Чем цифровое телевидение отличается от аналогового. Виды сигналов: аналоговый, цифровой, дискретный

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.

В настоящее время большинство людей смотрят цифровое телевидение, сами того не осознавая. На смену эфирным антеннам и кинескопам пришло новое поколение ТВ с плазменным экраном и принципиально новым форматом сигнала. Когда вы сменили свой телевизор на плоский и поменяли антенну на приемник – вы перешли с аналогового вещания на цифровое. Эти два вида телевидения получили свое название напрямую от именования сигнала: цифровой сигнал и аналоговый сигнал. Отличие между ними достаточно большое, как и качество получаемого изображения. В данной статье вы сможете узнать, почему аналоговое телевидение изжило себя, как формат; как именно работают эти сигналы и в чем их принципиальное различие.

Цифровое и аналоговое телевидение – чем характеризуется аналоговый сигнал

Всем привычный тип сигнала, который передавался по антенне или самодельном приемнике “чебурашка”, носит название аналоговый. Суть данного метода передачи в его непрерывности и сравнительной медлительности. Безопасность такого вещания всегда находится под угрозой, чем и обусловлены не малочисленные сбои в работе телевидения, вклинивание посторонних сигналов. Многие из подрастающего поколения могут помнить, как один из федеральных каналов внезапно начинал транслировать нечто, совершенно незнакомое и не предназначенное для эфира, либо сигнал и вовсе пропадал при плохой погоде.

Основным плюсом аналогового ТВ являлась его доступность – вы протягиваете антенну и можете смотреть любые каналы, которые удалось “поймать”. Минусы уже очевидны: нестабильность сигнала, его шаткая безопасность.

Цифровое и аналоговое телевидение – характеристики цифрового вещания

На смену аналоговому сигналу пришло цифровое телевидение: быстрое, качественное и четкое. Такой сигнал способен преодолевать любые расстояния, донося до зрителя ничем не искаженную картинку. Вы не почувствуете дискомфорта в плохую погоду. Также отпала надобность протягивать длинные конструкции из антенн, чтобы лучше поймать сигнал. Теперь достаточно установить специальный приемник и вставить шнур в телевизор.

Современные телевизоры, тем не менее, имеют аналоговый вход на задней панели с разъемами, так как на территории нашей страны до сих пор остается аналоговое вещание. Вы имеете возможность выбирать, какое телевидение смотреть либо чередовать способы.

Цифровой сигнал, по сути своей, практически невозможно ненароком перехватить или вклиниться в вещание. Такой тип передачи отправляет сигнал небольшими, но очень частыми порциями.


Разница между цифровым и аналоговым телевидением

Сравнить такие сигналы достаточно просто, не вдаваясь в подробности их технических характеристик: аналоговое телевидение уступает цифровому в комфортабельности и безопасности, однако цифровой сигнал вы не получите бесплатно, без противозаконных манипуляций. Такое телевидение провайдерам легче контролировать.

Можно подвести основные итоги пользования двумя видами ТВ:

  • Если говорить о бесперебойности вещания, то этим может похвастаться только цифровой сигнал. Его аналоговый собрат слишком привередлив к расстоянию, погоде и другим барьерам.
  • В целях экономии лучше пользоваться аналоговым телевидением – его сигнал распространяется на территории городов, а зрители просто “ловят” его антеннами. Цифровое ТВ вы не получите, пока у вас не появится специальный приемник.
  • Аналоговое телевидение не может дать абонентам такого широкого выбора различных каналов. Цифровой сигнал же быстрее и неприхотливее, поэтому его возможности не ограничены каким-либо количеством каналов.
  • Говоря о мобильности, выигрывает цифровое ТВ. Возможно, вы пытались поймать хотя бы один канал стареньким маленьким телевизором с антенной, находясь в дороге или низменных отдаленных районах – это практически невозможно, пока вы не найдете возвышенное место и не построите огромные и длинные антенны из банок и проволок.

Можно сказать, что аналоговое телевидение по сей день остается самым доступным, но уже не самым прогрессивным и быстрым. Если вы цените качество изображения, его звук и надежность, то плюсы цифрового вещания перевешивают с большим отрывом.

В России уже вовсю идёт подготовка к переходу от аналогового к цифровому телевидению. Главное их отличие – это технология и формат передачи. Система, которая используется в аналоговом телевидении, уже несколько устарела, ведь была придумана уже почти шестьдесят лет назад. В «цифре» передаётся не сигнал, а последовательность значений. Да и передача осуществляется по другим принципам, поэтому получается намного быстрее и качественнее. Это как международные авиаперевозки авиатранспортом сравнить с автомобильными перевозками. Конечно же, при помощи самолёта можно перевезти больше и с меньшими потерями, ведь не будет тряски от дорог и т.п.

Плюсы цифрового телевидения

Почему все хотят побыстрее перейти на цифровое телевидение? Изначально надо подметить, что долгие годы не было одного общего стандарта телевидения. Из-за этого было невозможно увидеть цветную картинку, если стандарты отличались. Это и приносило больше всего неудобств пользователям. Существует три стандарта аналогового телевидения – NTSC, SECAM и PAL.

Кроме того, у «цифры» значительно лучшее качество, чем у аналогового. Это происходит из-за того, что системы работают по разным принципам. Аналоговое телевидение основывалось на делении частоты сигнала перед тем, как его подать. А вот цифровое телевидение подаёт прямой перекодированный поток, что позволяет не терять качество даже на больших расстояниях.

Все знают, что у телевизионных каналов есть некоторое ограничение на частоты – их количество строго ограничено. И снова «цифра» впереди: на том участке частоты, где вмещается всего один аналоговый канал, можно поместить четыре цифровых телеканала, – ровно также

Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?

Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.

У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.

Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).

Преимущества и недостатки аналогового сигнала

Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.

Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.

Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.

Преимущества и недостатки цифрового сигнала

К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.

Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.

Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.

На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.

Как ЦАП строят волну

ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.

Мультибитные ЦАП

Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.

На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.

Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.

Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).

При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.

Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.

Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.

Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).

Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.

Импульсные ЦАП

В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.

Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).

Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.

Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).

Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.

На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.

В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.

Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.

Являются ли идеальными импульсные ЦАП?

Но на практике не все безоблачно, и существует ряд проблем и ограничений.

Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.

Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.

Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.

Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.

Формат DSD

После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).

Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.

В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).

Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.

Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.

На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.

Общий вывод

Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.

Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.

Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.

Чем отличается спутниковое телевидение от кабельного, цифровое от аналогового и как выбрать тип вещания– попробуем разобраться в тонкостях данного вопроса.

Для начала, рассмотрим типы вещания. Их всего три:

— эфирное вещание. В этом случае трансляция каналов производится с помощью телевизионных вышек. Чтобы принимать данный тип вещания необходимо иметь антенну для приема сигнала.

— кабельное вещание. Его доставляют до потребителя компании — кабельные операторы. В данном случае сигнал передается по кабелю, который должны провести в вашу квартиру специалисты, если вы к ним обратитесь, конечно.

— спутниковое вещание. Спутники, распределенные над экватором Земли на высоте 36 тыс. км осуществляют трансляцию каналов. Чтобы принять сигнал со спутников нужно обзавестись антеннами – «тарелками», направленными на них.

Эфирное и кабельное телевидение бывает двух видов – аналоговое и цифровое. Они отличаются способом передачи сигнала. Аналоговый сигнал по качеству изображения и звука значительно уступает цифровому, в котором, кстати, еще и возрастает количество транслируемых каналов. В связи с однозначным преимуществом, последний набирает все большую популярность. В случае со спутниковым телевидением, «цифра» полностью вытеснила аналоговое вещание.

Для того, чтобы работать с цифровым сигналом, модель телевизора должна быть подходящей. В том случае, если это не так, можно воспользоваться ресивером. Это устройство преобразует цифровой сигнал в другой формат, понятный данной технике.

Важно знать, что форматы цифрового вещания для эфира, кабельной сети и для спутников будут совершенно разными. Европейские стандарты выглядят так:

  • DVB-T – эфирное вещание
  • DVB-C — кабельное вещание
  • DVB-S и DVB-S2 — спутниковые стандарты вещания. Последний более современный и перспективный.

По каким критериям выбирать модель вещания?

Абонентская плата. На сегодняшний день таковая предусматривается кабельным и спутниковым TV, эфирное примкнет к ним сразу же после перехода с аналогового вещания на цифровое. У спутниковых операторов размер абонентской платы зависит от количества телеканалов и их тематики. Постепенно такой подход внедряется у операторов кабельного телевидения, а в будущем наверняка распространится на эфирную модель.

Необходимое оборудование. Каждый тип доставки сигнала требует определенного технического оснащения – антенну для приема и телевизор или TV-тюнер, поддерживающий нужный тип вещания. Цены на данные устройства различаются – этот момент тоже нужно учитывать при выборе.

Условия приема. Чтобы сигнал передавался без помех, нужно учитывать особенности типа вещания и условия его приема. То есть, если вы будете смотреть телевизор на даче далеко за городом, то лучшим вариантом будет спутниковое TV. Если живете в городе на одном из последних этажей высотного дома, то вы можете спокойно выбирать эфирное вещание.

В случае, если ваш дом, наоборот, малоэтажный, то подойдет способ передачи сигнала по кабелям (если ваш дом подключен к кабельному телевидению).

Ваши предпочтения. Кому-то хватает несколько общественных каналов, а кто-то хочет иметь доступ к широкому их разнообразию. У каждого оператора спутникового и кабельного телевидения набор предлагаемых площадок отличается, поэтому стоит ориентироваться на свои интересы.

Бытует мнение, что спутниковое телевидение качественней остальных, но подобное утверждение спорно. Если вещание цифровое, то, вне зависимости от способа передачи сигнала, изображение может иметь весьма высокую четкость.