Описание работы шим контроллера. Рекомендации по выбору блока питания

:: Помощь

ШИМ (PWM) контроллер - принцип действия

Типичная микросхема контроллера широтно-импульсной модуляции имеет следующие выводы.

Общий вывод (GND) . Тут говорить нечего. Это ножка, которая подключается к общему проводу схемы питания контролера.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Какая минимальная длинна импульса возможна в шим контроллерах (минимальный коэф фициент заполнения)? На практике получается что, к примеру, sg3525 запускается с минимальной шириной примерно 1 микросекунда. Есть ли методика расчета этого параметра? Очень актуально при разработке импульсных блоков питания с регулировкой напряжения от нуля вольт.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех...


Обзор схем бестрансформаторных источников питания...

Прямоходовый однотактный импульсный преобразователь напряжения, источн...
Как сконструировать прямоходовый импульсный преобразователь. В каких ситуациях о...


Принцип работы, самостоятельное изготовление и наладка импульсного силового прео...


Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана .

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

  • обеспечивает режим плавного пуска преобразователя;
  • ограничивает амплитуду и скважность управляющих импульсов;
  • контролирует уровень входного напряжения;
  • защищает от короткого замыкания и превышения температуры силового ключа;
  • при необходимости переводит устройство в дежурный режим.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в . Он построен на базе микросхемы и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

Читайте так же

Раньше для питания устройств использовали схему с понижающим (или повышающим, или многообмоточным) трансформатором, диодным мостом, фильтром для сглаживания пульсаций. Для стабилизации использовались линейные схемы на параметрических или интегральных стабилизаторах. Главным недостатком был низкий КПД и большой вес и габариты мощных блоков питания.

Во всех современных бытовых электроприборах используются импульсные блоки питания (ИБП, ИИП - одно и то же). В большинстве таких блоков питания в качестве основного управляющего элемента используют ШИМ-контроллер. В этой статье мы рассмотрим его устройство и назначение.

Определение и основные преимущества

ШИМ-контроллер - это устройство, которое содержит в себе ряд схемотехнических решений для управления силовыми ключами. При этом управление происходит на основании информации полученной по цепям обратной связи по току или напряжению - это нужно для стабилизации выходных параметров.

Иногда, ШИМ-контроллерами называются генераторы ШИМ-импульсов, но в них нет возможности подключить цепи обратной связи, и они подходят скорее для регуляторов напряжения, чем для обеспечения стабильного питания приборов. Однако в литературе и интернет-порталах часто можно встретить названия типа «ШИМ-контроллер, на NE555» или «… на ардуино» - это не совсем верно по вышеуказанным причинам, они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Аббревиатура «ШИМ» расшифровывается, как широтно-импульсная модуляция - это один из методов модуляции сигнала не за счёт величины выходного напряжения, а именно за счёт изменения ширины импульсов. В результате формируется моделируемый сигнал за счёт интегрирования импульсов с помощью C- или LC-цепей, другими словами - за счёт сглаживания.

Вывод: ШИМ-контроллер - устройство, которое управляет ШИМ-сигналом.

Основные характеристики

Для ШИМ-сигнала можно выделить две основных характеристики:

1. Частота импульсов - от этого зависит рабочая частота преобразователя. Типовыми являются частоты выше 20 кГц, фактически 40-100 кГц.

2. Коэффициент заполнения и скважность. Это две смежных величины характеризующие одно и то же. Коэффициент заполнения может обозначаться буквой S, а скважность D.

где T - это период сигнала,

Часть времени от периода, когда на выходе контроллера формируется управляющий сигнал, всегда меньше 1. Скважность всегда больше 1. При частоте 100 кГц период сигнала равен 10 мкс, а ключ открыт в течении 2.5 мкс, то коэффициент заполнения - 0.25, в процентах - 25%, а скважность равна 4.

Также важно учитывать внутреннюю конструкцию и предназначение по количеству управляемых ключей.

Отличия от линейных схем потери

Как уже было сказано, преимуществом перед линейными схемами является высокий КПД (больше 80, а в настоящее время и 90%). Это обусловлено следующим:

Допустим сглаженное напряжение после диодного моста равно 15В, ток нагрузки 1А. Вам нужно получить стабилизированное питание напряжением 12В. Фактически линейный стабилизатор представляет собой сопротивление, которое изменяет свою величину в зависимости от величины входного напряжения для получения номинального выходного - с небольшими отклонениями (доли вольт) при изменениях входного (единицы и десятки вольт).

На резисторах, как известно, при протекании через них электрического тока выделяется тепловая энергия. На линейных стабилизаторах происходит такой же процесс. Выделенная мощность будет равна:

Pпотерь=(Uвх-Uвых)*I

Так как в рассмотренном примере ток нагрузки 1А, входное напряжение 15В, а выходное - 12В, то рассчитаем потери и КПД линейного стабилизатора (КРЕНка или типа L7812):

Pпотерь=(15В-12В)*1А = 3В*1А = 3Вт

Тогда КПД равен:

n=Pполезная/Pпотр

n=((12В*1А)/(15В*1А))*100%=(12Вт/15Вт)*100%=80%

Основной особенностью ШИМ является то, что силовой элемент, пусть это будет MOSFET, либо открыт полностью, либо полностью закрыт и ток через него не протекает. Поэтому потери КПД обусловлены только потерями проводимости

И потерями переключения. Это тема для отдельной статьи, поэтому не будем останавливаться на этом вопросе. Также потери блока питания возникают (входных и выходных, если блок питания сетевой), а также на проводниках, пассивных элементах фильтра и прочем.

Общая структура

Рассмотрим общую структуру абстрактного ШИМ-контроллер. Я употребил слово "абстрактного" потому что, в общем, все они похожи, но их функционал все же может отличаться в определенных пределах, соответственно будет отличаться структура и выводы.

Внутри ШИМ-контроллера, как и в любой другой ИМС находится полупроводниковый кристалл, на котором расположена сложная схема. В состав контроллера входят следующие функциональные узлы:

1. Генератор импульсов.

2. Источник опорного напряжения. (ИОН)

3. Цепи для обработки сигнала обратной связи (ОС): усилитель ошибки, компаратор.

4. Генератор импульсов управляет встроенными транзисторами , которые предназначены для управления силовым ключом или ключами.

Количество силовых ключей, которыми может управлять ШИМ-контроллер, зависит от его предназначения. Простейшие обратноходовые преобразователи в своей схеме содержат 1 силовой ключ, полумостовые схемы (push-pull) - 2 ключа, мостовые - 4.

От типа ключа также зависит выбор ШИМ-контроллера. Для управления биполярным транзистором основным требованием является, чтобы выходной ток управления ШИМ-контроллера не был ниже, чем ток транзистора деленный на H21э, чтобы его включать и отключать достаточно просто подавать импульсы на базу. В этом случае подойдет большинство контроллеров.

В случае управления есть определенные нюансы. Для быстрого отключения нужно разрядить емкость затвора. Для этого выходную цепь затвора выполняют из двух ключей - один из них соединен с источником питания с выводом ИМС и управляет затвором (включает транзистор), а второй установлен между выходом и землей, когда нужно отключить силовой транзистор - первый ключ закрывается, второй открывается, замыкая затвор на землю и разряжает его.

Интересно:

В некоторых ШИМ-контроллрах для маломощных блоков питания (до 50 Вт) силовые ключи встроенные и внешние не используются. Пример - 5l0830R

Если говорить обобщенно, то ШИМ-контроллер можно представить в виде компаратора, на один вход которого подан сигнал с цепи обратной связи (ОС), а на второй вход пилообразный изменяющийся сигнал. Когда пилообразный сигнал достигает и превышает по величине сигнал ОС, то на выходе компаратора возникает импульс.

При изменениях сигналов на входах ширина импульсов меняется. Допустим, что вы подключили мощный потребитель к блоку питания, и на его выходе напряжение просело, тогда напряжение ОС также упадет. Тогда в большей части периода будет наблюдаться превышение пилообразного сигнала над сигналом ОС, и ширина импульсов увеличится. Всё вышесказанное в определенной мере отражено на графиках.

Функциональная схема ШИМ-контроллера на примере TL494, мы рассмотрим его позже подробнее. Назначение выводов и отдельных узлов описано в следующем подзаголовке.

Назначение выводов

ШИМ-контроллеры выпускаются в различных корпусах. Выводов у них может быть от трех до 16 и более. Соответственно от количества выводов, а вернее их назначения зависит гибкость использования контроллера. Например, в популярной микросхеме - чаще всего 8 выводов, а в еще более культовой - TL494 - 16 или 24.

Поэтому рассмотрим типовые названия выводов и их назначение:

    GND - общий вывод соединяется с минусом схемы или с землей.

    Uc (Vc) - питание микросхемы.

    Ucc (Vss, Vcc) - Вывод для контроля питания. Если питание проседает, то возникает вероятность того, что силовые ключи не будут полностью открываться, а из-за этого начнут греться и сгорят. Вывод нужен чтобы отключить контроллер в подобной ситуации.

    OUT - как видно из название - это выход контроллера. Здесь выводятся управляющий ШИМ-сигнал для силовых ключей. Выше мы упомянули, что в преобразователях разных топологий имеют разное количество ключей. Название вывода может отличаться в зависимости от этого. Например, в контроллерах для полумостовых схем он может называться HO и LO для верхнего и нижнего ключа соответственно. При этом и выход может быть однотактный и двухтактный (с одним ключем и двумя) - для управления полевыми транзисторами (пояснение см. выше). Но и сам контроллер может быть для однотактной и двухтактной схемы - с одним и двумя выходными выводами соответственно. Это важно.

    Vref - опорное напряжения, обычно соединяется с землей через небольшой конденсатор (единицы микрофарад).

    ILIM - сигнал с датчика тока. Нужен для ограничения выходного тока. Соединяется с цепями обратной связи.

    ILIMREF - на ней устанавливается напряжение срабатывания ножки ILIM

    SS - формируется сигнал для мягкого старта контроллера. Предназначен для плавного выхода на номинальный режим. Между ней и общим проводом для обеспечения плавного пуска устанавливают конденсатор.

    RtCt - выводы для подключения времязадающей RC-цепи, которая определяет частоту ШИМ-сигнала.

    CLOCK - тактовые импульсы для синхронизации нескольких ШИМ-контроллеров между собой тогда RC-цепь подключается только к ведущему контроллеру, а RT ведомых с Vref, CT ведомых соединяюся с общим.

    RAMP - это ввод сравнения. На него подают пилообразное напряжение, например с вывода Ct, Когда оно превышает значение напряжение на выходе усиления ошибки, то на OUT появляется отключающий импульс - основа для ШИМ-регулирования.

    INV и NONINV - это инвертирующий и неинвертирующий входы компаратора, на котором построен усилитель ошибки. Простыми словами: чем больше напряжении на INV - тем длинее выходные импульсы и наоборот. К нему подключается сигнал с делителя напряжения в цепи обратной связи с выхода. Тогда неинвертирующий вход NONINV подключают к общему проводу - GND.

    EAOUT или Error Amplifier Output рус. Выход усилителя ошибки. Не смотря на то, что есть входы усилителя ошибки и с их помощью, в принципе можно регулировать выходные параметры, но контроллер довольно медленно на это реагирует. В результате медленной реакции может возникнуть возбуждение схемы, и она выйдет из строя. Поэтому с этого вывода через частотозависимые цепи подают сигналы на INV. Это еще называется частотной коррекцией усилителя ошибки.

Примеры реальных устройств

Для закрепления информации давайте рассмотрим несколько примеров типовых ШИМ-контроллеров и их схем включения. Мы будем делать это на примере двух микросхем:

    TL494 (её аналоги: KA7500B, КР1114ЕУ4, Sharp IR3M02, UA494, Fujitsu MB3759);

Они активно используются . Кстати, эти блоки питания обладают немалой мощностью (100 Вт и больше по 12В шине). Часто используются в качестве донора для переделки под лабораторный блок питания или универсальное мощное зарядное устройство, например для автомобильных аккумуляторов.

TL494 - обзор

Начнем с 494-й микросхемы. Её технические характеристики:

В этом конкретном примере можно видеть большинство описанных выше выводов:

1. Неинвертирующий вход первого компаратора ошибки

2. Инвертирующий вход первого компаратора ошибки

3. Вход обратной связи

4. Вход регулировки мертвого времени

5. Вывод для подключения внешнего времязадающего конденсатора

6. Вывод для подключения времязадающего резистора

7. Общий вывод микросхемы, минус питания

8. Вывод коллектора первого выходного транзистора

9. Вывод эмиттера первого выходного транзистора

10. Вывод эмиттера второго выходного транзистора

11. Вывод коллектора второго выходного транзистора

12. Вход подачи питающего напряжения

13. Вход выбора однотактного или же двухтактного режима работы микросхемы

14. Вывод встроенного источника опорного напряжения 5 вольт

15. Инвертирующий вход второго компаратора ошибки

16. Неинвертирующий вход второго компаратора ошибки

На рисунке ниже изображен пример компьютерного блока питания на этой микросхеме.

UC3843 - обзор

Другой популярной ШИМ является микросхема 3843 - на ней также строятся компьютерные и не только блоки питания. Её цоколевка расположена ниже, как вы можете наблюдать, у неё всего 8 выводов, но функции она выполняет те же, что и предыдущая ИМС.

Интересно:

Бывает UC3843 и в 14-ногом корпусе, но встречаются гораздо реже. Обратите внимание на маркировку - дополнительные выводы либо дублируются, либо незадействованы (NC).

Расшифруем назначением выводов:

1. Вход компаратора (усилителя ошибки).

2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.

3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.

4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.

6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.

Понижающего (Buck), повышающего (Boost) и понижающее-повышающего (Buck-Boost) типов.

Пожалуй, одним из наиболее удачных примеров будет распространенная микросхема LM2596, на базе которого на рынке можно найти массу таких преобразователей, как изображен ниже.

Такая микросхема содержит в себе все вышеописанные технические решения, а также вместо выходного каскада на маломощных ключах в ней встроен силовой ключ, способный выдержать ток до 3А. Ниже изображена внутренняя структура такого преобразователя.

Можно убедиться, что в сущности особых отличий от рассмотренных в ней нет.

А вот пример на подобном контроллере, как видите силового ключа нет, а только микросхема 5L0380R с четырьмя выводами. Отсюда следует, что в определенных задачах сложная схемотехника и гибкость TL494 просто не нужна. Это справедливо для маломощных блоков питания, где нет особых требований к шумам и помехам, а выходные пульсации можно погасить LC-фильтром. Это блок питания для светодиодных лент, ноутбуков, DVD-плееров и прочее.

Заключение

В начале статьи было сказано о том, что ШИМ-контроллер это устройство которое моделирует среднее значение напряжения за счет изменения ширина импульсов на основании сигнала с цепи обратной связи. Отмечу, что названия и классификация у каждого автора часто отличается, иногда ШИМ-контроллером называют простой ШИМ-регулятор напряжения, а описанное в этой статьей семейство электронных микросхем называют «Интегральная подсистема для импульсных стабилизированных преобразователей». От названия суть не меняется, но возникают споры и недопонимания.

В определенных условиях приходится монтировать автономные системы электропитания. Неотъемлемой их частью являются модули с аккумуляторными батареями. Заряд таких блоков может происходить от всевозможных источников питания, предоставляющих не всегда стабильные входные параметры.

Оптимальным положением в таких условиях является использование приборов или элементов, способных взять под контроль данный процесс зарядки. Основную роль в подобном случае играет в схеме шим контроллер.

Действующие процессы

Используются чаще всего данные контроллеры для работы с альтернативными источниками энергии, к которым относятся:

Это делает их востребованными в современных домах и предприятиях.

В мировой научной среде ШИМ расшифровывается как pulse-width modulation (PWM), что в переводе означает широтно-импульсную модуляцию. На деле это - операция управления мощностью, подходящей к потребителю, с помощью коррекции скважности импульсов с неизменной частотой.

ШИМ регулятор мощности встречается нескольких типов:

  • цифровой;
  • аналоговый;
  • с двумя уровнями;
  • с тремя уровнями.

ВИДЕО: Принцип работы ШИМ контроллера UC3843 в импульсном блоке питания

Необходимость установки

Обязательно используются контроллеры для схем, в которых присутствуют свинцово-кислотные АКБ. Это связано с тем, что такие элементы питания негативно воспринимают как перезаряд, так и значительное разряжение. В первом случае может произойти быстрый выход из строя батареи за счет закипания электролита или даже взрыва банок с ним. Во втором случае процесс приводит к разрушению пластин.

ШИМ контроллер помогает и щелочным элементам питания, блокируя их перезаряд. Данный элемент разрывает цепь, отсоединяя от источника питания нагрузку.

Нередко для импульсных источников питания или в источники бесперебойного питания встраивают PWM-элементы. Встречаются они и в инверторах.

Обычно разъединение происходит при достижении двенадцативольтовым аккумулятором уровня 10,5 или 11 В. В таком случае за 10 часов непрерывной работы падение емкости составит со 100% до примерно 20%. В процессе более быстрого разряжения емкость будет уменьшаться.

В определенных условиях допускается коррекция напряжения отключения во время изготовления или настроечного процесса. Однако, на прилавках доминирует не регулятор напряжения, а прибор с типовым уровнем выходных параметров.

Не стоит экономить на качественном оборудовании для собственной солнечной или ветряной станции, рекомендуем купить исключительно фирменное оборудование с длительным сроком действия.

Ориентироваться по затратам поможет таблица:

Исходя из пропорций затрат, очевидно, что PWM-элементы не являются большой статьей затрат в схеме. При этом они играют важную роль в процессе обеспечения эффективности системы, продлевая срок службы остального оборудования.

Разновидности контроллеров

В фотоэлектрических схемах распространены несколько типов таких элементов. Они дифференцируются не только по стоимости, но и по алгоритмам работы, способам установления параметров тока и пр.

Наиболее простые по конструкции всего лишь разрывают цепь и блокируют от нее источник, когда на ней достигается определенное напряжение, например, уровень 14,4 В. При падении до уровня 12-13 В блок питания снова собирает цепь для зарядки. В таком цикле степень зарядки АКБ составляет примерно 60%. Стабильный недозаряд приводит к образованию сульфатации на свинцовых пластинах и в скором времени выходе из строя источника питания.

Данный тип практически не выпускается серийно, но встречается у мастеров-самоделок. Они выпускают элементы для экономии по бросовым ценам, хотя в итоге экономия оказывается иллюзией из-за скорой поломки АКБ.

PWM регуляторы являются более продвинутой технологией и позволяют дозаряжать КБ до 100%. В процессе получается несколько стадий заряда батареи:

  • осуществляется подача на клеммы максимального тока, что позволяет АКБ потреблять его весь, поступающий от солнца на модули в данную минуту;
  • при шим заряде уровень напряжения достигает установленного параметра и осуществляется постоянная поддержка параметра, чтобы избежать газообразования в банках (сила тока медленно снижается);
  • происходит выравнивание, ведь для большинства АКБ является естественным получение заряда до уровня газообразования при выравнивании напряжения на всех емкостях с электролитом (очищаются пластины, и перемешивается жидкость внутри);
  • стабилизация и постепенное снижение напряжения проводится, когда батарея получает полный заряд, не допуская перегрева.

Производители предлагают свои контроллеры даже со специальными информативными элементами:

  • световой индикацией;
  • жидкокристаллическими экранами;
  • многофункциональными мониторами.

В определенных моделях встречается функционал, позволяющий определить уровень заряда АКБ. За счет этой опции можно настроить работу под конкретную батарею, пролонгировав ее период эксплуатации.

Для некоторых товаров имеется указание в сертификате о возможности указания уровня заряда в % (state of charge SOC), но не всегда данная опция работает корректно.

Чтобы проконтролировать максимально достоверно SOC, необходимо мониторить несколько циклов зарядки батареи и провести самостоятельный расчет по достаточно громоздким формулам.

Популярные бренды

В бюджетных моделях проценты указываются приблизительно. Это относится к моделям бренда EPSolar. Производители от Morningstar совсем отказались от SOC и выдают информацию пользователю о напряжении АКБ в вольтах. Более достоверными считаются показания процентов у таких торговых марок:

  • Steca PR1010-3030;
  • Tarom;
  • Power Tarom.

Китайские производители EPSolar являются наиболее востребованными на рынке данной электроники. Их продукция является оптимальной по соотношению стоимости и качеству, при этом в арсенале имеются модели, впитавшие максимальное количество функционала. Высокое качество комплектующих и сборки выгодно отличает бренд от конкурентов типа Steca Solar. Имеются модели с таймерами для выключения/включения разных ночников.

Более дорогим является немецкий бренд Steca. Европейское качество привязано к стоимости валюты, поэтому не все могут выбрать такие модели.

Правильный выбор контроллера

В процессе выбора стоит обращать внимание на входные параметры. Оно регламентируется производителями. Параметр указывается в технических данных прибора. Это значение обязано соответствовать напряжению ХХ батареи либо сумме напряжений ХХ нескольких солнечных блоков в последовательном соединении. Рекомендуется добавлять 20%-ный запас.

Общая расчетная мощность батареи подбирается не более, чем перемноженное значение напряжения системы и выходного тока. В этом случае тоже ставим запас в 20%. Если нет возможности самостоятельно провести расчеты, то стоит обратиться к специалистам в электротехнике.

ВИДЕО: Как проверить любой ШИМ (PWM) контроллер

За последнее десятилетие мы видим ускоренный темп развития электронных устройств. Вместе с ним растут и требования к устройству питания. Линейные регуляторы напряжения имеют низкий КПД и не всегда могут обеспечить требования, предъявляемые к устройству. Схемы с синхронным выпрямителем сегодня получили большое распространение. Номенклатура ИС, выпускаемых различными производителями, очень велика. В данной статье пойдет речь об особенностях использования синхронного ключа в синхронном выпрямителе и будет рассмотренно несколько видов ШИМ-контроллеров компании International Rectifier.

Схема синхронного выпрямителя была разработана очень давно. Для ее построения используются обычные n-канальные полевые транзисторы, только работают они в источниках питания с низким выходным напряжением и заменяют собой выпрямительные диоды. Напряжение сток-исток таких транзисторов обычно невелико, но емкости между сток-исток и затвор-сток весьма и весьма значительны. Характерной особенностью работы полевых транзисторов в качестве синхронных выпрямителей является их работа в четвертом квадранте их вольтамперной характеристики, то есть ток через них протекает в обратном направлении - от истока к стоку. На рис. 1 представлена схема построения синхронного выпрямителя.


Рисунок 1 Схема построения синхронного выпрямителя


Рисунок 2 Блок-схема видов приборов для построения синхронных регуляторов, производимых компанией International Rectifier

Требования к выбору элементов схемы при построении синхронного выпрямителя таковы:

Подводя итог по выбору элементов заметим, что при выборе транзисторов компания рекомендует разработчикам выбирать синхронные ключи с минимальным значением сопротивления. Для коммутирующего ключа необходимо выбирать транзистор с минимальным значением заряда затвора.


Компания International Rectifier представляет широкий ряд ИС ШИМ-конт-роллеров с различными функциональными возможностями (см. рис. 2). Семейство импульсных синхронных регуляторов включает интегрированные сборки в монолитных корпусах (SupIRBuck, IPower) и ШИМ-контроллеры без внутренних ключей. Двухканальные сборки представлены, в первом случае, монолитными интегрированными схемами и ШИМ-контроллерами с внутренним линейным опорным преобразователем или без него. Многофазовые системы представлены ИС семейства Х-Fase и I-Power.

Интегральная схема синхронного ШИМ-контроллера IR3651SPBF разработана для высокоэффективных синхронных понижающих DC/DC конверторов с входными напряжениями до 150 В. Программируемые рабочие частоты в диапазоне до 400 кГц позволяют применять микросхему в источниках питания телекоммуникационного оборудования и базовых станций, сетевых серверов, в автомобильных и промышленных блоках управления. При использовании микросхемы в маломощных устройствах уровень выходного напряжения может быть точно отрегулирован благодаря встроенному источнику опорного напряжения (1.25 В). ИС ШИМ-контроллера IR3651S совместно с парой DirectFET транзисторов обеспечивает эффективность преобразования более 88% при напряжении питания 48 В и выходном напряжении 3.3 В на токе 6 А без применения радиаторов или обдува. Другое преимущество данной ИС перед аналогами, представленными на рынке на сегодняшний день, заключается в повышенном максимальном напряжении питания. ИС разработана по 160-вольтовой HVIC технологии. Это позволяет повысить параметры надежности разработки в целом. ИС ШИМ-контроллера IR3651S разработана для управления двумя внешними N-каналь-ными МОП-транзисторами при их токах управления до 25 А и имеет несколько опций защиты: программируемый плавный запуск, защита по току и блокировка низкого напряжения. ИС имеет также функцию синхронизации для ее согласованной работы на общую фазу. Таким образом, эта микросхема может быть использована как для маломощных (менее 60 Вт) неизолированных DC/DC конверторов сетевого оборудования, так и для мощных (более 200 Вт) каскадов предварительного регулирования в управляемых изолированных конверторах. На рис. 3 представлена схема включения ИС IR3651S.


Рисунок 3 Схема включения контроллера IR3651S

Схема 3-фазного ШИМ-контроле-ра для синхронного DC-DC преобразователя IR3094MPbF совместно с использованием транзисторов MOSFET в корпусе DirectFET позволяет сократить на 40 % размеры платы при сравнении с сегодняшними аналогами. Малые размеры контроллера IR3094 идеально подходят для построения компактных синхронных преобразователей для систем с высокой плотностью монтажа. Обычно решения синхронных преобразователей с тремя выходными напряжениями требуют 14 элементов: 3 контроллера, 6 ключей, 3 дросселя, компоненты, обеспечивающие внешнее включение, плюс компоненты обратной связи. Преобразователи, собранные с применением контролера IR3094 и транзисторов MOSFET в корпусе DirectFET, IRF6637 и IRF6678 уменьшают количество элементов преобразователя до 7 единиц.

Три пары транзисторов в корпусе DirectFET могут быть размещены в непосредственной близости с IR3094, создавая решение, которое минимизирует размер печат ной платы и корпуса. Встроенные мощные драйверы контроллера IR3094, объединенные с парой DirectFET транзисторов, в каждой фазе создают решение для управления мощностью с высокой плотностью тока для конверторов типа POL (точка-нагрузка). Контроллер IR3094M разработан для приложений, требующих напряжения питания от 0.85 до 5.1 В. Он размещен в компактном MLPQ корпусе 7 мм? 7 мм и содержит встроенный 3 А драйвер управления ключами, 1 % источник опорного напряжения, установку выходного напряжения по каждой фазе, программируемую частоту переключения до 540 кГц.

Контроллер обеспечивает следующие виды защиты:

  • программируемый мягкий старт;
  • защита от КЗ в виде икающего тока на выходе каждой фазы;
  • защита от перенапряжения;
  • выход, сигнализирующий о текущем состоянии контроллера - «power good».

Совместно с данным типом контроллера рекомендуется использовать транзистор IRF6678, который является идеальным синхронным MOSFETом, который показывает низкое значение сопротивления - 1.7 мОм –10 В. Транзистор IRF6637 обладает низким значением заряда затвора (4 нКл) и менее подвержен эффекту Миллера, сопротивление перехода составляет 5.7 мОм при 10 В.

Для получения точного выходного напряжения с отклонением 1 % компания International Rectifier выпускает ИС IR3637. Ее применяют там, где необходимо высоко качество питающего напряжения. Данная ИС позволяет пользователю работать в диапазоне входного напряжения от 4.5 до 16 В. Основное преимущество данного ШИМ-контроллера - упрощенная конструкция и повышение компактности DC-DC преобразователя. ИС расположена в компактном корпусе SO-8 и обладает такими защитами как защита от короткого замыкания, блокировка по низкому напряжению питания, функция мягкого старта с внешним программированием.

Контроллер обеспечивает скважность ШИМ-сигнала до 85 % на частоте 400 кГц, что позволяет снизить размеры дросселя и улучшить динамические характеристики преобразователя. На рис. 4 представлена схема включения ИС ШИМ-контроллера IR3637.
Ранее в приложениях с 12 В входным напряжением разработчики имели недостаточный выбор возможностей и ориентировались в основном на использование интегрированных неизолированных DC-DC преобразователей, занимающих существенно большую площадь. Применение альтернативного решения на дискретных компонентах(новых ШИМ-контроллерах и МОП-транзисторах) позволяет использовать преимущества интеграции схемы конвертора в плату.

При разработке схемы синхронного выпрямления разработчику рекомендуется обратить внимание на три основных момента в разводке цепи земли ШИМ контроллера:

Номенклатура ШИМ-контроллеров и интегрированных сборок на их основе у компании International Rectifier насчитывает более 100 наименований. В табл. 1 приведены основные параметры некоторых ШИМ-контроллеров. Для ускорения разработки синхронного преобразователя напряжения компания International Rectifier представляет на сайте on-line проект для разработчиков My-Power - /engine/api/go.php?go=https://www.irf. com/design-center/mypower/index.html. Здесь разработчик может не только рассчитать параметры схемы и увидеть осциллограммы работы устройства, но также получить рекомендации по типу транзисторов и посмотреть их основные параметры.