Что такое конденсатор? Радиоэлементы из старой аппаратуры: конденсаторы.

Конденсатор , кондер , кондюк - так его называют бывалые” специалисты один из самых распространенных элементов применяемое в различных электрических цепях. Конденсатор способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейший конденсатор состоят из двух пластинчатых электродов, разделенных диэлектриком, на этих электродах накапливается электрический заряд разной полярности, на одной пластин будет положительный заряд на другой отрицательный.

Принцип работы конденсатора и его назначение - постараюсь кратко и предельно понятно ответить на эти вопросы. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь.

При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это - конденсатор постоянной емкости, обозначается он так -

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть - металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Электролитический конденсатор

Следующий распространенный тип конденсаторов это - полярные электролитические конденсаторы , его изображение на электрической схеме выглядит так -

Электролитический конденсатор так же можно назвать постоянным конденсатором, потому, что их емкость не меняется.

Но электролитические конденсаторы имеют очень важно отличие, знак (+) возле одного из электродов конденсатора говорит о том, что это полярный конденсатор и при подключении его в цепь нужно соблюдать полярность. Плюсовой электрод необходимо подключить к плюсу источника питания, а минусовой (который без плюсика) соответственно к отрицательному - (на корпусе современных конденсаторов наносят обозначение минусового электрода, а вот плюсовой не обозначают никак).


Не соблюдение этого правила может привести к выходу конденсатора из строя и даже взрыву, сопровождающемуся разлетом бумаги фольги и нехорошим запахом (от конденсатора конечно…). Электролитические конденсаторы могут иметь очень большую емкость и соответственно накапливать, довольно большой потенциал. Поэтому электролитические конденсаторы даже после отключения питания таят в себе опасность, и при неосторожном обращении ты можешь получить сильный удар электрического тока. Поэтому после снятия напряжения для безопасной работы с электрическим устройством (ремонте электроники , настройке, и т.д.) электролитический конденсатор необходимо разрядить, замкнув накоротко его электроды, (делать это нужно специальным разрядником) особенно это касается конденсаторов большой емкости которые установлены на блоках питания, где есть высокое напряжение.

Конденсаторы переменной емкости.


Как ты понял из названия переменные конденсаторы могут изменять свою емкость - например при настройке радиоприемников. Еще совсем недавно для настройки радиоприемников на нужную станцию использовались только конденсаторы переменной емкости, вращая ручку настройки приемника тем самым изменяли емкость конденсатора. Переменные конденсаторы используются и посей день в простых недорогих моделях приемников и передатчиков. Конструкция переменного конденсатора очень простая. Конструктивно он состоит из статорных и роторных пластин, роторные пластины подвижные и входят в статорные е касаясь последних. Диэлектриком в таком конденсаторе является воздух. При входе статорных пластин в роторные емкость конденсатора увеличивается, при выходе роторных пластин емкость уменьшается. Обозначение переменного конденсатора выгляди так -

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

Конденсаторы нашли широкое применение во всех областях электротехники, они используются в различных электрических цепях.
В электроцепи переменного тока они могут служить в качестве ёмкостного сопротивления. Возьмем такой пример, при последовательном подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет.


Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора.

Благодаря этим качествам, конденсаторы применяются в качестве фильтров, в цепях подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных импульсных схемах, где требуется быстрое накопление и отдача большого электрического заряда, в ускорителях, фотовспышках, импульсных лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, создавая мощный импульс. Конденсаторы применяют для сглаживания пульсаций при выпрямлении напряжения. Способность конденсатора сохранять заряд длительное время дает возможность использовать их для хранения информации. И это только очень краткий перечень всего где может применяться конденсатор.

Продолжая занятия электротехникой, ты откроешь для себя еще много интересного в том числе и о работе и применению конденсаторов. Но, и этой информации, тебе будет достаточно для общего понимания и продвижения дальше.

Как проверить конденсатор

Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр . Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки - к ак прозванивать мультиметром , как и при проверке резисторов - что такое резистор . Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Электролитические конденсаторы проверяют следующим образом - Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем. После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.


Емкость конденсатора измеряется в Фарадах, 1 фарад - это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах (mF), пикофарадах (nF), нанофарадах (nF). Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF. Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе. Желаю успеха и настойчивости!

Содержание:

Конденсатор - это прибор, способный накапливать электрические заряды. Он применяется в электрических и электронных схемах повсюду. Современная промышленность выпускает множество их видов, которые отличаются друг от друга по разным параметрам. Это емкость, принцип работы, тип разделения зарядных проводников, диапазон допустимых напряжений, компоновка, материалы, из которых устройство изготовлено.

Любой конденсатор состоит из двух проводников, разделенных изолятором. Так как зарядка конденсатора - это занесение заряженных частиц на эти проводники, причем на один проводник одного знака, на другой - другого, а удерживаться будут заряды силой взаимного притяжения, то эффективность и зависит от этой силы. Она тем больше, чем ближе проводники друг к другу и чем больше их «почти соприкасающаяся» площадь. Разделяющая проводники среда тоже дает свой вклад. Среда эта - диэлектрик, имеющий определенную диэлектрическую проницаемость.

d – толщина диэлектрика, разделяющего металлические пластины

Емкость конденсатора вычисляется по формуле

Где S – площадь обкладок, d – толщина диэлектрика (расстояние между обкладками), а ε – проницаемость используемого диэлектрика относительно вакуума, диэлектрическая проницаемость которого известна довольно точно:

Здесь она выражена через другие единицы системы СИ. Здесь и метры в кубе в знаменателе, и секунды в четвертой степени в числителе, что произошло от формулы, где в знаменателе стоит скорость света в квадрате. И тогда емкость C и измеряется в фарадах.

И из формулы видно, что емкость и зависит как раз от площади обкладок, расстояния между ними (которое заполнено диэлектриком) и материала диэлектрика, значение ε которого можно найти по таблицам. Классификация конденсаторов делается по виду использования, по типу компонент.

Классификация по принципу действия

Самый простой конденсатор еще называется сухим, или твердотельным, потому что все материалы его твердые и самые обыкновенные. Зная описание, его можно изготовить вручную. В качестве изолятора берется бумажная лента, но так как она гигроскопична, то ее пропитывают парафином или маслом.

Сухие конденсаторы

Сухие или мокрые конденсаторы - зависит от заполнения между пластинами. Для сухих это может быть бумага, керамика, слюда, пластик (полиэстер, полипропилен). У каждого из диэлектриков свои физические свойства. Наиболее прочные (керамика) хорошо сопротивляются физическому разрушению и пробою. Пластичные допускают наносить обкладки в виде металлического напыления прямо на слой диэлектрика, что позволяет идти по пути микроминиатюризации.

Типы конденсаторов с другими состояниями компонентов

Кроме твердого диэлектрика, бывают конденсаторы с диэлектриком:

  • жидким;

  • газообразным (наполненные инертным газом для защиты электродов);

  • вакуумным;

  • воздушным.

Однако и электроды бывают не всегда вполне твердые.

Электролитические конденсаторы

Для создания большой емкости используют методы сближения обкладок не механические, а химические. Пользуясь тем, что алюминиевая фольга всегда на воздухе покрывается слоем диэлектрика (Al 2 O 3), к алюминиевому электроду вплотную приближают жидкий электрод в виде электролита. Тогда толщина изолирующего промежутка исчисляется атомными расстояниями, и это резко увеличивает емкость.

d – толщина диэлектрика

Так как на нижней поверхности верхней обкладки имеется слой оксида, диэлектрика, то именно его толщину и следует считать d - толщиной диэлектрика. Нижним электродом является нижняя обкладка, плюс слой электролита, которым пропитана бумага.

В электролитических конденсаторах заряд создается не только свободными электронами металла, но еще и ионами электролита. Поэтому важна полярность подключения.

Кроме электролитических конденсаторов, использующих в качестве изоляции оксид металла, по такому же принципу работают полевые (МОП) транзисторы. Они в электронных схемах часто и используются в качестве конденсаторов, имеющих емкость в несколько десятков нанофарад.

Еще аналогичный принцип работы у конденсаторов оксидно-полупроводниковых, в которых вместо жидкого электролита - твердый полупроводник. Но этими типами не исчерпываются конденсаторы, слой диэлектрика у которых имеет микроскопическую толщину.

Суперконденсатор, или ионистор

Возможен еще вариант создания слоя, играющего роль диэлектрика, в жидком электролите. Если залить им поверхность некоего пористого проводника (активированного угля), то при наличии на нем заряда ионы противоположного знака из электролита «прилипают» к проводнику. А к ним, в свою очередь, присоединяются другие ионы. И все вместе образует многослойную конструкцию, способную накапливать электрические заряды.

Процессы в жидком электролите особого состава для суперконденсаторов уже напоминают нечто, что происходит в электролитах аккумуляторов. Ионистор и по своим характеристикам приближается к аккумуляторам, кроме того, его зарядка проходит легче и быстрее. И в них в циклах зарядки/разрядки не происходит порчи электродов, как это обычно бывает в аккумуляторах. Ионисторы более надежные, долговечные, и ими как устройствами питания оснащают электротранспортные средства. А пористое вещество электродов дает просто колоссальную площадь поверхности. Вместе с наноскопически малой толщиной изолирующего слоя в электролите это и создает гигантскую емкость суперконденсаторов (ультраконденсаторов) - фарады, десятки и сотни фарад. Выпускается множество различных суперконденсаторов, некоторые по виду не отличаются от аккумуляторов.

Классификация по применению

Большинство конденсаторов изготовляются для использования в отлаженных, настроенных электрических схемах и цепях. Но во многих схемах производится настройка электрических или частотных параметров. Конденсаторы для этой цели очень удобны: можно менять емкость без изменения электрических контактов между обкладками.

По этому признаку конденсаторы бывают постоянными, переменными и подстроечными.

Подстроечные обычно исполняются в миниатюрном виде и предназначены для постоянной работы в схемах после небольшой предварительной оптимизирующей подстройки. Переменные имеют более широкие диапазоны параметров, чтобы проводить систематическую настройку (например, поиск волны в радиоприемнике).

По диапазону напряжений

Диапазон рабочих напряжений - очень важная характеристика конденсатора. В электронных схемах напряжения обычно небольшие. Верхняя граница - около 100 вольт. Но схемы электропитания, различные блоки питания, выпрямители, стабилизаторы приборов требуют установки конденсаторов, которые могли бы выдерживать напряжения до 400–500 вольт - с учетом возможных всплесков, и даже до 1000 вольт.

Но в сетях передачи электроэнергии напряжения бывают гораздо выше. Существуют высоковольтные конденсаторы специального исполнения.

Использование конденсатора вне его диапазона напряжений грозит пробоем. После пробоя устройство становится просто проводником и свои функции выполнять перестает. Особенно это опасно там, где конденсатор устанавливается для развязки схем по току, как отделяющий постоянное напряжение от переменной составляющей. В этом случае пробой грозит той части схемы, куда после этого хлынет постоянное напряжение: могут гореть другие элементы, может быть поражение электрическим током. Для электролитических конденсаторов это явление грозит еще и взрывом.

Слева – до 35 кВ, справа – до 4 кВ

Так как для пробоя на высоком напряжении нужен определенный минимум расстояния между проводниками, обычно для высоковольтного исполнения приборы и выполняются значительными по размерам. Или бывают изготовлены из определенных стойких к пробою материалов: керамические и … метало-бумажные. Разумеется, все в соответствующем по свойствам корпусе.

Маркировка конденсаторов

Существует несколько маркировок. Старая маркировка может состоять из трех или четырех цифр, в этом случае первые две (три) цифры означают мантиссу емкости (в пикофарадах), последняя цифра дает степень множителя-десятки.

Так выглядит трехзначная маркировка конденсаторов (обозначение емкостей)

Как видим, такая маркировка охватывает только емкость конденсаторов.

Кодовая маркировка содержит информацию и о материалах, и о напряжениях, и о допусках.

На больших конденсаторах обозначения располагают прямо на корпусе.

При отсутствии обозначений, касающихся напряжения, это низковольтный прибор. Встречаются условные буквенные обозначения напряжений.

Полярность обозначается «+ -» или канавкой кольцевого вида около минусового вывода. При наличии этого обозначения полярность соблюдать неукоснительно!

В электротехнике и электронике кроме есть ряд других пассивных компонентов. Один из них – конденсатор. Его используют в фильтрах, как накопитель энергии в источниках питания, как компенсатор реактивной мощности, а также в других сферах. В этой статье мы рассмотрим, как работает конденсатор и что это такое вообще.

Определение

Слово конденсатор происходит от латинского «condensatio», что переводится как «накопление». В физике этот термин употребляется для описания целой ниши электротехнических изделий, назначение которых работать как накопитель энергии. Количество накопленной энергии зависит от ёмкости и квадрата напряжения на его обкладках, поделенное на 2. При этом ток через него протекает только в процессе заряда. Но обо всем по порядку.

E=(CU 2)/2

Если сказать по-простому, то конденсатор – это устройство способное накапливать энергию в . В простейшем варианте состоит из двух проводников (обкладок), разделённых диэлектриком. На рисунке ниже вы видите упрощенную схему внешнего устройства плоского конденсатора. Условное обозначение на схеме представляет собой 2 черты высотой в 8 мм, на расстоянии в 1,5 мм друг от друга.

Принцип работы

Теперь, когда мы знаем, как обозначается данный элемент на схемах, нужно рассмотреть принцип работы конденсатора. Когда обкладки конденсатора подключают к источнику питания, электрические заряды от положительного и отрицательного зажима ИП устремляются к обкладкам, скапливаясь на них.

Электрический ток прерывается после заряда конденсатора до номинальной ёмкости, так как между обкладками находится слой диэлектрика он не может протекать постоянно. Когда источник питания отключат, на конденсаторе останутся заряды, а значит и останется напряжение на его выводах.

Заряды, скопившиеся на каждой из обкладок, противоположны. Соответственно та обкладка, что была подключена к плюсовому выводу источника питания – заряжена положительно, а та, что к минусовому – отрицательно. Принцип работы этого изделия основан на притяжении разноименных зарядов в электрической цепи.

Простыми словами конденсатор сохранит ту энергию, которая была передана от источника питания – в этом и кроется его назначение. Однако на практике есть разнообразные потери и утечки.

Интересно! Лейденская банка – это прообраз современных конденсаторов, родившийся на свет в 1745 году. Это устройство было способно накапливать энергию и извлекать искры при замыкании его обкладок. Внешний вид и конструкцию вы видите ниже.

А на рисунке ниже вы видите конструкцию простейшего плоского конденсатора – две обкладки, разделенные диэлектриком:

Так как ёмкость прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между ними – то чтобы увеличить ёмкость, инженеры разработали ряд других форм конденсаторов. Например, свёрнутые в спираль обкладки – так их площадь становилась во много раз больше при тех же габаритных размерах, а также цилиндрические и сферические решения.

Один из законов коммутации гласит, что напряжение на обкладках конденсатора не может изменится скачком, что и иллюстрирует следующая миниатюра.

Виды

Классификация конденсаторов может происходить по различным критериям.

По постоянству ёмкости:

  • Постоянные.
  • Переменные. Их ёмкость может изменяться либо вручную оператором (пользователем) устройства, либо под воздействием напряжения (как в варикапах и варикондах).

По полярности прикладываемого напряжения:

  • Неполярные – могут работать в цепях переменного тока.
  • Полярные – при подключении напряжения неправильной полярности выходят из строя.

В зависимости от того, где используются эти компоненты, различают разные варианты по материалу:


Основные технические характеристики

Если вы ремонтируете или разрабатываете электронное устройство, вам понадобится подбирать подходящий конденсатор для замены вышедшего из строя. А для этого нужно ознакомиться с основными техническими характеристиками конденсатора, от которых зависит его работа в электрической цепи.

Номинальная емкость. Характеризует основное назначение компонента — какой заряд он может запасать. Основная характеристика измеряется в фарадах [Ф]. Однако такая единица измерения слишком большая, поэтому используют доли:

  • Милифарады, мФ – 0, 001 Ф (10 -3);
  • Микрофарады, мкФ – 0, 000 001 Ф (10 -6);
  • Нанофарады, нФ – 0, 000 000 001 Ф (10 -9);
  • Пикофарады, пФ – 0, 000 000 000 001 Ф (10 -12).

Номинальное напряжение - это такое напряжение, до которого конденсатор может гарантировано работать в нормальном режиме. При превышении этого значения с большой долей вероятности происходит пробой диэлектрика. Может быть от единиц вольт (для электролитов) и до тысяч вольт (плёнка и керамика). При ремонте эта величина должна быть не ниже, чем у вышедшего из строя, выше – можно!

Допуск отклонения - насколько реальная ёмкость может отличаться от заявленной номинальной. Может достигать 20-30%, но есть и высокоточные модели с допуском до 1% — для применения в цепях, где требуется особая точность.

Температурный коэффициент емкости - этот параметр важен для электролитов. У алюминиевых конденсаторов при понижении температуры понижается ёмкость и увеличивается удельное электрическое сопротивление (в англ. ESR)

ESR – эквивалентное последовательное сопротивление, также важен для электролитов. Простым языком – чем он больше, тем хуже. У вздувшихся кондёров ESR повышается.

В таблице ниже вы видите допустимые значения ESR для различных номинальных емкостей и напряжений.

Где и для чего применяются

Всё же ответим на вопрос «для чего предназначен конденсатор?» с практической точки зрения. Для этого рассмотрим несколько схем.

Самое широкое применение электролитические конденсаторы нашли в качестве уже не раз упомянутого фильтра сетевых пульсаций в блоках питания. На схеме ниже изображено, где именно устанавливается электролит. Чем больше нагрузка – тем большая ёмкость электролита нужна для сглаживания пульсаций.

Следующее место, где применяются конденсаторы – это фильтры высоких и низких частот. Ниже на схеме приведены типовые включения. Таким образом в акустических системах разводят басы, средние и высокие частоты по динамикам без применения активных компонентов.

Балластные блоки питания часто используются для зарядки небольших аккумуляторов и питания маломощных устройств, таких как дешевые светодиодные лампочки, радиоприёмники и прочие. Плёночный конденсатор устанавливается последовательно с питающим устройством, ограничивая ток за счёт своего реактивного сопротивления – в этом и заключается принцип работы такой простой схемы.

На сегодняшний день существует множество типов конденсаторов и каждый из них обладает своими преимуществам и недостатками.
Одни могут работать при высоких напряжениях, другие обладают большой ёмкостью, третьи малой утечкой, четвёртые малой индуктивностью - эти факторы определяют область применения конденсаторов конкретного типа.
В этой статье будут рассмотрены основные, но далеко не все типы конденсаторов.

Алюминиевые электролитические конденсаторы .

Алюминиевые электролитические конденсаторы, состоят из двух скрученных тонких алюминиевых полосок, между которыми помещается бумага, пропитанная электролитом. Ёмкость этого типа конденсаторов может быть от 0.1uF до 100 000uF, что является их главным преимуществом перед другими типами, а максимальное рабочее напряжение может доходить до 500V. Максимальное рабочее напряжение и ёмкость обычно указываются на конденсаторе, максимальное рабочее напряжение конденсатора, изображенного на картинке, составляет 35 вольт , а ёмкость или заряд приходящийся на 1 вольт, составляет 680uF . Недостатком этого типа конденсаторов является относительно высокий ток утечки и то, что ёмкость их уменьшается с ростом частоты, именно поэтому на платах часто можно встретить алюминиевый электролитический конденсатор, параллельно которому ставят керамический или как горят “шунтируют керамикой”. Также надо сказать, что этот тип конденсаторов имеет полярность, это значит, что вывод конденсатора, обозначенный минусом на корпусе, должен всегда находиться под более отрицательным напряжением, чем другой вывод конденсатора. При несоблюдении этого правила конденсатор скорее всего взорвётся и именно поэтому применять их можно только в цепях с постоянным и пульсирующим током, но не переменным.

Танталовые конденсаторы .

Танталовые конденсаторы изготавливаются из пентаоксида тантала и схожи по свойствам с алюминиевыми электролитическими конденсаторами, но обладают некоторыми особенностями. Они меньшего размера, максимальное рабочее напряжение до 100V, ёмкость этого типа конденсаторов может быть от 47nF до 1000uF, обладают меньшей индуктивностью и могут применяться в более высокочастотных схемах, работающих на частотах в сотни Khz. К недостаткам можно отнести чувствительность к превышению рабочего напряжения. Надо отметить, что в отличии от алюминиевых электролитических конденсаторов, линией на корпусе помечают плюсовой вывод.

Керамические однослойные дисковые конденсаторы .

Дисковые керамические конденсаторы обладают достаточно большой ёмкостью при их размерах, она может быть от 1pF до 220nF, а максимальное рабочее напряжение не должно превышать 50V. Значение ёмкости на данном типе конденсаторов указывается в pF, например ёмкость конденсатора изображенного на картинке равна 100 000 pF или 100nF или 0.1uF, данное значение получается следующим образом, первые две цифры надо умножить на 10, возведенную в степень третьей цифры, в нашем случае надо 10 х 10^4 = 10^5 или 100 000pF. К достоинствам можно отнести, незначительные токи утечки, небольшие габаритные размеры, низкую индуктивность и способность работать на высоких частотах, а также высокую температурную стабильность ёмкости. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические многослойные конденсаторы

Керамические многослойные конденсаторы представляет собой структуру с чередующимися тонкими слоями керамики и металла.
Этот тип конденсаторов схож по свойствам с однослойными дисковыми, но обладает в несколько раз большей ёмкостью, достигающей нескольких uF. Максимальное рабочее напряжение на корпусе этих конденсаторов не указывается и так же как для однослойных дисковых, не должно превышать 50V. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические высоковольтные конденсаторы

Преимущество этого типа конденсаторов понятно из названия, их отличительной особенностью является способность работать под высоким напряжением. Диапазон рабочих напряжений от 50 до 15000V, а ёмкость может 68pF до 150nF. Максимальное напряжение конденсатора, изображенного на картинке конденсатора равно 1000V, а ёмкость 100nF, выше описывалось как её узнать. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Полиэстеровые конденсаторы .

Ёмкость этого типа конденсаторов может быть от 1nF до 15uF, диапазон рабочих напряжений от 50 до 1500V. Они изготавливаются с разными допуском(допустимое отклонение номинальной ёмкости), 5%, 10% и 20%, обладают высокой температурной стабильностью, достаточно большой ёмкостью при их размерах, низкой ценой и как следствие находят широкое применение. Ёмкость конденсатора, изображенного на картинке равна 150 000pF или 150nF, буква К после числа 154 означает допуск, то есть на сколько реальное значение ёмкости может отличаться от указанной на конденсаторе. В данном случае допуск составляет 10%, подробнее об этом будет написано ниже. Нас больше интересует, что в маркировке этого конденсатора означает 2J и чему равно его максимальное рабочее напряжение. Для того чтобы ответить на два эти вопроса можно воспользоваться таблицей, буквенной маркировки напряжения.


Из таблицы становится понятно, что максимальное рабочее напряжение конденсатора равно 630V

Полипропиленовые конденсаторы .

В конденсаторах этого типа в качестве диэлектрика применяется полипропиленовая плёнка, а их ёмкость может быть от 100pF до 10uF. Одним из главных преимуществ этого типа конденсаторов является высокое рабочее напряжение, которое может достигать 3000V, также преимуществом является возможность изготовления этого типа конденсаторов с допуском в 1%. На картинке изображён конденсатор ёмкость которого 5600pF, а максимальное рабочее напряжение равно 630V. Буква J после числа 562 обозначает допуск и в данном случае он равен 5%. Допуск можно определить, пользуясь таблицей, изображенной ниже.


То есть реальное значение ёмкости может отличаться на 5% той, что указана на конденсаторе. Могут работать на частотах до 100KHz.

В радиоэлектронике используются огромное количество всевозможных конденсаторов. Все они различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск.

Но это лишь основные параметры. Ещё одним немаловажным параметрам может служить то, из какого диэлектрика состоит конденсатор . Рассмотрим более подробно, какие бывают конденсаторы по типу диэлектрика.

В радиоэлектронике применяются полярные и неполярные конденсаторы. Отличие полярных конденсаторов от неполярных заключается в том, что полярные включаются в электронную схему в строгом соответствии с указанной полярностью. К полярным конденсаторам относятся так называемые электролитические конденсаторы. Наиболее распространены радиальные алюминиевые электролитические конденсаторы. В отечественной маркировке они имеют обозначение К50-35.

У аксиальных конденсаторов проволочные выводы размещены по бокам цилиндрического корпуса, в отличие от радиальных конденсаторов, выводы которых размещаются с одной стороны цилиндрического корпуса. Аксиальными электролитами являются конденсаторы с маркировкой К50-29 К50-12, К50-15 и К50-24.


Аксиальные электролитические конденсаторы серии К50-29 и импортный фирмы PHILIPS

В обиходе радиолюбители называют электролитические конденсаторы “электролитами”.

Обнаружить их можно в блоках питания радиоэлектронной аппаратуры. В основном они служат для фильтрации и сглаживания выпрямленного напряжения. Также электролитические конденсаторы активно применяются в усилителях звуковой частоты (усилках) для разделения постоянной и переменной составляющей тока.

Электролитические конденсаторы обладают довольно значительной ёмкостью. В основном, значения номинальной ёмкости простираются от 0,1 микрофарады (0,1 мкФ) до 100.000 микрофарад (100000 мкФ).

Номинальное рабочее напряжение электролитических конденсаторов может быть в диапазоне от 10 вольт до нескольких сотен вольт (100 – 500 вольт). Конечно, не исключено, что есть и другие образцы, с другой ёмкостью и рабочим напряжением, но на практике встречаются они довольно редко.

Стоит отметить, что номинальная ёмкость электролитических конденсаторов уменьшается по мере роста срока их эксплуатации.

Поэтому, для сборки самодельных электронных устройств, стоит применять либо новые купленные, либо те конденсаторы, которые эксплуатировались в электроаппаратуре небольшой срок. В противном случае, можно столкнуться с ситуацией неработоспособности самодельного устройства по причине неисправности электролитического конденсатора. Наиболее распространённый дефект “старых” электролитов – потеря ёмкости и повышенная утечка.

Перед повторным применением стоит тщательно проверить конденсатор , ранее бывший в употреблении.

Опытные радиомеханики могут многое рассказать про качество электролитических конденсаторов. В пору широкого распространения советских цветных телевизоров в ходу была очень распространённая неисправность телевизоров по причине некачественных электролитов. Порой доходило до того, что телемастер заменял практически все электролитические конденсаторы в схеме телевизора, после чего аппарат исправно работал долгие годы.

В последнее время всё большее распространение получают компактные электролитические конденсаторы для поверхностного монтажа. Их габариты значительно меньше, чем классических выводных.


Конденсаторы электролитические алюминиевые для SMD монтажа на плате CD - привода

Также существуют миниатюрные танталовые конденсаторы . Они имеют довольно малые размеры и предназначены для SMD монтажа. Обнаружить их легко на печатных платах миниатюрных МР3 плееров, мобильных телефонов, материнских платах ноутбуков и компьютеров.


Танталовые электролитические конденсаторы на печатной плате MP-3 плеера

Несмотря на свои маленькие размеры, танталовые конденсаторы имеют значительную ёмкость. Они аналогичны алюминиевым электролитическим конденсаторам для поверхностного монтажа, но имеют значительно меньшие размеры.


Танталовый SMD конденсатор ёмкостью 47 мкФ и рабочее напряжение 6 вольт.
Печатная плата компьютерного CD-привода

В основном в компактной аппаратуре встречаются танталовые конденсаторы на 6,3 мкФ, 10 мкФ, 22 мкФ, 47 мкФ, 100 мкФ, 470 мкФ и на рабочее напряжение 10 -16 вольт. Столь небольшое рабочее напряжение связано с тем, что напряжение источника питания в малогабаритной электронике редко превышает порог в 5 – 10 вольт. Конечно, есть и более высоковольтные экземпляры.

Кроме танталовых конденсаторов в миниатюрной электронике используются и полимерные для поверхностного монтажа. Такие конденсаторы изготавливаются с применением твёрдого полимера. Он выполняет роль отрицательной обкладки – катода . Плюсовым выводом – анодом - в полимерном конденсаторе служит алюминиевая фольга. Такие конденсаторы хорошо подавляют электрические шумы и пульсации, обладают высокой температурной стабильностью.

На танталовых конденсаторах указывается полярность, которую необходимо учитывать при их использовании в самодельных конструкциях.

Кроме танталовых конденсаторов в SMD корпусах есть и выводные с танталовым диэлектриком. Их форма напоминает каплю. Отрицательный вывод маркируется полосой на корпусе.

Такие конденсаторы также обладают всеми преимуществами, что и танталовые для поверхностного монтажа, а именно низким током утечки, высокой температурной и частотной стабильностью, более высоким сроком эксплуатации по сравнению с обычными конденсаторами. Активно применяются в телекоммуникационном оборудовании и компьютерной технике.


Выводной танталовый конденсатор ёмкостью 10 микрофарад и рабочее напряжение 16 вольт

Среди электролитических конденсаторов есть и неполярные . Выглядят они, так же как и обычные электролитические конденсаторы, но для них не важна полярность приложенного напряжения. Они применяются в схемах с переменным или пульсирующим током, где использование полярных конденсаторов невозможно. К неполярным относятся конденсаторы с маркировкой К50-6. Отличить полярный конденсатор от неполярного можно, например, по отсутствию маркировки полярности на его корпусе.