Что такое конденсатор, типы конденсаторов и их обозначение на схемах. Конденсаторы: назначение, устройство, принцип действия

Накопление и преобразование электрической энергии можно отнести к базовым задачам, которые решают вспомогательные элементы радиоаппаратуры. Конденсатор относится к пассивным компонентам и выступает своего рода емкостью для поступающего заряда. Конструкция стандартных устройств предусматривает наличие пластинчатых электродов, которые разделяются тонкими диэлектриками. Более сложные типы конденсаторов могут содержать несколько электродных слоев, формирующих цилиндрическую намотку. Есть и другие отличительные признаки, обуславливающие возможности применения элементов для той или иной аппаратуры.

Назначение конденсаторов

На сегодняшний день едва ли найдется область радиотехники, в которой бы не использовались данные устройства. Наиболее распространены комбинации конденсаторов с резисторами и катушками индуктивности, участвующие в построении электрических цепей. Такие узлы поддерживают функции частотных фильтров, колебательных контуров и линий с обратной связью. Еще одна их распространенная задача - сглаживание пульсаций напряжения, требуемое во вторичных источниках энергоснабжения. В лазерных установках, системах вспышки и магнитных ускорителях электрический конденсатор используется для выдачи разового заряда с большим показателем мощности. И напротив, электротехнические приборы оснащаются данными элементами с целью компенсации реактивной мощностной энергии. Хотя такие элементы нельзя рассматривать в качестве полноценных емкостных накопителей энергии, в некоторых системах они выступают и как носители информации.

Маркировка устройств

Для визуального определения принадлежности конденсатора к той или иной категории используются специальные обозначения. В первую очередь указывается емкостный потенциал, выражаемый микрофарадами (мкФ). Могут применяться и другие единицы измерения, о чем также будет свидетельствовать соответствующая маркировка. Не всегда отмечается тип используемого в конструкции материала - как правило, без маркировки выпускаются керамические и пленочные неполярные модели. В свою очередь, обозначение танталовых конденсаторов соответствует резисторам - за исключением наличия знака µ и цифр 104 или 107. Такие устройства могут иметь оранжевый, желтый или черный цвет. В знаковой маркировке также указываются размерные параметры и емкость. Высоковольтные и электролитические модели помечаются величиной максимального напряжения, а для переменных конденсаторов указывается диапазон емкости.

Основные характеристики

Главным рабочим параметром является емкость, от которой зависит способность конкретной модели накапливать заряд. Следует разделять номинальную и фактическую емкость, так как на практике использования вторая величина может быть меньше. Диапазон значений по объему может варьироваться от 1 до 50 мкФ, а в некоторых случаях максимум достигает и 10 000 мкФ. Важен и показатель энергетической плотности, во многом определяемый конструкцией изделия. Наибольшей плотностью характеризуются крупноформатные типы конденсаторов, у которых масса обкладки с электролитом существенно превышает вес корпуса. К примеру, при емкости в 10 000 мкФ с напряжением в 0,45 кВт и массой порядка 2 кг плотность может достигать 600-800 Дж/кг. Как раз такие модели выгодно использовать для длительного хранения энергии. Помимо этого, рабочие свойства конденсаторов определяются допуском. Речь идет как раз о погрешности в соотношении показателей реальной и номинальной емкости. Данная величина выражается в процентах и в среднем составляет 20-30 %. В некоторых направлениях радиотехники применяются изделия с 1 % допуска.

Керамические конденсаторы

Это устройства, базирующиеся на дисковых керамических элементах с диэлектриками из титаната бария. Такой конденсатор можно использовать в системах с напряжением до 50 000 В, но важно учитывать, что он имеет минимальную температурную стабильность и широкий спектр изменения емкости. Среди достоинств можно отметить небольшие утечки тока, скромные размеры (при большой емкости заряда) и способность работать на высокой частоте. Что касается назначения, то керамические конденсаторы применяются в цепях с пульсирующим, переменным и постоянным током. Чаще всего используют модели емкостью до 0,5 мкФ. В процессе работы конденсатор этого типа хорошо справляется с внешними нагрузками, среди которых механические удары. Нельзя сказать, что керамический корпус отличается большим эксплуатационным сроком и долговечностью, однако в заявленный период технические свойства поддерживает стабильно.

Полиэстеровые модели

На схемах устройства данного типа обозначаются маркировкой K73-17 или CL21. Их оболочку формирует металлизированная пленка, а для корпуса используется эпоксидный компаунд. Как раз наличие этого наполнителя в конструкции делает полиэстеровые конденсаторы устойчивыми к температурным, физическим и химическим воздействиям. Этот набор эксплуатационных качеств обусловил и широкое распространение конденсаторов типа K73-17 в производстве светотехнических приборов. Средняя емкость устройства составляет 15 мкФ при максимальном напряжении порядка 1500 В. Характеристики скромные, но это не мешает применять конденсатор в тех же цепях с импульсным и переменным током. К тому же и низкая стоимость устройства способствует его популярности на радиорынке.

Конденсатор на основе полипропилена

Тоже вариант относительно недорогого накопителя электрического заряда, который при этом отличается низким коэффициентом потерь и высокой диэлектрической прочностью. К плюсам можно отнести и оптимальную гигроскопичность. То есть один из главных врагов радиоэлементов в виде влажности полипропиленовым конденсаторам не страшен. В качестве изоляторов применяется металлизированная пленка или полоски фольги. В новейших версиях используют и технологию самовосстанавливающейся оболочки, что повышает надежность и долговечность конденсатора.

Устройство может работать на повышенных частотах с сохранением достаточной мощности. Это качество позволяет использовать конденсаторы в системах индукционного обогрева, дополненных водяным охлаждением. Распространено и применение таких элементов в оснастке электромоторов на 220 В. В данном случае они выступают как пусковые компоненты. Эту функцию лучше всего реализуют модели с рабочей емкостью в диапазоне 1-100 мкФ и напряжением в 440 В. Но и это не единственные накопители на синтетической основе. Какие бывают конденсаторы из термопластиков? Внимания заслуживают полисульфоновые и поликарбонатные элементы. Первые отличаются низким влагопоглощением и способностью поддерживать высокое напряжение при температурных перепадах, а вторые в процессе работы демонстрируют оптимальную электротехническую стабильность.

Танталовые конденсаторы

Основу устройства формирует пентоксид тантала с оксидным электролитическим наполнением. Конденсатор отличается высоким отношением емкости к объему, широким спектром поддерживаемых температур и компактностью. Используют такие компоненты в мелком приборостроении, компьютерах и другой вычислительной технике. В этом семействе можно выделить следующие типы конденсаторов: полярные и неполярные, твердотельные, жидкостные. Наиболее привлекательные по эксплуатационным качествам именно твердотельные устройства, так как они характеризуются способностью поддерживать большое напряжение. Однако в условиях критического превышения допустимой величины тока они могут выходить из строя. Емкость танталовых моделей составляет 1000 мкФ, но по сравнению с электролитическими аналогами их собственная индуктивность гораздо ниже, что допускает возможность применения элемента на высоких частотах.

Особенности высоковольтных моделей

Элементы такого типа могут применяться в системах с высокими показателями напряжения, достигающими 15 000 В. При этом емкость у высоковольтных конденсаторов небольшая - порядка 50-100 нФ. В качестве диэлектрического материала чаще используется керамика. Благодаря этой основе выдерживаются большие нагрузки напряжения, а корпус защищает начинку от пробоев пластин.

Распространены и стеклянные вакуумные изделия, также поддерживающие напряжение более 10 000 В. Они представляют собой колбы с концентрическими электродами, в процессе работы обеспечивающими небольшие частотные потери. Применяют высоковольтные конденсаторы такого типа для решения ответственных радиочастотных задач с индуктивным нагревом. Но стоят такие компоненты дороже, отличаются хрупкостью и большими размерами.

Многослойные и однослойные конструкции

Обычно данную классификацию применяют в отношении конденсаторов, выполненных из керамики. Так, однослойные конденсаторы (дисковые) имеют простое устройство, но это не сказывается на уменьшении размеров. В большинстве случаев они массивнее, чем многослойные аналоги. В итоге увеличивается емкость устройства, но крупные размеры все же ограничивают их распространение в отдельных областях.

Что касается многослойных элементов, то они по эксплуатационным качествам в целом схожи с дисковыми, но потенциал накопителей еще выше. Также существенное преимущество заключается в надежности и долговечности. Форм-фактор, в котором выполняются многослойные конденсаторы, делает их менее чувствительными к агрессивным средам, что расширяет область применения. Такие компоненты преимущественно используют в дорогой профессиональной аппаратуре.

Масляные конденсаторы с пропитками

Это отдельная группа радиотехнических элементов, в основе которых находятся бумажные наполнители. Они обрабатываются специальными растворами наподобие воска и эпоксидных смол. Какие бывают конденсаторы масляного типа? Принципиально отличаются модели для постоянного и переменного тока. Первые используются в целях частотной фильтрации, повышения напряжения и устранения электрической дуги. Конденсаторы на масляной пропитке для систем с переменным током применяют в промышленности. Такое устройство располагает большой емкостью и может справляться с большими пиковыми нагрузками. Как правило, его используют в качестве пускового компонента для электромоторов. К дополнительным функциям можно отнести разделение фаз, коррекцию мощности и выравнивание напряжения.

Негативные факторы применения конденсаторов

Одной из главных проблем использования конденсаторов является высокая вероятность взрыва при перегревах, которые происходят из-за больших утечек. Также повысить риск поломки элемента могут близко расположенные радиаторы с высоким тепловым излучением. Какие типы конденсаторов наиболее подвержены взрывам? Чаще всего это происходит с электролитическими устройствами, обеспеченными ненадежными корпусами. Оптимизация конструкции с целью уменьшения размеров изделия заставляет производителей использовать тонкие оболочки, поэтому может иметь место разлет частей конденсатора и разбрызгивание электролита при сильном перегреве или в условиях повышенного внутреннего давления.

Заключение

И простейшие однослойные, и многослойные высоковольтные модели конденсаторов выполняют важные для радиоаппаратуры задачи. Как минимум они корректируют параметры тока, что при схожих размерах не может обеспечить ни один другой технический компонент. В то же время электрический конденсатор вовсе не является идеальным решением, что обуславливает постоянные поиски новых форматов его исполнения. Производители сложной аппаратуры экспериментируют с конструкциями, наполнителями и физическими свойствами, стараясь предлагать оптимальные потребительские качества данного устройства. Среди наиболее важных целевых параметров в этом плане можно назвать устойчивость конденсатора к нагрузкам, широкие рабочие диапазоны, минимальное радиационное воздействие и высокий срок службы.

Конденсатор - это двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Изобрел первую конструкцию-прототип электрического конденсатора «лейденскую банку» в 1745 году, в Лейдене, немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук.

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

Резонансная частота конденсатора равна: f р = 1/ (2∏ ∙ √ L с ∙ C ) .

При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f < fp , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Отечественные неполярные конденсаторы:

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·10 6 пФ = 1·10 −6 Ф) и пикофарадах, но нередко и в нанофарадах (1 нФ = 1·10 −9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 - 180».

Основные параметры конденсаторов:

  1. Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  2. Конденсаторы также характеризуются удельной ёмкостью - отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  3. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  4. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение - значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  5. Полярность . Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Обозначение на схемах:

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  1. Конденсаторы вакуумные (между обкладками находится вакуум).
  2. Конденсаторы с газообразным диэлектриком.
  3. Конденсаторы с жидким диэлектриком.
  4. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  5. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные - бумажноплёночные, тонкослойные из органических синтетических плёнок.
  6. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) - это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичнного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура - основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы - вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Вакуумный конденсатор:

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  1. Постоянные конденсаторы - основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  2. Переменные конденсаторы - конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  3. Подстроечные конденсаторы - конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

Два бумажных электролитических конденсатора 1930 года:

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Серебрянный конденсатор для аудио.

Также различают конденсаторы по форме обкладок:

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие "конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 ... 2 и длиной 15 ... 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2... 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин (обкладок), на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними.

Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора.

Классификация

Конденсаторы делятся на виды по следующим факторам.

Назначению
  • Общего назначения . Это популярный вид конденсаторов, которые используют в электронике. К ним не предъявляются особые требования.
  • Специальные . Такие конденсаторы обладают повышенной надежностью при заданном напряжении и других параметров при запуске электродвигателей и специального оборудования.
Изменению емкости
  • Постоянной емкости . Не имеют возможности изменения емкости.
  • Переменной емкости . Они могут изменять значение емкости при воздействии на них температуры, напряжения, регулировки положения обкладок. К конденсаторам переменной емкости относятся:
    Подстроечные конденсаторы не предназначены для постоянной работы, связанной с быстрой настройкой емкости. Они служат только для одноразовой наладки оборудования и периодической подстройки емкости.
    Нелинейные конденсаторы изменяют свою емкость от воздействия температуры и напряжения по нелинейному графику. Конденсаторы, емкость которых зависит от напряжения, называются варикондами , от температуры – термоконденсаторами .
Способу защиты
  • Незащищенные работают в обычных условиях, не имеют никакой защиты.
  • Защищенные конденсаторы выполнены в защищенном корпусе, поэтому могут работать при высокой влажности.
  • Неизолированные имеют открытый корпус и не имеют изоляции от возможного соприкосновения с различными элементами схемы.
  • Изолированные конденсаторы выполнены в закрытом корпусе.
  • Уплотненные имеют корпус, заполненный специальными материалами.
  • Герметизированные имеют герметичный корпус, полностью изолированы от внешней среды.
Виду монтажа
  • Навесные делятся на несколько видов с;
    — ленточными выводами;
    — опорным винтом;
    — круглыми электродами;
    — радиальными или аксиальными выводами.
  • Конденсаторы с винтовыми выводами оснащены резьбой для соединения со схемой, применяются в силовых цепях. Подобные выводы проще фиксировать на охлаждающих радиаторах для снижения тепловых нагрузок.
  • Конденсаторы с защелкивающимися выводами являются новой разработкой, при монтаже на плату они защелкиваются. Это очень удобно, так как нет необходимости использовать пайку.
  • Конденсаторы, предназначенные для поверхностной установки , имеют особенность конструкции: части корпуса являются выводами.
  • Емкости для печатной установки изготавливают с круглыми выводами для расположения на плате.
По материалу диэлектрика

Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры. Рассмотрим виды конденсаторов, которые имеют различные материалы диэлектрика.

  • Конденсаторы с неорганическим изолятором из стеклокерамики, стеклоэмали, слюды. На диэлектрический материал нанесено металлическое напыление или фольга.
  • Низкочастотные конденсаторы включают в себя изоляционный материал в виде слабополярных органических пленок, у которых диэлектрические потери зависят от частоты тока.
  • Высокочастотные модели содержат пленки из фторопласта и полистирола.
  • Импульсные модели высокого напряжения имеют изолятор из комбинированных материалов.
  • В конденсаторах постоянного напряжени я в качестве диэлектрика используется политетрафторэлитен, бумага, либо комбинированный материал.
  • Низковольтные модели работают при напряжении до 1,6 кВ.
  • Высоковольтные модели функционируют при напряжении свыше 1,6 кВ.
  • Дозиметрические конденсаторы служат для работы с малым током, имеют незначительный саморазряд и большое сопротивление изоляции.
  • Помехоподавляющие емкости уменьшают помехи, возникающие от электромагнитного поля, имеют низкую индуктивность.
  • Емкости с органическим изолятором выполнены с применением конденсаторной бумаги и различных пленок.
  • Вакуумные, воздушные, газонаполненные конденсаторы обладают малыми диэлектрическими потерями, поэтому их применяют в аппаратуре с высокой частотой .
Форме пластин
  • Сферические.
  • Плоские.
  • Цилиндрические.
Полярности
  • Электролитические конденсаторы называют оксидными. При их подключении обязательным является соблюдение полярности выводов. Электролитические конденсаторы содержат диэлектрик, состоящий из оксидного слоя, образованный электрохимическим способом на аноде из тантала или алюминия. Катодом является электролит в жидком или гелеобразном виде.
  • Неполярные конденсаторы могут включаться в схему без соблюдения полярности.

Конструктивные особенности

Рассмотренные выше виды конденсаторов далеко не все имеют большую популярность. Поэтому подробнее рассмотрим конструктивные особенности наиболее применяемых видов конденсаторов.

Воздушные виды конденсаторов

В качестве диэлектрика используется воздух. Такие виды конденсаторов хорошо зарекомендовали себя при работе на высокой частоте, в качестве настроечных конденсаторов с изменяемой емкостью. Подвижная пластина конденсатора является ротором, а неподвижную называют статором. При смещении пластин друг относительно друга, изменяется общая площадь пересечения этих пластин и емкость конденсатора. Раньше такие конденсаторы были очень популярны в радиоприемниках для настраивания радиостанций.

Керамические

Такие конденсаторы изготавливают в виде одной или нескольких пластин, выполненных из специальной керамики. Металлические обкладки изготавливают путем напыления слоя металла на керамическую пластину, затем соединяют с выводами. Материал керамики может применяться с различными свойствами.

Их разнообразие обуславливается широким интервалом диэлектрической проницаемости. Она может достигать нескольких десятков тысяч фарад на метр, и имеется только у такого вида емкостей. Такая особенность керамических емкостей позволяет создавать большие значения емкостей, которые сопоставимы с электролитическими конденсаторами, но для них не важна полярность подключения.

Керамика имеет нелинейную сложную зависимость свойств от напряжения, частоты и температуры. Из-за небольшого размера корпуса эти виды конденсаторов применяются в компактных устройствах.

Пленочные

В таких моделях в качестве диэлектрика выступает пластиковая пленка: поликарбонат, полипропилен или полиэстер.

Обкладки конденсатора напыляют или выполняют в виде фольги. Новым материалом служит полифениленсульфид.

Параметры пленочных конденсаторов

  • Применяются для резонансных цепей.
  • Наименьший ток утечки.
  • Малая емкость.
  • Высокая прочность.
  • Выдерживают большой ток.
  • Устойчивы к электрическому пробою (выдерживают большое напряжение).
  • Наибольшая эксплуатационная температура до 125 градусов.
Полимерные

Эти модели имеют отличие от электролитических емкостей наличием полимерного материала, вместо оксидной пленки между обкладками. Они не подвергаются утечке заряда и раздуванию.

Параметры полимера обеспечивают значительный импульсный ток, постоянный температурный коэффициент, малое сопротивление. Полимерные модели способны заменить электролитические модели в фильтрах импульсных источников и других устройствах.

Электролитические

От бумажных моделей электролитические конденсаторы отличаются материалом диэлектрика, которым является оксид металла, созданный электрохимическим методом на плюсовой обкладке.

Вторая пластина выполнена из сухого или жидкого электролита. Электроды обычно выполнены из тантала или алюминия. Все электролитические емкости считаются поляризованными, и способны нормально работать только на постоянном напряжении при определенной полярности.

Если не соблюдать полярность, то может произойти необратимый химический процесс внутри емкости, которая приведет к выходу его из строя, или даже взрыву, так как будет выделяться газ.

К электролитическим можно отнести суперконденсаторы, которые называют ионисторами. Они обладают очень большой емкостью, достигающей тысячи Фарад.

Танталовые электролитические

Устройство танталовых электролитов имеет особенность в электроде из тантала. Диэлектрик состоит из пентаоксида тантала.

Параметры

  • Незначительный ток утечки, в отличие от алюминиевых видов.
  • Малые размеры.
  • Невосприимчивость к внешним воздействиям.
  • Малое активное сопротивление.
  • Высокая чувствительность при ошибочном подключении полюсов.
Алюминиевые электролитические

Положительным выводом является электрод из алюминия. В качестве диэлектрика использован триоксид алюминия. Они применяются в импульсных блоках и являются выходным фильтром.

Параметры

  • Большая емкость.
  • Корректная работа только на низких частотах.
  • Повышенное соотношение емкости и размера: конденсаторы других видов при одной емкости имели бы большие размеры.
  • Большая утечка тока.
  • Низкая индуктивность.
Бумажные

Диэлектриком между фольгированными пластинами служит особая конденсаторная бумага. В электронных устройствах бумажные виды конденсаторов обычно работают в цепях высокой и низкой частоты.

Металлобумажные конденсаторы обладают герметичностью, высокой удельной емкостью, качественной электрической изоляцией. В их конструкции применяется вакуумное металлическое напыление на бумажный диэлектрик, вместо фольги.

Бумажные конденсаторы не обладают высокой механической прочностью. В связи с этим его внутренности располагают в металлическом корпусе, который защищает его устройство.

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Конденсаторы

Надо сказать, что конденсатор , как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсатор это две металлических пластинки и воздух между ними . Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного .

Конденсаторы бывают постоянные, подстроечные, переменные и электролитические . Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы воздушные , слюдяные , керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

Основной параметр конденсатора – емкость . Она измеряется в микро -, нано - и пикофарадах . На схемах Вы встретите все три единицы измерения. Обозначаются они следующим образом: микрофарады – мКф или мF , нанофарады – нф, Н или п , пикофарады – пф или pf . Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е. обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф). Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике. Она нашла широкое применение на конденсаторах большой емкости. Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке , которая может содержать полосы, кольца или точки . Маркируемые параметры: номинальная емкость ; множитель ; допускаемое отклонение напряжения ; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.


Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.


Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт). В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка):


(в таблице ошибка, должно быть: 100 10 пикофарад 0,01 нанофарада - 0,00001 мкф(!) )




При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три - емкость в пикофарадах (pF):


Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.


Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы . Сегодня чаще всего можно услышать название оксидные конденсаторы, т.к. в них используется оксидный диэлектрик. Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны , поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков. А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые. Поэтому старайтесь ставить зарубежные новые конденсаторы.
Выпускают производители и неполярные оксидные конденсаторы , хотя применяются они довольно редко. Существую еще и танталовые конденсаторы , которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.
Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают .
Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.


Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.


Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения .