экспорта из удаленного модуля данных та контекстного меню соответствующего компонента при разработке сервера приложений.

Business Object Broker осуществляет для "тонкого" клиента поиск нужного сервера приложений среди доступных извне серверов, опубликованных в глобальном реестре - global registry, представляющем собой открытые части реестров компьютеров, содержащих серверы приложений. Применяется он в случае, когда требуется дублирование серверов приложений и возможность при сбое работы используемого сервера приложений подключить Клиентское приложение к другому серверу, либо при необходимости равномерного распределения клиентов по серверам приложений. Еще одной важной составляющей частью MIDAS является ConstraintBroker, дающий возможность использовать бизнес-правила сервера баз данных "тонким" клиентом. Обычно при проектировании баз данных бизнес-правила и правила ссылочной целостности реализуются в виде объектов базы данных, таких, как индексы, триггеры, хранимые процедуры. Такой подход к проектированию данных позволяет использовать эти объекты различными клиентскими приложениями без написания дополнительного кода.

В случае классической двухзвенной клиент-серверной информационной системы при изменении данных клиентское приложение пытается отправить измененную запись на сервер, а сервер, в свою очередь, пытается сохранить ее в базе данных, начав соответствующую транзакцию. Если запись не удовлетворяет условиям ссылочной целостности, определенным на сервере, производится откат транзакции и сервер возвращает клиентскому приложению сообщение об ошибке, после чего пользователь должен будет корректировать предназначенные для сохранения данные. Если подобные случаи происходят часто, это приводит к перегрузке сети и увеличению времени отклика сервера.

Чтобы уменьшить количество отправляемых на сервер некорректных записей, иногда часть бизнес-правил воспроизводят в клиентском приложении. В этом случае частичный контроль соответствия записи бизнес-правилам производится без обращения к серверу, но возможность отправки некорректной записи все же сохраняется, так как обычно код, содержащийся в хранимых процедурах и триггерах, в клиентских приложениях не воспроизводится. Кроме того, при изменении бизнес-правил такое приложение требует внесения в него изменений, что влечет за собой трудозатраты, связанные с установкой и конфигурацией новой версии на рабочих станциях.

При использовании ConstraintBroker эта проблема решается по-другому. В этом случае Remote Data Broker не только доставляет данные клиентскому приложению, но и обращается к словарю данных сервера приложений с целью получения ограничений сервера и передачи их клиенту. Соответственно при попытке передачи записи на сервер приложений анализ соответствия записи правилам сервера производится непосредственно в клиентском приложении без обращения к серверу баз данных, что снижает загрузку серверов и сети. Отметим, что при изменении бизнес-правил следует внести соответствующие изменения в словарь данных сервера приложений, что можно сделать с помощью входящей в состав MIDAS утилиты, позволяющей помимо этого вносить серверные ограничения, создавать и изменять таблицы, индексы, триггеры, хранимые процедуры, правила ссылочной целостности на сервере баз данных.

Таким образом, использование технологии MIDAS позволяет создавать многозвенные информационные системы с "тонким" клиентом, не нуждающимся в инсталляции и настройке, обеспечивая защиту от сбоев в работе серверов приложений, а также снижение загрузки серверов и сети за счет переноса бизнес-правил и серверных ограничений в клиентское приложение вместе с данными.

Помимо перечисленных очевидных преимуществ трехзвенной архитектуры MIDAS также предоставляет разработчикам дополнительные возможности повышения надежности созданной информационной системы. Например, при наличии в сети нескольких однотипных серверов приложений Сбой одного из них приведет к распределению подключенных к нему "тонких" клиентов по другим серверам - это сделает Business Object Broker. Он же обеспечивает и равномерную загрузку серверов приложений клиентскими соединениями.

Но это еще не все. Именно трехзвенная архитектура позволяет реально осуществить централизацию хранения и обработки данных с одновременным доступом к актуальной информации I случае, когда рабочая станция находится на значительном расстоянии от сервера приложений исключающем прокладку локальной сети, так как доступ к серверу приложений может осуществляться » иными способами, такими, как модемное соединение или доступ через Internet. Требования к надежности такого соединения невысоки, так как при использовании подобной архитектуры активно применяется кеширование данных на рабочей станции, и при этом применение ConstraintBroker позволяет проверять соответствие изменяемых данных правилам сервера непосредственно на рабочей станции, поэтому применение "тонких" клиентов и серверов приложений, управляемых MIDAS, является одним из решений для территориально разбросанных предприятий, организаций с удаленными филиалами, в том числе в других городах и странах.

1.11 Технология СОМ

Технология СОМ разрабатывается корпорацией Microsoft и предназначена для того, чтобы одна программа (клиент) смогла заставить работать объект, являющийся частью другой программы (частью сервера), так, как если бы этот объект был частью клиента, причем обе программы в общем случае могут быть расположены на разных компьютерах (в том числе - находящихся в разных частях света), написаны на разных языках и исполняться под управлением разных операционных систем. Более того, сами компьютеры могут быть разного типа - например, IBM-совместимый ПК и рабочая станция SUN.

Ключевым аспектом СОМ является так называемый интерфейс. Интерфейс имеет уникальный идентификатор и набор параметров, описывающих методы, события и свойства общего объекта. Идентификатор интерфейса ID (Interface Identifier) является частным случаем GUID (Global Unique Identifier - глобально уникальный идентификатор). В состав Windows32 включены функции, генерирующие GUID, причем вероятность совпадения двух GUID ничтожно мала. Параметры интерфейса в общем случае описывают некоторый класс с идентификатором CLSID (Class ID реализуется как GUID), т. е. типы и имена используемых в нем полей, количество и типы параметров обращения к доступным методам и свойствам, имена методов и свойств и т. д. Получив интерфейс внешнего СОМ-объекта, клиент может его использовать так же, как свои собственные объекты. Любой СОМ-объект имеет интерфейс IUnknow, с помощью которого он может получить доступ к основному интерфейсу объекта.

Сервер СОМ представляет собой исполняемую программу или DLL, содержащую один или несколько объектов СОМ.

В зависимости от местоположения клиента и сервера возможны три варианта:

Клиент и сервер располагаются на одной машине и запускаются в одном процессе (именно так взаимодействует программа Delphi с компонентами ActiveX)", в этом случае сервер представляет собой DLL; клиент и сервер располагаются на одной машине, но запускаются в разных процессах (например, таблицы Exel вставлены в документ Word); в этом случае сервер представляет собой программу;

Клиент и сервер располагаются на разных машинах; сервером может быть как программа, так и DLL, используется распределенный вариант СОМ, который называется DСОМ (DСОМ).

В первом случае клиент с помощью интерфейса объекта непосредственно обращается к методам объекта в своем собственном адресном пространстве (рис.12).

Рис.12 Взаимодействие клиента и сервера в одном процессе.

Если сервер запускается в другом процессе или на другой машине, между объектом и клиентом располагаются два посредника - Proxy (уполномоченный) и Stub (заглушка) (рис.13). Клиент помещает параметры вызова в стек и обращается к методу интерфейса объекта. Однако это обращение перехватывает Proxy, упаковывает параметры вызова в пакет СОМ и направляет его в Stub другого процесса, возможно, на другой машине. Stub распаковывает параметры, помещает их в стек и делает вызов нужного метода объекта. Таким образом, метод объекта выполняется в собственном адресном пространстве процесса сервера.

1.12 Технология CORBA

Подобно СОМ, в CORBA активно используется интерфейс объекта. Главным отличием CORBA от СОМ является интегрированный в нее слой, реализующий доступ к удаленным объектам.

В соответствии с этой технологией схема взаимодействия клиента и сервера выглядит следующим образом (рис.14).

На машине клиента создаются два объекта-посредника: Stub (заглушка) и ORB (Object Require Broker - брокер требуемого объекта). Stub выступает как полномочный представитель объекта: с помощью интерфейса объекта клиент обращается к Stub так, как если бы это был сам объект.

Рис.13. Взаимодействие клиента и сервера в разных процессах.

Рис. 14. Взаимодействие клиента и сервера в CORBA.

Получив вызов метода, Stub транслирует этот вызов объекту ORB, который посылает в сеть широковещательное сообщение. На это сообщение откликается один из объектов Smart Agent((«умный» агент), установленный в сетевом окружении клиента (как в локальной сети, так и в Internet). Smart Agent моделирует сетевой каталог, в котором зарегистрированы известные ему серверы объектов. Он отыскивает нужный сетевой адрес сервера и передает запрос объекту ORB на машине сервера. Заметим, что обмен данными между ORB (клиента и сервера) и Smart Agent осуществляется с использованием специального протокола UDP, который более бережно использует сетевые ресурсы, чем протокол ТСР. Через ВОА (Basic Object Adapter - базовый объектный адаптер) данные получает особый объект сервера, который называется Skeleton (скелет). Skeleton помещает параметры вызова в стек адресного пространства объекта и реализует собственно вызов. Роль объекта ВОА заключается в фильтрации обращений к объекту сервера: с помощью его методов сервер через Skeleton может объявить некоторые свои поля и свойства доступными только для чтения иди вовсе срытыми от данного клиента. (Поскольку в рамках технологии данные, которыми обмениваются клиент и сервер, рассматриваются просто как цепочки байт, клиент должен поместить в буфер вызова свой авторизованный ключ в системах, защищенных от «посторонних» клиентов.)

«Изюминкой» CORBA является способ описания интерфейса объекта. Для этих целей разработан специальный язык IDL (Interface Definition Language - язык описания интерфейса), очень напоминающий язык С++. После описания интерфейса в терминах этого языка компилятор IDL автоматически создает объекты Stub и Skeleton. Обмен информацией об интерфейсе между разработчиками осуществляется в терминах языка высокого уровня, в то время как компилятор описания интерфейса переводит его текст в машинные инструкции конкретного компьютера (клиента или сервера). В результате достигается высокая степень независимости обмена данными от аппаратных средств клиента и пользователя.

Для реализации технологии в сетевом окружении клиента должен существовать хотя бы один Smart Agent. Если обмен данными осуществляется в локальной сети офиса, Smart Agent устанавливается на головную машину (на файл-сервер или машину с SQL-сервером), а при обмене данными по Internet - на одном из ее узлов. При создании сервера осуществляется автоматическая регистрация объектов в одном или нескольких Smart Agent. Таким образом, Smart Agent «знает», по каким сетевым адресам расположены его серверы. Это позволяет системе повысить свою надежность: если в одном из серверов произошел сбой, Smart Agent повторит вызов и при повторном сбое переключится на другой сервер.

1.13 Некоторые выводы

Таким образом, архитектура "клиент/сервер" обладает рядом существенных преимуществ по сравнению с традиционной архитектурой информационных систем, основанных на сетевых версиях настольных СУБД: более высокой производительностью, более низким сетевым графиком, улучшенными средствами обеспечения безопасности и целостности данных, возможностью задания бизнес-правил.

Отметим также, что существуют возможности совершенствования клиент-серверных систем путем перехода к многозвенной архитектуре с "тонким" клиентом либо, в случае необходимости, к приложениям для Web-серверов.

1.14. Применение систем Клиент/Сервер

Применение систем клиент-сервер в основном сконцентрировано в:

Банковском деле;

Системе продаж авиа билетов;

Сети Интернет.

Банковское дело

Все мы хорошо знакомы с основными банковскими операциями . Вот они:

2. Размещение и снятие с депозита наличных и безналичных денег ;

3. Предоставление займов;

4. Инвестиции;

5. Следование инструкциям банковского клиента.

Это лишь некоторые из многих функций, исполняемых банком в наши дни. Глобализация экономики привела к широкому распределению филиалов банков по стране. Так, например, у клиента банка открыт счет в Нью-Йорке, а оплатить чек он желает в Лос-Анджелесе, или получить наличными из банкомата во Флориде.

Возможности, о которых мы ранее могли только мечтать, стали реальностью с появлением архитектуры клиент-сервер. Как это выглядит сейчас. Вкладчик, открывший счет в Лос-Анджелесе, хочет снять деньги во Флориде. Он находит ближайший филиал во Флориде и снимает деньги при помощи банковской машины.

Как происходит перевод?

После того, как пользователь вводит номер счета, локальный терминал передает запрос по номеру и сумму счета к узловому компьютеру. Сервер сличает номер счета и проверяет достаточность баланса. Если на счету достаточно денег, с него снимается нужная сумма, и новый баланс «прописывается» на сервере. Это способ проплаты платежей между локальным терминалом и сервером.

Система продаж авиабилетов

Сегодня, например, можно заказать в Коннектикуте билеты на рейс компании TWA из Нью-Йорка через Санкт Луис в Сан-Франциско. Это стало возможным благодаря комбинированным технологическим усилиям сконфигурированных по типу клиент-сервер сетей и баз данных.

По мере того, как необходимо купить билет на самолет из Нью-Йорка в Санкт Луис, из Санкт Луиса в Сан-Франциско, резервируется место для путешественника. Преимущество данной системы в том, что на запрос, сделанный пассажиром из Нью-Йорка о состоянии его заказа, будет выдан ответ на терминал покупки именно о его билетах.

Интеренет

Интернет - это наиболее яркий пример организации системы по типу клиент-сервер. Интернет можно назвать широчайшей подборкой различного материала, доступ к которому можно получить в любой точке мира. Некоторое время назад доступ к ней могли получить те, кто точно знал, где она расположена. Архитектура к/с сделала ее общедоступной.

Известно, что Интернет представляет собой совокупность малых сетей, расположенных по всему миру. Для того, чтобы все сети могли понимать друг друга, необходимо, чтобы они изъяснялись на одном и том же языке, названном ТСР/IР. Вне зависимости от географического расстояния и платформы становится возможным клиентским и серверным машинам разговаривать друг с другом.

Давайте посмотрим, почему Мировая Паутина (WWW) может быть названа наиболее популярным программным приложением к/с в сети Интернет.

Предположим, WWW является подборкой множества страниц информации различного рода - спорт, религия, технология, театр, искусство, музыка, и все это хранится на компьютере. Такой содержащий информацию компьютер называется Веб Сервером. Компьютер-клиент по запросу пользователя обращается к серверу, и запрос этот производится при помощи программы-броузера. Броузер показывает содержимое сервера в форме списка, очень похожего на оглавление книги. Пользователь может выбрать то, что он желает, и запрашивает это на сервере. Сервер выдает именно ту информацию, по которой был запрос.

1.15. Примеры развития серверов индивидуальных баз данных

Так как их главные функции остаются теми же, индивидуальные серверы баз данных различаются в зависимости от области применения. Некоторые из этих различий приведены ниже:

Совместимость между собой;

Оптимизация и производительность;

Контроль за целостностью данных;

Обработка переводов;

Конкурентоспособность, защита от зависаний и контроль многопользовательского доступа;

Защита от несанкционированного доступа и проверка подлинности клиента;

Резервирование, восстановление данных и другие функции базы.

Департамент общего и профессионального образования Брянской области

Государственное образовательное учреждение

Клинцовский текстильный техникум

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ

Технология «Клиент – сервер»

Студент гр. А-90______________________(Петроченко А.О.)

Преподаватель _______________________ (Широкова А.Л.)

Клинцы – 2011

1. Серверы. Основные понятия серверов

2. Модель клиент-сервер

3. Классификация стандартных серверов

4. Вывод

1. Серверы. Основные понятия серверов

Сервер (от англ. server, обслуживающий). В зависимости от предназначения существует несколько определений понятия сервер.

1. Сервер (сеть) - логический или физический узел сети, обслуживающий запросы к одному адресу и/или доменному имени (смежным доменным именам), состоящий из одного или системы аппаратных серверов, на котором выполняются один или система серверных программ

2. Сервер (программное обеспечение) - программное обеспечение, принимающее запросы от клиентов (в архитектуре клиент-сервер).

3. Сервер (аппаратное обеспечение) - компьютер (или специальное компьютерное оборудование) выделенный и/или специализированный для выполнения определенных сервисных функций.

3. Сервер в информационных технологиях - программный компонент вычислительной системы, выполняющий сервисные функции по запросу клиента, предоставляя ему доступ к определённым ресурсам.

Взаимосвязь понятий. Серверное приложение (сервер) запускается на компьютере, так же называемом "сервер", при этом при рассмотрении топологии сети, такой узел называют "сервером". В общем случае может быть так, что серверное приложение запущено на обычной рабочей станции, или серверное приложение, запущенное на серверном компьютере в рамках рассматриваемой топологии выступает в роли клиента (т.е. не является сервером с точки зрения сетевой топологии).

2. Модель клиент-сервер

Клиент-серверная система характеризуется наличием двух взаимодействующих самостоятельных процессов - клиента и сервера, которые, в общем случае, могут выполняться на разных компьютерах, обмениваясь данными по сети.

Процессы, реализующие некоторую службу, например службу файловой системы или базы данных, называются серверами (servers). Процессы, запрашивающие службы у серверов путем посылки запроса и последующего ожидания ответа от сервера, называются клиентами (clients) .

По такой схеме могут быть построены системы обработки данных на основе СУБД, почтовые и другие системы. Мы будем говорить о базах данных и системах на их основе. И здесь удобнее будет не просто рассматривать клиент-серверную архитектуру, а сравнить ее с другой - файл-серверной.

В файл-серверной системе данные хранятся на файловом сервере (например, Novell NetWare или Windows NT Server), а их обработка осуществляется на рабочих станциях, на которых, как правило, функционирует одна из, так называемых, "настольных СУБД" - Access, FoxPro, Paradox и т.п..

Приложение на рабочей станции "отвечает за все" - за формирование пользовательского интерфейса, логическую обработку данных и за непосредственное манипулирование данными. Файловый сервер предоставляет услуги только самого низкого уровня - открытие, закрытие и модификацию файлов. Обратите внимание - файлов, а не базы данных. Система управления базами данных расположена на рабочей станции.

Таким образом, непосредственным манипулированием данными занимается несколько независимых и несогласованных между собой процессов. Кроме того, для осуществления любой обработки (поиск, модификация, суммирование и т.п.) все данные необходимо передать по сети с сервера на рабочую станцию (см. рис. Сравнение файл-серверной и клиент-серверной моделей)


Рис. Сравнение файл-серверной и клиент-серверной моделей

В клиент-серверной системе функционируют (как минимум) два приложения - клиент и сервер, делящие между собой те функции, которые в файл-серверной архитектуре целиком выполняет приложение на рабочей станции. Хранением и непосредственным манипулированием данными занимается сервер баз данных, в качестве которого может выступать Microsoft SQL Server, Oracle, Sybase и т.п..

Формированием пользовательского интерфейса занимается клиент, для построения которого можно использовать целый ряд специальных инструментов, а также большинство настольных СУБД. Логика обработки данных может выполняться как на клиенте, так и на сервере. Клиент посылает на сервер запросы, сформулированные, как правило, на языке SQL. Сервер обрабатывает эти запросы и передает клиенту результат (разумеется, клиентов может быть много).

Таким образом, непосредственным манипулированием данными занимается один процесс. При этом, обработка данных происходит там же, где данные хранятся - на сервере, что исключает необходимость передачи больших объемов данных по сети.

Что дает архитектура клиент-сервер?

Посмотрим на данную архитектуру с точки зрения потребностей бизнеса. Какие же качества привносит клиент-сервер в информационную систему?

Надежность

Сервер баз данных осуществляет модификацию данных на основе механизма транзакций, который придает любой совокупности операций, объявленных как транзакция, следующие свойства:

  • атомарность - при любых обстоятельствах будут либо выполнены все операции транзакции, либо не выполнена ни одна; целостность данных при завершении транзакции;
  • независимость - транзакции, инициированные разными пользователями, не вмешиваются в дела друг друга;
  • устойчивость к сбоям - после завершения транзакции, ее результаты уже не пропадут.

Механизм транзакций, поддерживаемый сервером баз данных, намного более эффективен, чем аналогичный механизм в настольных СУБД, т.к. сервер централизованно контролирует работу транзакций. Кроме того, в файл-серверной системе сбой на любой из рабочих станций может привести к потере данных и их недоступности для других рабочих станций, в то время, как в клиент-серверной системе сбой на клиенте, практически, никогда не сказывается на целостности данных и их доступности для других клиентов.

Масштабируемость

Масштабируемость - способность системы адаптироваться к росту количества пользователей и объема базы данных при адекватном повышении производительности аппаратной платформы, без замены программного обеспечения.

Общеизвестно, что возможности настольных СУБД серьезно ограничены - это пять-семь пользователей и 30-50 Мб, соответственно. Цифры, разумеется, представляют собой некие средние значения, в конкретных случаях они могут отклоняться как в ту, так и в другую сторону. Что наиболее существенно, эти барьеры нельзя преодолеть за счет наращивания возможностей аппаратуры.

Системы же на основе серверов баз данных могут поддерживать тысячи пользователей и сотни ГБ информации - дайте им только соответствующую аппаратную платформу.

Безопасность

Сервер баз данных предоставляет мощные средства защиты данных от несанкционированного доступа, невозможные в настольных СУБД. При этом, права доступа администрируются очень гибко - до уровня полей таблиц. Кроме того, можно вообще запретить прямое обращение к таблицам, осуществляя взаимодействие пользователя с данными через промежуточные объекты - представления и хранимые процедуры. Так что администратор может быть уверен - никакой слишком умный пользователь не прочитает то, что ему читать неположено.

Гибкость

В приложении, работающем с данными, можно выделить три логических слоя:

  • пользовательского интерфейса ;
  • правил логической обработки (бизнес-правил);
  • управления данными (не следует только путать логические слои с физическими уровнями, о которых речь пойдет ниже).

Как уже говорилось, в файл-серверной архитектуре все три слоя реализуются в одном монолитном приложении, функционирующем на рабочей станции. Поэтому изменения в любом из слоев приводят однозначно к модификации приложения и последующему обновлению его версий на рабочих станциях.

В двухуровневом клиент-серверном приложении, показанном на рисунке выше, как правило, все функции по формированию пользовательского интерфейса реализуются на клиенте, все функции по управлению данными - на сервере, а вот бизнес-правила можно реализовать как на сервере используя механизмы программирования сервера (хранимые процедуры, триггеры, представления и т.п.), так и на клиенте.

В трехуровневом приложении появляется третий, промежуточный уровень, реализующий бизнес-правила, которые являются наиболее часто изменяемыми компонентами приложения (см. рис. Трехуровневая модель клиент-серверного приложения )

Рис. Трехуровневая модель клиент-серверного приложения

Наличие не одного, а нескольких уровней позволяет гибко и с минимальными затратами адаптировать приложение к изменяющимся требованиям бизнеса.

Попробуем все вышеизложенное проиллюстрировать на маленьком примере. Предположим, в некоей организации изменились правила расчета заработной платы (бизнес-правила) и требуется обновить соответствующее программное обеспечение.

1) В файл-серверной системе мы "просто" вносим изменения в приложение и обновляем его версии на рабочих станциях. Но это "просто" влечет за собой максимальные трудозатраты.

2) В двухуровневой клиент-серверной системе, если алгоритм расчета зарплаты реализован на сервере в виде правила расчета зарплаты, его выполняет сервер бизнес-правил, выполненный, например, в виде OLE-сервера, и мы обновим один из его объектов, ничего не меняя ни в клиентском приложении, ни на сервере баз данных.