Решение систем линейных алгебраических уравнений в Excel. Решение системы уравнений в Excel методом Крамера и обратной матрицы

РХТУ им. Д.B. Менделеева Кафедра ИКМ Методическое пособие по изучению Excel

Операции с матрицами в Excel

Как и над числами, над матрицами можно проводить ряд операций, причем в случае с матрицами некоторые из операций являются специфическими.

    Транспонирование .

Транспонированной называется матрица (A T), в которой столбцы исходной матрицы (А) заменяются строками с соответствующими номерами.

Пример . Пусть в диапазон ячеек А1:Е2 введена матрица размера 2x5. Необходимо получить транспонированную матрицу.

    Выделить указателем мыши при нажатой левой кнопке блок ячеек, где будет находиться транспонированная матрица. В нашем примере блок размера 5 x2 в диапазоне А4:В8.

    Стандартная вставка функции.

    Мастер функций в рабочем полеКатегория выбратьСсылки и массивы , а в рабочем полеФункция – имя функции ТРАСП (рис.1)

рис.1

    Появившееся диалоговое окно ТРАСП мышью отодвинуть в сторону от исходной матрицы и ввести диапазон исходной матрицы А1:Е2 в рабочее поле Массив (указателем мыши при нажатой левой кнопке). После чего, не нажимая кнопку ОК, нажать сочетание клавишCTRL+SHIFT+ENTER(рис.2)

    Если транспонированная матрица не появилась в заданном диапазоне А4:В8, то надо щелкнуть указателем мыши в строке формул и повторить нажатие клавиш CTRL+SHIFT+ENTER.

В результате в диапазоне А4:В8 появится транспонированная матрица.

Рис.2

    Вычисление определителя матрицы

Пусть в диапазон А1:С3 введена матрица. Необходимо вычислить определитель матрицы

    Табличный курсор поставить в ячейку, в которой требуется получить значение определителя, например. В А4.

    Нажать на панели инструментов Стандартная кнопкуВставка функции

    В появившемся диалоговом окне Мастер функций в рабочем полеКатегории выбратьМатематические, а в рабочем полеФункция – имя функции МОПРЕД. После этого нажать на кнопку ОК.

    Появившееся диалоговое окно МОПРЕД мышью отодвинуть в сторону от исходной матрицы и ввести диапазон исходной матрицы А1:С3 в рабочее поле Массив (указателем мыши при нажатой левой кнопке). После чего нажать кнопку ОК.

В ячейке А4 появится значение определителя матрицы.

    Нахождение обратной матрицы

Пусть в диапазон А1:С3 введена матрица. Необходимо в диапазоне А5:С7 получить обратную матрицу.

    Выделить блок ячеек под обратную матрицу (в нашем примере А5:С7)

    Нажать на панели инструментов Стандартная кнопкуВставка функции

    В появившемся диалоговом окне Мастер функций в рабочем полеКатегории выбратьМатематические, а в рабочем полеФункция – имя функции МОБР. После этого нажать на кнопку ОК.

    Появившееся диалоговое окно МОБР мышью отодвинуть в сторону от исходной матрицы и ввести диапазон исходной матрицы А1:С3 в рабочее поле Массив (указателем мыши при нажатой левой кнопке). После чего, не нажимая кнопку ОК, нажать сочетание клавишCTRL+SHIFT+ENTER

    Если обратная матрица не появилась в заданном диапазоне А1:С3, то надо щелкнуть указателем мыши в строке формул и повторить нажатие клавиш CTRL+SHIFT+ENTER.

В результате в диапазоне А1:С3 появится обратная матрица.

    Сложение и вычитание матриц, умножение и деление матрицы на число

Пример. Пусть матрица А введена в диапазон А1:С2, а матрица В – в диапазон А4:С5. Необходимо найти матрицу С, являющуюся их суммой, в диапазоне Е1:G2.

    Табличный курсор установить в левый верхний угол результирующей матрицы – ячейку Е1.

    Ввести формулу для вычисления первого элемента результирующей матрицы =А1+А4 (предварительно установить английскую раскладку клавиатуры)

    Скопируйте введенную формулу в остальные ячейки результирующей матрицы.

В результате в ячейках E1:G2 появится матрица, равная сумме исходных матриц.

Подобным образом вычисляется разность матриц, только в формуле вместо знака +, ставится знак -.

Если необходимо умножить (разделить) матрицу А на число k, то формула будет иметь вид =А1*k.

Рис.3

Умножение матриц

Произведение двух матриц определено, если число столбцов первой матрицы произведения равно числу строк второй матрицы произведения.

Пример . Пусть матрица введена в диапазонA1:D3, а матрица В – в диапазон А4:В7. Необходимо найти произведение этих матриц С=Аx В.

    Выделить блок ячеек указателем мыши при нажатой левой кнопке под результирующую матрицу. Если матрица А имеет размерность 3 x 4, а матрица В имеет размерность 4 x 3, то результирующая матрица С имеет размерность 3 x 3. Поэтому следует внимательно следить, чтобы размерность матрицы С в точности соответствовала определению произведения двух матриц. Пусть матрица С будет размещаться в диапазонеF1:G3.

    Нажать на панели инструментов Стандартная кнопкуВставка функции

    В появившемся диалоговом окне Мастер функций в рабочем полеКатегории выбратьМатематические, а в рабочем полеФункция – имя функции МУМНОЖ. После этого нажать на кнопку ОК.

    Появившееся диалоговое окно МУМНОЖ мышью отодвинуть в сторону от исходной матрицы и ввести диапазон первой матрицы А1:D3 в рабочее полеМассив1 (указателем мыши при нажатой левой кнопке), а диапазон матрицы В – А4:В7 ввести в рабочее полеМассив2 . После чего, не нажимая кнопку ОК, нажать сочетание клавишCTRL+SHIFT+ENTER(рис.3)

Рис.4

    Если произведение матриц не появилось в заданном диапазоне А1:С3, то надо щелкнуть указателем мыши в строке формул и повторить нажатие клавиш CTRL+SHIFT+ENTER.

В результате в диапазоне F1:G3 появится обратная матрица.

Вычислим определитель (детерминант) матрицы с помощью функции МОПРЕД() или англ. MDETERM, разложением по строке/столбцу (для 3 х 3) и по определению (до 6 порядка).

Определитель матрицы (det) можно вычислить только для квадратных матриц, т.е. у которых количество строк равно количеству столбцов.

Для вычисления определителя в MS EXCEL есть специальная функция МОПРЕД() . В аргументе функции необходимо указать ссылку на диапазон ячеек (массив), содержащий элементы матрицы (см. файл примера ).

Массив может быть задан не только как интервал ячеек, например A7:B8 , но и как , например =МОПРЕД({5;4:3;2}) . Запись с использованием массива констант позволяет не указывать элементы в отдельных ячейках, а разместить их в ячейке вместе с функцией. Массив в этом случае указывается по строкам: например, сначала первая строка 5;4, затем через двоеточие записывается следующая строка 3;2. Элементы отделяются точкой с запятой.

Для матриц порядка 2 можно определитель можно вычислить без использования функции МОПРЕД() . Например, для вышеуказанной матрицы выражение =A7*B8-B7*A8 вернет тот же результат.

Для матрицы порядка 3, например размещенной в диапазоне A16:C18 , выражение усложняется =A16*(B17*C18-C17*B18)-B16*(A17*C18-C17*A18)+C16*(A17*B18-B17*A18) (разложение по строке).

В файле примера для матрицы 3 х 3 определитель также вычислен через разложение по столбцу и по правилу Саррюса.

Свойства определителя

Теперь о некоторых свойствах определителя (см. файл примера ):

  • Определитель равен определителю исходной матрицы
  • Если в матрице все элементы хотя бы одной из строк (или столбцов) нулевые, определитель такой матрицы равен нулю
  • Если переставить местами две любые строки (столбца), то определитель полученной матрицы будет противоположен исходному (то есть, изменится знак)
  • Если все элементы одной из строк (столбца) умножить на одно и тоже число k, то определитель полученной матрицы будет равен определителю исходной матрицы, умноженному на k
  • Если матрица содержит строки (столбцы), являющиеся линейной комбинацией других строк (столбцов), то определитель =0
  • det(А)=1/det(А -1), где А -1 - матрице А (А - квадратная невырожденная матрица).


Вычисление определителя матрицы по определению (до 6 порядка включительно)

СОВЕТ : Этот раздел стоит читать только продвинутым пользователям MS EXCEL. Кроме того материал представляет только академический интерес, т.к. есть функция МОПРЕД() .

Как было показано выше для вычисления матриц порядка 2 и 3 существуют достаточно простые формулы и правила. Для вычисления определителя матриц более высокого порядка (без использования функции МОПРЕД() ) придется вспомнить определение:

Определителем квадратной матрицы порядка n х n является сумма, содержащая n! слагаемых (=ФАКТР(n) ). Каждое слагаемое представляет собой произведение n элементов матрицы, причем в каждом произведении содержится элемент из каждой строки и из каждого столбца матрицы А . Перед k-ым слагаемым появляется коэффициент (-1) , если элементы матрицы А в произведении упорядочены по номеру строки, а количество инверсий в k-ой перестановке множества номеров столбцов нечетно.

где (α 1 ,α 2 ,...,α n ) - перестановка чисел от 1 до n , N(α 1 ,α 2 ,...,α n ) - число , суммирование идёт по всем возможным перестановкам порядка n .

Попытаемся разобраться в этом непростом определении на примере матрицы 3х3.

Для матрицы 3 х 3, согласно определения, число слагаемых равно 3!=6, а каждое слагаемое состоит из произведения 3-х элементов матрицы. Ниже приведены все 6 слагаемых, необходимых для вычисления определителя матрицы 3х3:

  • а21*а12*а33
  • а21*а32*а13
  • а11*а32*а23
  • а11*а22*а33
  • а31*а22*а13
  • а31*а12*а23

а21, а12 и т.д. - это элементы матрицы. Теперь поясним, как были сформированы индексы у элементов, т.е. почему, например, есть слагаемое а11*а22*а33, а нет а11*а22*а13.

Посмотрим на формулу выше (см. определение). Предположим, что второй индекс у каждого элемента матрицы (от 1 до n) соответствует номеру столбца матрицы (хотя это может быть номер строки (это не важно т.к. определители матрицы и ее равны). Таким образом, второй индекс у первого элемента в произведении всегда равен 1, у второго - 2, у третьего 3. Тогда первые индексы у элементов соответствуют номеру строки и, в соответствии с определением, должны определяться из перестановок чисел от 1 до 3, т.е. из перестановок множества (1, 2, 3).

Теперь понятно, почему среди слагаемых нет а11*а22*а13, т.к. согласно определения (в каждом произведении содержится элемент из каждой строки и из каждого столбца матрицы А ), а в нашем слагаемом нет элемента из строки 3.

Примечание : Перестановкой из n чисел множества (без повторов) называется любое упорядочивание данного множества, отличающиеся друг от друга лишь порядком входящих в них элементов. Например, дано множество их 3-х чисел: 1, 2, 3. Из этих чисел можно составить 6 разных перестановок: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1). См. статью

Число перестановок множества из 3-х чисел =3!=6 (что, конечно, равно числу слагаемых в выражении для расчета определителя, т.к. каждому слагаемому соответствует своя перестановка). Для матрицы 3х3 все перестановки приведены в примечании выше. Можно убедиться, что в каждом слагаемом первые индексы у элементов равны соответствующим числам в перестановке. Например, для слагаемого а21*а12*а33 использована перестановка (2, 1, 3).

СОВЕТ : Для матрицы 4 порядка существует 4! перестановок, т.е. 26, что соответствует 26 слагаемым, каждое из которых является произведением различных 4-х элементов матрицы. Все 26 перестановок можно найти в статье .

Теперь, когда разобрались со слагаемыми, определим множитель перед каждым слагаемым (он может быть +1 или -1). Множитель определяется через четность числа инверсий соответствующей перестановки.

Примечание : Об инверсиях перестановок (и четности числа инверсий) можно почитать, например, в статье

Например, первому слагаемому соответствует перестановка (2, 1, 3), у которой 1 инверсия (нечетное число) и, соответственно, -1 в степени 1 равно -1. Второму слагаемому соответствует перестановка (2, 3, 1), у которой 2 инверсии (четное число) и, соответственно, -1 в степени 2 равно 1 и т.д.

Сложив все слагаемые: (-1)*(а21*а12*а33)+(+1)*(а21*а32*а13)+(-1)*(а11*а32*а23)+(+1)*(а11*а22*а33)+(-1)*(а31*а22*а13)+(+1)*(а31*а12*а23) получим значение определителя.

В файле примера на листе 4+, и зменяя порядок матрицы с помощью , можно вычислить определитель матрицы до 6 порядка включительно.

Следует учитывать, что при вычислении матрицы 6-го порядка в выражении используется уже 720 слагаемых (6!). Для 7-го порядка пришлось бы сделать таблицу для 5040 перестановок и, соответственно, вычислить 5040 слагаемых! Т.е. без использования МОПРЕД() не обойтись (ну, или можно вычислить определитель вручную методом Гаусса).

Способ 1

Рассмотрим матрицу А размерностью 3х4 . Умножим эту матрицу на число k . При умножении матрицы на число получается матрица такой же размерности, что и исходная, при этом каждый элемент матрицы А умножается на число k .

Введем элементы матрицы в диапазон В3:Е5 , а число k — в ячейку Н4 . В диапазоне К3: N 5 вычислим матрицу В , полученную при умножении матрицы А на число k : В=А* k . Для этого введем формулу =B3*$H$4 в ячейку K 3 , где В3 — элемент а 11 матрицы А .

Примечание: адрес ячейки H 4 вводим как абсолютную ссылку, чтобы при копировании формулы ссылка не менялась.

С помощью маркера автозаполнения копируем формулу ячейки К3 В .

Таким образом, мы умножили матрицу А в Excel и получим матрицу В .

Для деления матрицы А на число k в ячейку K 3 введем формулу =B3/$H$4 В .

Способ 2

Этот способ отличается тем, что результат умножения/деления матрицы на число сам является массивом. В этом случае нельзя удалить элемент массива.

Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий исходную матрицу А, нажимаем на клавиатуре знак умножить (*) и выделяем ячейку с числом k Ctrl+ Shift+ Enter


Для выполнения деления в данном примере в диапазон вводим формулу =B3:E5/H4, т.е. знак «*» меняем на «/».

Сложение и вычитание матриц в Excel

Способ 1

Следует отметить, что складывать и вычитать можно матрицы одинаковой размерности (одинаковое количество строк и столбцов у каждой из матриц). Причем каждый элемент результирующей матрицы С будет равен сумме соответствующих элементов матриц А и В , т.е. с ij = а ij + b ij .

Рассмотрим матрицы А и В размерностью 3х4 . Вычислим сумму этих матриц. Для этого в ячейку N 3 введем формулу =B3+H3 , где B3 и H3 - первые элементы матриц А и В соответственно. При этом формула содержит относительные ссылки (В3 и H 3 ), чтобы при копировании формулы на весь диапазон матрицы С они могли измениться.

С помощью маркера автозаполнения скопируем формулу из ячейки N 3 вниз и вправо на весь диапазон матрицы С .

Для вычитания матрицы В из матрицы А (С=А - В ) в ячейку N 3 введем формулу =B3 — H3 и скопируем её на весь диапазон матрицы С .

Способ 2

Этот способ отличается тем, что результат сложения/вычитания матриц сам является массивом. В этом случае нельзя удалить элемент массива.

Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий первую матрицу А , нажимаем на клавиатуре знак сложения (+) и выделяем вторую матрицу В . После ввода формулы нажимаем сочетание клавиш Ctrl+ Shift+ Enter , чтобы значениями заполнился весь диапазон.

Умножение матриц в Excel

Следует отметить, что умножать матрицы можно только в том случае, если количество столбцов первой матрицы А равно количеству строк второй матрицы В .

Рассмотрим матрицы А размерностью 3х4 и В размерностью 4х2 . При умножении этих матриц получится матрица С размерностью 3х2.

Вычислим произведение этих матриц С=А*В с помощью встроенной функции =МУМНОЖ() . Для этого выделим диапазон L 3: M 5 — в нём будут располагаться элементы матрицы С , полученной в результате умножения. На вкладке Формулы выберем Вставить функцию .

В диалоговом окне Вставка функции выберем Категория Математические — функция МУМНОЖ ОК .

В диалоговом окне Аргументы функции выберем диапазоны, содержащие матрицы А и В . Для этого напротив массива1 щёлкнем по красной стрелке.

А (имя диапазона появится в строке аргументов), и щелкнем по красной стрелке.

Для массива2 выполним те же действия. Щёлкнем по стрелке напротив массива2.

Выделим диапазон, содержащий элементы матрицы В , и щелкнем по красной стрелке.

В диалоговом окне рядом со строками ввода диапазонов матриц появятся элементы матриц, а внизу — элементы матрицы С . После ввода значений нажимаем на клавиатуре сочетание клавиш Shift + Ctrl ОК .

ВАЖНО. Если просто нажать ОК С .

Мы получим результат умножения матриц А и В .

Мы можем изменить значения ячеек матриц А и В , значения матрицы С поменяются автоматически.

Транспонирование матрицы в Excel

Транспонирование матрицы — операция над матрицей, при которой столбцы заменяются строками с соответствующими номерами. Обозначим транспонированную матрицу А Т .

Пусть дана матрица А размерностью 3х4 , с помощью функции =ТРАНСП() вычислим транспонированную матрицу А Т , причем размерность этой матрицы будет 4х3 .

Выделим диапазон Н3: J 6 , в который будут введены значения транспонированной матрицы.

На вкладке Формулы выберем Вставить функцию, выберем категорию Ссылки и массивы — функция ТРАНСП ОК .

В диалоговом окне Аргументы функции указываем диапазон массива В3:Е5 А Shift + Ctrl и щелкаем левой кнопкой мыши по кнопке ОК .

ВАЖНО. Если просто нажать ОК , то программа вычислит значение только первой ячейки диапазона матрицы А Т .

Нажмите для увеличения

Мы получили транспонированную матрицу.

Нахождение обратной матрицы в Excel

Матрица А -1 называется обратной для матрицы А , если А ž А -1 =А -1 ž А=Е , где Е — единичная матрица. Следует отметить, что обратную матрицу можно найти только для квадратной матрицы (одинаковое количество строк и столбцов).

Пусть дана матрица А размерностью 3х3 , найдем для неё обратную матрицу с помощью функции =МОБР() .

Для этого выделим диапазон G 3: I 5 , который будет содержать элементы обратной матрицы, на вкладке Формулы выберем Вставить функцию .

В диалоговом окне Вставка функции выберем категорию Математические — функция МОБР ОК .

В диалоговом окне Аргументы функции указываем диапазон массива В3: D 5 , содержащего элементы матрицы А . Нажимаем на клавиатуре сочетание клавиш Shift + Ctrl и щелкаем левой кнопкой мыши по кнопке ОК .

ВАЖНО. Если просто нажать ОК , то программа вычислит значение только первой ячейки диапазона матрицы А -1 .

Нажмите для увеличения

Мы получили обратную матрицу.

Нахождение определителя матрицы в Excel

Определитель матрицы — это число, которое является важной характеристикой квадратной матрицы.

Как найти определить матрицы в Excel

Пусть дана матрица А размерностью 3х3 , вычислим для неё определитель с помощью функции =МОПРЕД() .

Для этого выделим ячейку Н4 , в ней будет вычислен определитель матрицы, на вкладке Формулы выберем Вставить функцию .

В диалоговом окне Вставка функции выберем категорию Математические — функция МОПРЕД ОК .

В диалоговом окне Аргументы функции указываем диапазон массива В3: D 5 , содержащего элементы матрицы А . Нажимаем ОК .

Нажмите для увеличения

Мы вычислили определитель матрицы А .

В заключение обратим внимание на важный момент. Он касается тех операций над матрицами, для которых мы использовали встроенные в программу функции, а в результате получали новую матрицу (умножение матриц, нахождение обратной и транспонированной матриц). В матрице, которая получилась в результате операции, нельзя удалить часть элементов. Т.е. если мы выделим, например, один элемент матрицы и нажмём Del , то программа выдаст предупреждение: Нельзя изменять часть массива .

Нажмите для увеличения

Мы можем удалить только все элементы этой матрицы.

Видеоурок

Учитель физики, информатики и ИКТ, МКОУ "СОШ", с. Саволенка Юхновского района Калужской области. Автор и преподаватель дистанционных курсов по основам компьютерной грамотности, офисным программам. Автор статей, видеоуроков и разработок.

Одной из частых операций, которую выполняют при работе с матрицами, является перемножение одной из них на другую. Программа Excel является мощным табличным процессором, который предназначен, в том числе и для работы над матрицами. Поэтому у него имеются инструменты, которые позволяют перемножить их между собой. Давайте узнаем, как это можно выполнить различными способами.

Сразу нужно сказать, что перемножить между собой можно далеко не все матрицы, а только те, которые соответствуют определенному условию: число столбцов одной матрицы должно быть равным числу строк другой и наоборот. Кроме того, исключается наличие в составе матриц пустых элементов. В этом случае тоже выполнить требуемую операцию не получится.

Способов перемножить матрицы в Экселе все-таки не так уж и много — всего два. И оба они связаны с применением встроенных функций Excel. Разберем в деталях каждый из данных вариантов.

Способ 1: функция МУМНОЖ

Наиболее простым и популярным вариантом среди пользователей является применение функции МУМНОЖ . Оператор МУМНОЖ относится к математической группе функций. Как раз его непосредственной задачей и является нахождение произведения двух матричных массивов. Синтаксис МУМНОЖ имеет такой вид:

МУМНОЖ(массив1;массив2)

Таким образом этот оператор имеет два аргумента, которые представляют собой ссылки на диапазоны двух перемножаемых матриц.

Теперь давайте посмотрим, как используется функция МУМНОЖ на конкретном примере. Имеется две матрицы, число строк одной из которых, соответствует количеству столбцов в другой и наоборот. Нам нужно перемножить два этих элемента.


Способ 2: использование составной формулы

Кроме того, существует ещё один способ умножения двух матриц. Он более сложный, чем предыдущий, но тоже заслуживает упоминания, как альтернативный вариант. Данный способ предполагает использование составной формулы массива, которая будет состоять из функции СУММПРОИЗВ и вложенного в неё в качестве аргумента оператора ТРАНСП .

  1. На этот раз выделяем на листе только левый верхний элемент массива пустых ячеек, который рассчитываем использовать для вывода результата. Щелкаем по значку «Вставить функцию» .
  2. Мастер функций запускается. Перемещаемся в блок операторов «Математические» , но на этот раз выбираем наименование СУММПРОИЗВ . Клацаем по кнопке «OK» .
  3. Происходит открытие окна аргументов вышеуказанной функции. Данный оператор предназначен для перемножения различных массивов между собой. Его синтаксис следующий:

    СУММПРОИЗВ(массив1;массив2;…)

    В качестве аргументов из группы «Массив» используется ссылка на конкретный диапазон, который нужно перемножить. Всего может быть использовано от двух до 255 таких аргументов. Но в нашем случае, так как мы имеем дело с двумя матрицами, нам понадобится как раз два аргумента.

    Ставим курсор в поле «Массив1» . Тут нам нужно будет ввести адрес первой строки первой матрицы. Для этого, зажав левую кнопку мыши, нужно просто выделить её на листе курсором. Тут же координаты данного диапазона будут отображены в соответствующем поле окна аргументов. После этого следует зафиксировать координаты полученной ссылки по столбцам, то есть, эти координаты нужно сделать абсолютными. Для этого перед буквами в выражении, которое вписано в поле, устанавливаем знак доллара ($ ). Перед координатами, отображенными в цифрах (строки), это делать не следует. Также, можно вместо этого выделить всё выражение в поле и трижды нажать на функциональную клавишу F4 . В данном случае абсолютными тоже станут лишь координаты столбцов.

  4. После этого устанавливаем курсор в поле «Массив2» . С этим аргументом будет посложнее, так как по правилам умножения матриц, вторую матрицу нужно «перевернуть». Для этого используем вложенную функцию ТРАНСП .

    Чтобы перейти к ней, клацаем по значку в виде треугольника, направленного острым углом вниз, который размещен слева от строки формул. Открывается список недавно используемых формул. Если вы в нем найдете наименование «ТРАНСП» , то щелкайте по нему. Если же вы давно использовали данный оператор или вообще никогда не применяли его, то в этом списке указанное наименование вы не отыщите. В этом случае требуется нажать по пункту «Другие функции…» .

  5. Открывается уже хорошо знакомое нам окно Мастера функций . На этот раз перемещаемся в категорию «Ссылки и массивы» и выбираем наименование «ТРАНСП» . Щелкаем по кнопке «OK» .
  6. Производится запуск окна аргументов функции ТРАНСП . Данный оператор предназначен для транспонирования таблиц. То есть, попросту говоря, он меняет местами столбцы и строки. Это нам и нужно сделать для второго аргумента оператора СУММПРОИЗВ . Синтаксис функции ТРАНСП предельно простой:

    ТРАНСП(массив)

    То есть, единственным аргументом данного оператора является ссылка на тот массив, который следует «перевернуть». Вернее, в нашем случае даже не на весь массив, а только на его первый столбец.

    Итак, устанавливаем курсор в поле «Массив» и выделяем первый столбец второй матрицы на листе с зажатой левой кнопкой мыши. Адрес отобразится в поле. Как и в предыдущем случае, тут тоже нужно сделать определенные координаты абсолютными, но на этот раз не координаты столбцов, а адреса строк. Поэтому ставим знак доллара перед цифрами в ссылке, которая отображается в поле. Можно также выделить всё выражение и дважды кликнуть по клавише F4 . После того, как нужные элементы стали иметь абсолютные свойства, не жмем на кнопку «OK» , а так же, как и в предыдущем способе, применяем нажатие комбинации клавиш Ctrl+Shift+Enter .

  7. Но на этот раз у нас заполнился не массив, а только одна ячейка, которую мы ранее выделили при вызове Мастера функций .
  8. Нам нужно заполнить данными такой же по размеру массив, как и в первом способе. Для этого следует скопировать формулу, полученную в ячейке, на равнозначный диапазон, который будет равен количеству строк первой матрицы и количеству столбцов второй. В конкретно нашем случае получается три строки и три столбца.

    Для копирования прибегнем к использованию маркера заполнения. Наводим курсор на нижний правый угол ячейки, в которой расположена формула. Курсор преобразуется в черный крестик. Это и есть маркер заполнения. Зажимаем левую кнопку мыши и протягиваем курсор по всему вышеуказанному диапазону. Сама начальная ячейка с формулой должна стать левым верхним элементом данного массива.

  9. Как видим, выделенный диапазон заполнен данными. Если их сравнить с тем результатом, который мы получили благодаря применению оператора МУМНОЖ , то увидим, что значения полностью идентичны. Это означает, что умножение двух матриц выполнено верно.

Как видим, несмотря на то, что был получен равнозначный результат, использовать функцию для умножения матриц МУМНОЖ значительно проще, чем применять для этих же целей составную формулу из операторов СУММПРОИЗВ и ТРАНСП . Но все-таки данный альтернативный вариант тоже нельзя оставить без внимания при изучении всех возможностей перемножения матриц в Microsoft Excel.

Вычислить значения корней сформированной системы уравнений двумя методами: обратной матрицы и методом Крамера.

Введем данные значения в ячейки А2:С4 – матрица А и ячейки D2:D4 – матрица В.

Решение системы уравнений методом обратной матрицы

Найдем матрицу, обратную матрице А. Для этого в ячейку А9 введем формулу =МОБР(A2:C4). После этого выделим диапазон А9:С11, начиная с ячейки, содержащей формулу. Нажмем клавишу F2, а затем нажмем клавиши CTRL+SHIFT+ENTER. Формула вставится как формула массива. =МОБР(A2:C4).
Найдем произведение матриц A-1 * b. В ячейки F9:F11 введем формулу: =МУМНОЖ(A9:C11;D2:D4) как формулу массива. Получим в ячейках F9:F11 корни уравнения:


Решение системы уравнений методом Крамера

Решим систему методом Крамера, для этого найдем определитель матрицы.
Найдем определители матриц, полученных заменой одного столбца на столбец b.

В ячейку В16 введем формулу =МОПРЕД(D15:F17),

В ячейку В17 введем формулу =МОПРЕД(D19:F21).

В ячейку В18 введем формулу =МОПРЕД(D23:F25).

Найдем корни уравнения, для этого в ячейку В21 введем: =B16/$B$15, в ячейку В22 введем: = =B17/$B$15, в ячейку В23 введем: ==B18/$B$15.

Получим корни уравнения: