Компьютерные мыши бывают только лазерные ответить. Типы мышек по подключению

Первая компьютерная мышь была представлена 5 декабря 1968 года на показе интерактивных устройств в Калифорнии. Хотя есть факты, что разработки и первые результаты были и ранее. В 1970 году Дуглас Энгельбарт получил патент на производство привычного сегодня гаджета. Первый манипулятор имел три кнопки, хотя изначально разработчик хотел оснастить устройство пятью кнопками – по количеству пальцев на руке. Для соединения с компьютером в то время использовали толстый шнур, отсюда и родилось название мышь.

Первая мышка для управления ПК представляла собой деревянную коробочку со шнуром, торчащим из корпуса в задней части. Принцип действия гаджета был максимально прост.

Внутри корпуса находились два колеса, перпендикулярных относительно друг друга. Благодаря колесикам манипулятор двигался по осям X и Y. Встроенный чип фиксировал перемещения и количество сделанных оборотов. Эти данные передавались в процессор, который обрабатывал информацию и выводил на экран световое пятно – курсор.

На презентации Дуглас Энгельбарт вместе с помощником продемонстрировали публике работу первой компьютерной мыши не только в обычном режиме, но и в процессе совместного редактирования одного документа.

Эволюция компьютерного манипулятора

В начале семидесятых изобретение нашло широкое применение. Его включили в комплектацию компьютера Alto. Общий принцип работы сохранили, но корпус стал пластмассовым, шнур расположился на передней части, а кнопки стали более удобными. Вскоре диски-ролики заменили более удобным и менее громоздким шариком. Появилась возможность разборки и чистки устройства.

Следующим этапом было создание оптической мыши, работающей при помощи оптического датчика. Этот манипулятор вошел в комплектацию Macintosh.

Первая беспроводная мышь появилась в 1991 году, ее представила миру компания Logitech. Однако это новшество еще долго не признавали, так как передача сигнала посредством инфракрасных волн была очень медленной, что существенно замедляло работу на компьютере.

Быстрые и удобные лазерные мыши стали доступны в 2004 году. В наше время самыми популярными являются гаджеты с радиосвязью. Сегодня уже есть гироскопические мыши, которым не нужна твердая поверхность для управления курсором.

Факты об изобретателе

Любопытно, что Дуглас Энгельбарт не стал продавать свое изобретение. В его задачи не входило обогащение. Изобретатель получил за свою разработку всего лишь 10 000 долларов, которые потратил на покупку домика для своей семьи.

В дальнейшем Дуглас практически не участвовал в усовершенствовании гаджета лично. Так сложилось, что ему пришлось бороться с раком и больше думать о своем здоровье, чем о новинках электроники.

Сегодня без этого устройства ввода невозможно представить компьютер. Манипулятор упрощает и ускоряет редактирование текстов и фотографий, обеспечивает комфорт и удобство.


9 декабря считается днем рождения компьютерной мыши - именно в этот день почти 50 лет назад, в 1968 году, на конференции по интерактивным устройствам в Сан Франциско Дуглас Энгельбарт представил публике компьютерную мышь. И все это время такой манипулятор был и остается самым массовым: даже сейчас, во времена повального распространения тачпадов, сенсорных экранов и голосовых помощников, мышка зачастую является неотъемлемой частью ПК и ноутбуков. Причин на то, в общем-то, хватает: тут и удобство использования (не нужно запоминать всякие жесты 3-4 пальцами; самое сложное, что нужно знать - двойной клик), и максимальная точность (при желании можно попасть в нужный пиксель монитора - сделать это на тачпаде и тем более на сенсорном экране - из разряда фантастики). В итоге мышь и не думает умирать - и хотя со временем потерялся ее хвост, она, как и VGA с 3.5 мм аудио разъемом, будут существовать еще долго (хотя достаточно компаний хотят их убрать с рынка). Но давайте все же начнем с самого начала - с истории создания первой мыши.

История появления компьютерной мыши

В 1961 году Энгельбарт, сидя на конференции по компьютерной графике (да, для суперкомпьютеров графика появилась на десятилетия раньше, чем для персональных компьютеров), задумался - а как можно удобно управлять графическими элементами на мониторе? Без графики (при текстовом выводе информации) клавиатуры хватало заглаза, но вот управлять элементами, разбросанными по всему экрану, с нее не очень-то удобно (хотя, в принципе, возможно даже сейчас - та же Windows 10 вполне сносно, но очень медленно, управляется только с клавиатуры). Идея, пришедшая ему в голову, была крайне простой: по сути любой дисплей представляет из себя двумерный массив пикселей, каждый из которых имеет свою координату на двух перпендикулярных осях (назовем их X и Y). На экране можно иметь метку-курсор, которая позволяет работать с объектом, находящимся на экране под ним. Но вот как управлять курсором? Да очень просто - мы сделаем два диска, каждый их которых будет отвечать за движение по каждой из осей. Снимать данные с каждого диска нетрудно (значение числа Pi можно округлить, тут это не особо важно), и в результате из двух колесиков и нескольких палочек с простейшим микропроцессором можно получить устройство, которое фигурирует в патенте как «Индикатор положения XY для системы с дисплеем». Сама заявка на патент была подана в 1967 году, а сам патент был получен только в 1970ом.

Представленная в 1968 году мышь выглядела так:


С виду что-то отдаленно напоминающее современную мышку, правда тут было три кнопки и весила она как утюг. Но в те времена такое устройство не прижилось: во-первых, дабы не хромала точность, контроллер в мыши должен был обсчитывать движения хотя бы с десяток раз в секунду - в противном случае можно было легко промазать мимо кнопки (для сравнения, современные мыши имеют частоту опроса 125-1000 Гц, то есть 125-1000 раз в секунду). Но тут уже сдавался сам чип в мыши: напомню, что это был конец 60ых, и частоты микропроцессоров был даже не мегагерцы, а десятки или сотни килогерц. В итоге было решено пойти на хитрость: очевидно, что нам нужно раз в 100 мс получать данные о том, как сильно прокрутилось то или иное колесико. При этом начальная точка каждого движения по умолчанию является конечной точкой предыдущего. Тогда зачем нагружать контроллер вычислениями типа (координата конца) - (координата начала), если можно каждый раз обнулять начальную координату? В таком случае нам остается всего-то передвинуть курсор на экране на то количество пикселей, которое соответствует координате конца движения, а такие данные обсчитать контроллер мыши уже без проблем мог. Ну а самую первую координату после старта системы стали брать в центре экрана - именно поэтому даже сейчас после загрузки системы курсор мыши находится в центре дисплея.

Однако основная проблема энгельбартовской мыши была даже не в этом: колесики могли крутиться строго по горизонтали или вертикали, поэтому вы могли перемещаться по дисплею или вертикально, или горизонтально - никаких движений по диагонали не было. В итоге такая мышь, конечно, позволяла быстрее перемещаться по элементам на дисплее, чем клавиатура, но до удобной работы было еще далеко.

Исправить этот досадный недостаток смог Билл Инглиш, причем всего через 2 года после получения патента Энгельбартом - в 1972 году. Он, к слову, был ассистентом Энгельбарта, и предлагал ему воспользоваться шаровым приводом, который военные использовали еще с 1952 года: он представлял собой обычный шар для боулинга, прикрепленный к сложной аппаратной системе, и вращение шара вызывало смещение курсора на экране. Разумеется, тут не было никаких проблем с перемещением курсора по диагонали, но Энгельбарт признал такой способ неэффективным.

В итоге Инглиш, раздосадованный таким решением своего начальника, перешел работать в Xerox, где в 1972 году представил рабочую мышь с шаровым приводом. Решив, что управлять шаром напрямую неудобно, он расположил его внутри мышки, и два ролика снимают его вращение по обеим осям. Для определения угла поворота каждого ролика изначально использовался контактный энкодер (как и в военной схеме 1952 года) - это был диск с нанесенными на нем на равных расстояниях металлическими дорожками и тремя контактами, прижатыми к нему. При вращении ролика вращался диск, и контакт то пропадал, то появлялся - это позволяло отследить, в какую сторону и как сильно вращается ролик:


Основная проблема - передвижение только по двумя осям - была решена, зато появилась масса других. Во-первых, шарик катался по столу и быстро собирал грязь и пыль, что приводило к загрязнению и заеданию роликов. Во-вторых, контакты на энкодерах быстро окислялись и истирались, что опять же ухудшало точность. Ну а самыми основными проблемами была стоимость и то, что графических интерфейсов тогда как бы и не было, так что изобретение использовали лишь внутри компании, а в продажу первый ПК с мышью вышел лишь в 1981 году (это был Xerox 8010), причем мышь там стоила 400 долларов (больше 1000 долларов по текущему курсу). Разумеется, за такую цену манипулятор провалился - люди привыкли работать только с клавиатурой и не видели смысла в графических интерфейсах, особенно если для них нужен манипулятор с ценой, сравнимой со стоимостью всего ПК целиком.

Однако Стиву Джобсу этот манипулятор очень понравился, и в 1983 году Apple представляет мышь для своего компьютера Lisa. Отлично понимая, что даже за 100 долларов сей продукт провалится, инженеры в Apple сделали действительно невозможное: цена была уменьшена аж до 25 долларов! При этом, увы, пришлось пожертвовать кнопками - она осталась только одна (и это кстати до сих пор у Apple так). Продукт оказался удачным, и, вкупе с все большим распространением графических интерфейсов, мыши тоже стали развиваться и изменяться - так что об этом и поговорим.

Шаровой привод с оптическим энкодером

Итак, мировое сообщество решило, что мышь таки нужна. Но мышь Инглиша имела достаточно много проблем, о которых я писал выше. То, что загрязнялся шарик, особой проблемой не было - его можно было легко достать, почистить и забрать себе. А вот то, что со временем выходил из строя контактный энкодер, было существенной проблемой - ведь его просто так не заменишь, это был самый основной элемент мыши. В итоге решено было применить оптический энкодер. Суть его состоит в том, что теперь на диске были не контакты, а прорези, и напротив них были фотодиоды. Соответственно при вращении свет или проходил в прорези, или не проходил, что опять же позволяло оценить, в какую сторону и насколько повернулся ролик:


Так как трения теперь не было, то и проблема с истиранием и окислением контактов ушла, и мышь в таком виде существовала как минимум до начала нулевых (а кое-где используется и до сих пор).

Оптические мыши первого поколения

Многие думают, что оптические мыши - изобретение уже 21 века. На самом деле они всего на 10 лет старше мыши Инглиша - первая такая мышь появилась в 1982 году, но особого распространения не получила: проблема была в том, что для ее работы требовался специальный коврик с нанесенной на ней сеткой - именно от нее отражался свет от диода и принимался датчиком на мыши, ну а отследить перемещение по сетке особого труда не составляло. Вторая проблема была в большой стоимости - в разы выше, чем у шариковых мышей, которые к тому же еще и работали почти с любой поверхностью. Однако и плюсов у оптических мышек хватало: во-первых, это повышенная точность: если в случае с энкодерами было множество передач импульса (стол - колесо - ролик - энкодер), что достаточно сильно снижало точность и уменьшало максимальную скорость передвижения манипулятора, и в итоге если попасть по крестику или ссылку особого труда не составляло, то вот более точные (или быстрые) действия были затруднены, то в случае с оптическими мышками точность была уже на уровне пары пикселей, что позволяло более удобно работать с графикой. Ну и к тому же оптические мыши были все же более надежными - ничего чистить не надо, да и шансов поломки было меньше, так как нет механических элементов.

Оптические мыши с матричным сенсором

Вот мы и подобрались к современности: если вы пойдете в любой магазин электроники, то в дешевом сегменте вы встретите скорее всего именно такие мыши (их от лазерных отличает видимая подсветка сенсора, но об этом ниже). Как же такие мыши работают? Да очень просто: в мыши установлена сверхбыстрая видеокамера, способная делать сотни и тысячи снимков в секунду, и микроконтроллер, сравнивая их, определяет направление и величину смещения мыши. Для упрощения работы камеры используется контрастная подсветка - обычно красная. Основной плюс в сравнении с первым поколением оптических мышей - не нужен специальный коврик, такая мышь в теории работает на любой, даже стеклянной, поверхности (хотя, конечно, максимальная точность достигается все же на ковриках).

Лазерная мышь

Ну и самыми современными и дорогими являются лазерные мыши. Их принцип действия схож с оптическими - все также есть сверхбыстрая видеокамера, однако для подсветки поверхности используется уже не светодиод, а полупроводниковый лазер, а сенсор настроен на улавливание только его длины волны:


Это позволяет добиться еще большей точности - до нескольких тысяч dpi. В общем-то, для обычных пользователей такие мыши не нужны, а вот геймеры их оценили, ибо они позволяют «стрелять в пиксель».

Индукционная мышь

Еще один тип мышей, который можно назвать псевдобеспроводными: они не требуют физического подключения к ПК, и, в отличии от обычных беспроводных мышей, не требуют еще и аккумуляторов - однако, для их работы обязателен специальный коврик, а сама мышь питается засчет индукции (внутри мыши есть катушка, и под действием переменного магнитного поля от коврика на этой катушке появляется электрический ток). Плюсы таких мышек очевидны - вы получаете и беспроводную мышь, и отсутствие проблем при разрядке аккумулятора или батареек. С другой стороны, работать вы сможете только на коврике, что тоже не всем удобно.

Гироскопические мыши

В общем-то, тут и так понятно - в данном случае манипулятор достаточно далек от обычных мышей, и имеет внутри себя гироскоп, который позволяет устройству ориентироваться в трехмерном пространстве. Для работы в системе, где все плоское, он, в общем-то бесполезен, зато при 3D-моделировании или играх позволяет управляться с объектами в пространстве без привлечения клавиатуры.

Эргономические мыши

Где-то с 90ых годов мыши особо не менялись по внешнему виду - это небольшие прямоугольные или овальные бруски с утолщением в центре, на верхнем крае расположены 1-2 кнопки и колесико - в общем-то, я мог этого не писать, и так все знают, как выглядят мыши. Однако не так давно стали появляться мыши, выглядящие как что угодно, но не как мышь - эдакие пирамидки с кнопками сбоку:

В чем их смысл? В том, что такой хват более удобен и привычен человеческой руке, что может позволить избежать для некоторых людей болей в кисти при длительном использовании мыши, ну и повысить точность. На деле, разумеется, все индивидуально, но попробовать стоить каждому - возможно, что именно вам такая нетрадиционная мышь понравится.

Ну а на этом, в общем-то, все по истории и устройству компьютерных мышей: удивительно, но за 50 лет человечество так и не придумало ничего более удобного и простого. Возможно, что все изменится в будущем, ну а пока что можете погладить своего хвостатого (или бесхвостого) зверька на столе и поздравить его с 49-летием.

Мышь является одним из инструментов, которые могут быть подсоединены к компьютеру для работы с курсором. Курсор, мерцающий прямоугольник света на экране, показывает, где будет расположено следующее действие оператора. Когда буква напеча­тана, она появляется на экране в месте, отмеченном курсором. Клавиши курсор-контроля позволяют оператору передвигать курсор вдоль экрана, вверх и вниз.

Но вращающаяся мышь на столе оператора (вни­зу) может передвигать курсор по экрану в любом на­правлении со скоростью движения руки. Кнопки на мыши позволяют оператору выбирать параметры из экранного меню или чертить на экране линии.

Существует два вида мышей - механическая и оптическая; любая легко помещается в человеческой ладони. Когда механическая мышь (справа) движется по поверхности, ее внутренний механизм измеряет расстояние, направление движения и приказывает компьютеру повторить это движение на мониторе. Оптическая мышь (нижняя им. слева) выполняет эту задачу при помощи световых лучей, определяя на­правление мыши на сетке. Джойстик (правая им. снизу) служит механизмом управления во многих ви­деоиграх.

Движение мыши и курсор

Связанная с клавиатурой электрическими прово­дами, мышь заставляет курсор имитировать на экране свои движения на любом расстоянии и направлении. Поэтому двигая мышь, оператор должен смотреть на экран. Поскольку мышь может двигаться в любом направлении, образуя изогнутые и диагональные линии, она является прекрасным чертежным инструментом.

Как «видит» оптическая мышь

Оптическая мышь устроена на специальной сетке. По мере передвижения мыши по сетке, свет из СИДа - светоизлучающего диода, поступает на сетку. Линзы и зеркало посылают лучи в датчик, или фотодетектор, который отмечает координаты пройденных линий.

Как работает механическая мышь

На внутренней стороне механической мыши имеется тормозящий шарик, связанный с щелевыми дисками (коричневый цвет), который вращается по мере движения мыши. СИД на каждом диске испускает свет, а фотодиод напротив считает импульсы света, проходящие через щели во вращающемся диске. Эти импульсы преобразуются в движение курсора на экране.

Внутри джойстика

Как и мышь, джойстик определяет движения в двух направлениях и координирует сигналы. Рукоятка проходит через подвижную ось (в центре) и входит в правый угол рычага (внизу). Два электронных устройства, называемые переменными резисторами, посылают сигналы, которые меняют позиции оси и рычага и заставляют курсор двигаться.

При покупке компьютера многие пользователи уделяют внимание лишь выбору основных и наиболее дорогих комплектующих – процессора, материнской платы, видеокарты и т.д.

Что касается выбора периферийных устройств ( , мышь), то здесь из виду упускаются многие характеристики. Зачастую пользователь берет то, что находится в комплекте с системным блоком, а затем удивляется, почему мышка быстро выходит из строя (либо ее попросту неудобно держать в руке).

В этой статье мы рассмотрим основные характеристики компьютерной мыши, которые следует учитывать при покупке.

1 Размер и форма

Большая часть всех компьютерных операций выполняется при помощи мыши. Следовательно, пользователь практически постоянно держит мышь в руке и двигает ее по столу или по коврику. Это объясняет необходимость выбора именно того устройства, которое по своей форме и размерам идеально подойдет под форму и размер ладони. В противном случае держать мышку будет не очень удобно, Вы будете быстрее уставать и получать меньшее удовольствие от работы.

Я даже знаю людей, у которых настолько болела рука при длительной работе с неудобной мышкой, что они на время поневоле становились левшами. Когда руку начинало, что называется, ломить, мышка перемещалась налево, в левую руку, кнопки мышки перестраивались для левой руки, и таким образом удавалось успокоить правую руку. Это очень неудобно, если не быть настоящим левшой, и работа на компьютере сильно замедляется.

Поэтому перед покупкой обязательно подержите мышку в руке и прикиньте, насколько удобно с ней работать, насколько ее удобно держать в руке (в правой руке для правшей и в левой руке для левшей).

2 Тип (вид) компьютерной мыши

По своему типу мышки делятся на

  • механические,
  • оптические и
  • дистанционные.

В зависимости от типа давайте посмотрим, как выглядит компьютерная мышь.

В механических манипуляторах используется специальный шарик, который вращается при движении устройства по плоской поверхности.

Рис. 1 Механическая мышка

В оптических манипуляторах мышь используется оптический указатель, считывающий изменения положения мышки относительно плоскости, по которой перемещается мышка.

Рис. 2 Оптическая мышь компьютерная usb-подключение

Дистанционные мышки работают по тому же принципу, что и оптические, но при этом они не имеют проводного соединения с компьютером.

Рис. 3 Дистанционная мышка

У дистанционных мышек сигнал от манипулятора передается без проводов дистанционно, а сами мышки при этом работают от батарейки или от аккумулятора.

Механические мышки на данный момент являются морально устаревшими. Их практически никто не использует из-за относительно низкой чувствительности и частых выходов из строя. В них быстро накапливается пыль и грязь, которые мешают нормальной работе вращающегося шарика и считывающих датчиков. Покупать такие манипуляторы не имеет смысла, даже если они будут привлекательными по цене.

Оптические мыши являются самыми распространенными (ввиду удобства работы, надежности и долговечности).

Дистанционные мыши тоже используются довольно часто, но обладают рядом недостатков. К примеру,

  • возможные проблемы с чувствительностью (в том числе из-за отсутствия проводов),
  • необходимость периодической замены батареек,
  • контроль заряда аккумуляторов, если они используются.

Тем не менее, подобные дистанционные мышки могут быть полезны тем, кто работает на удалении от компьютера. Например, в случае использования компьютера в качестве телевизора переключать телевизионные каналы удобнее дистанционно, находясь на удалении, сидя, что называется, на диване, для чего дистанционная мышка может быть ой как полезна!

Дистанционные мышки также удобны тем, кто делает презентации с помощью компьютера, но при этом не имеет возможности работать с профессиональным оборудованием. Тогда компьютер (чаще даже не компьютер, а ноутбук) используется как экран для демонстрации, а дистанционная мышка позволяет на удалении (например, стоя во время выступления) переключать слайды презентации.

3 Разъем для подключения

Любые мышки, даже дистанционные, должны подключаться к компьютеру через порты. Проводные мышки имеют на конце провода соответствующий разъем. Беспроводные мышки имеют специальное устройство наподобие маленькой флешки, которое тоже подключается к порту ПК, и служит приемником сигналов от дистанционного манипулятора мышь.

Рис. 4 Порты PC/2

Подключаться к компьютеру мышка может

  • к порту PC/2 (рис. 4 – круглый порт),
  • а также к USB-порту (рис. 2).

При этом USB-мышки стремительно вытесняют с рынка мышки с PC/2-кабелем. Причин для этого несколько:

  • во-первых, более качественное соединение;
  • во-вторых, распространенность USB-разъемов практически на всех современных ПК.

Бывает и такое, что на компьютере не так уж много USB-портов, и их может не хватать для подключения мышки. Редко, но подобное может случиться. Тогда на помощь приходят – это устройства, которые позволяют из одного порта USB делать 2, 4 и более портов USB. Это удорожает покупку мышки, так как к ней в придачу приходится покупать разветвитель, но позволяет решить проблему нехватки портов. К счастью, нехватка USB – это чрезвычайно редкая ситуация, в обычных ПК (если это не «экзотика») портов USB всегда хватает для подключения манипулятора мышь.

Для тех, кто не хочет расставаться с привычной и ставшей «родной» мышкой с разъемом PS-2 при переходе на ПК, где уже нет портов PS-2, промышленность (к сожалению, не совсем родная, а скорее китайская!) предлагает переходники PS-2 – USB. Опять же это редкое явление, проще поменять мышку на USB, чем искать, покупать, оплачивать переходник. Однако для желающих можно предложить и такой несколько экзотический вариант подключения мышки к компьютеру.

4 Чувствительность

Данный показатель измеряется в dpi (число точек на дюйм). Чем выше чувствительность компьютерной мышки, тем с большей точностью можно перемещать курсор мышки по рабочему пространству (по экрану) монитора.

Поясним. Речь идет о том, с какой точностью можно рукой установить курсор мышки в той или иной точке экрана. Чем выше чувствительность, то есть, чем больше точек на один дюйм, тем точнее можно установить курсор мышки в нужной точке экрана.

Напомню, что дюйм – это 2,54 см. И мы пользуемся этой системой измерения длины потому, что не являемся прародителями компьютерной техники, а потому используем чужую систему мер и весов.

Высокая чувствительность, на самом деле, не есть только благо. Высокая чувствительность, наоборот, может быть причиной проблем, трудностей работы с мышкой. Высокая чувствительность важна тем, кто работает с компьютерной графикой высокого разрешения, для компьютерных дизайнеров, для конструкторов и тому подобных профессий, требующих рисования или черчения с применением ПК. Высокая чувствительность может быть полезна «игроманам», любителям компьютерных игр, где важна точность попадания в определенные поля на экране монитора.

В остальном обычные пользователи ПК могут обходиться манипуляторами мышь с относительно невысокой точностью. Зачем высокая точность, если заниматься, например, только редактированием текстов? Можно легко попасть мышкой на нужную строку, на нужный символ текста, что называется, «не прицеливаясь» и не промахнешься!

Чувствительность многих механических мышей колеблется в диапазоне 400-500 dpi. Однако, как уже отмечалось ранее, этот тип манипуляторов остался уже в прошлом. В оптических моделях значение dpi может достигать 800-1000.

Стоимость конкретной модели мышки напрямую зависит от чувствительности. Покупая мышку с высокой чувствительностью, пользователь ПК дополнительно оплачивает данную возможность. Это еще один аргумент в пользу выбора не слишком высокочувствительных мышек. Зачем переплачивать, если высокая чувствительность не нужна в обычной работе на ПК?!

5 Число кнопок

Стандартная мышка обладает только тремя органами управления – правой и левой кнопкой, а также колесиком. Колесико мышки является не только ставшим уже привычным средством прокрутки, но и служит третьей кнопкой мышки. На колесико можно нажимать как на кнопку, щелкать им. Это позволяет, например, открывать окна в браузере в новых вкладках (см. ).

Работа с кнопками и с колесиком мышки должна быть приятной и удобной, иначе такая мышка может вызывать раздражение у пользователя ПК. Например, кнопки (как правая, так и левая) могут быть слишком тугими, нажиматься при довольно большом усилии. Это не всем удобно, а при длительной работе можно попросту устать нажимать на кнопки, что иногда приводит к болезненным и неприятным ощущениям.

Кнопки мышки могут нажиматься тихо, почти бесшумно, а могут громко «щелкать». Это тоже, что называется, на любителя, кому-то нравится погромче, со щелканьем, а кто-то предпочитает тишину.

Кнопки могут нажиматься без люфта, без свободного хода, а в некоторых случаях люфт может быть настолько большим, что появляется ощущение, что кнопка как бы сама немного шевелится, покачивается. Кнопки с люфтом могут раздражать, с другой стороны, они могут кому-то нравиться. Как говорится, на любителя. Это надо пробовать своей рукой, и выбирать.

Также и колесико мышки. Оно может легко крутиться, а может «притормаживать» и требовать дополнительных усилий. Тут тоже – кому как нравится.

Нажатие на колесико может быть легким, а может потребовать некоторую тренировку указательного пальца. Особенно раздражает, если нажатие на колесико происходит без щелчка, когда не слишком удается почувствовать, произошло все-таки нажатие или нет. В этом случае нажатие и прокручивание колесика становится сродни рулетке, то ли пан, то ли пропал! Не очень-то удобно, такая мышка – скорее для любителей острых ощущений.

Обычному неискушенному пользователю ПК лучше иметь мышку, где все просто и понято:

  • вот они, клики левой и правой кнопкой мышки,
  • вот оно, прокручивание колесика вверх и вниз (внимание, иногда колесико хорошо крутится только в одну сторону вверх или вниз, а в другую – заедает, и это тоже надо проверять при покупке!).
  • И вот они, четкие и понятные клики колесиком, то есть, клики третьей кнопкой мышки.

Все просто, надежно, практично.

Для обычных трехкнопочных мышек, как правило, никакие дополнительные драйверы не нужны, они уже есть в составе операционных систем ПК.

Рис. 5 Мышка, где много кнопок

В более дорогих и продвинутых моделях может быть 4, 5, 6 и более кнопок. При установке драйверов таких мышек можно «навесить» на каждую кнопку определенное действие (или сразу последовательность действий). Это может быть очень удобно при работе в каких-то специальных приложениях или в компьютерных играх. В остальном эти лишние кнопки не нужны, лучше за них не переплачивать производителям, и ограничиваться стандартными манипуляторами, двухкнопочными мышками с колесиком (оно же – третья кнопка).

6 Другие характеристики

Это могут быть, к примеру, материал корпуса, материал кнопок, фирма-изготовитель и т.д. Тут следует выбирать, ориентируясь только на собственные предпочтения. Кто-то неплохо работает с обычными пластмассовыми мышками. Кто-то предпочитает мышки из металла. Кому-то нравятся обычные кнопки, а кто-то хочет кнопки с выемками по форме пальцев для удобного расположения руки.

Кому-то нравятся мышки любого цвета, а кто-то предпочитает только белый цвет, только черный цвет, желтый, розовый, зеленый, да мало ли еще какие бывают цвета!

Лично мне, например, нравятся мышки, которые работают на любых поверхностях: на столе, на коврике для мышки, на скатерти, на клеенке, на ткани.

А есть мышки, которые, хоть убейся, не будут работать на светлом столе, например, или на клеенке, или на стекле, пока под них не положить коврик для мышки или хотя бы обычный лист бумаги. И это тоже важная характеристика мышки, которую мы отнесем к разряду «других характеристик».

Еще одна «другая характеристика» – это насколько быстро мышка собирает на себя пыль и грязь со стола, и насколько легко она от этой пыли и грязи очищается. К сожалению, идеальных рабочих мест не бывает. Что ни делай, а пыль и грязь имеют обыкновение появляться вновь и вновь, и они оседают на нижней поверхности любой, хоть самой дешевой, хоть самой дорогой мышки. И тут важно, насколько быстро мышка от этого становится неработоспособной, и как легко ее от всего этого можно очистить. А загрязненная мышь может, например, потерять свою чувствительность, или начать работать «рывками», что усложняет попадание курсора мышки в определенные точки экрана.

Рис. 6 Мышка Apple с сенсорным управлением

Для некоторых пользователей ПК важной «другой характеристикой» может быть наименование фирмы производителя. Например, имея «продвинутый» ноутбук от Apple, можно захотеть мышку этого же производителя с сенсорным управлением, когда просто водишь пальцем, механики нет, ничего не крутится, а движение пальца улавливается. За обладание этим манипулятором придется заплатить лишние деньги.

А можно просто надеяться, что более или менее известная другая фирма не будет продавать «плохие» мышки, которые могут быстро выходить из строя. И тогда может возникнуть желание купить мышку от таких производителей, как, например, Logitech, Microsoft, A4 Tech.

Здесь, честно говоря, как повезет. Неказистая мышка а-ля «made in China», что называется, «noname» (то есть без имени, без явного производителя, без известного производителя) может прослужить верой и правдой столько, что забудешь, когда, где и по какой цене ее покупали. А может фирменная мышка отказать довольно быстро. Хотя все-таки, в среднем, мышки известных производителей служат дольше, и работают качественнее своих китайских (и не только) конкурентов.

Так что, как видим, мышки не такие уж простые устройства. У них много параметров, по которым они могут отличаться друг от друга. Выбор мышки – важный момент при выборе ПК. Поскольку работать придется именно мышкой, раз уж мы стали пользователями (и в некоторой степени даже заложниками) современной «оконной технологии» представления информации на экране монитора и ее обработки современными средствами, которые нам предоставляют персональные компьютеры.

Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик .
Уже более 3.000 подписчиков

.

Виды компьютерных мышей. Каких только компьютерных мышек нет. От такого разнообразия даже голова кружиться. А ведь еще совсем недавно выбора практически никакого не было. Казалось бы, что ещё можно придумать? Но оказывается можно. Каждая компания, выпускающая этих маленьких и таких необходимых «зверьков», находит всё новые и новые дизайны и функции и для них.

Какие виды компьютерных мышей существуют ?

Видов как раз не так уж много. Вот они:

  • Механические или шариковые (уже практически не используются);
  • Оптические;
  • Лазерные;
  • Трекбол-мыши.
  • Индукционные;
  • Гироскопические.

Механические или шариковые мышки

Механические или шариковые мышки можно встретить разве что у коллекционеров. Хотя еще каких-нибудь семь лет назад она была единственным видом. Работать с ней было не очень комфортно, но не имея других видов мы считали что это супер-мышь.

На вес она была тяжеловата и без коврика никак не хотела работать. И позиционирование у неё желало лучшего. Особенно это было заметно в графических программах и играх. И чистить её приходилось очень часто. Что только не наворачивалось под этот шарик? А уж если дома ещё живут животные, то этот процесс повторялся как минимум раз в неделю.

У меня постоянно лежал пинцет возле компьютера, т.к. мои мохнатые друзья всё время норовили спать возле компьютера, и пух их цеплялся за коврик, делая его мохнатым. Теперь у меня уже нет такой проблемы. На смену шариковому «грызуну» пришла более современная мышь – оптическая.

Оптическая светодиодная мышь

Оптическая светодиодная мышь – работает уже по-другому принципу. В ней используется светодиод и сенсор. Она работает уже как маленькая фотокамера, которая сканирует поверхность стола своим светодиодом и фотографирует её. Таких фотографий оптическая мышка успевает сделать около тысячи за секунду, а некоторые виды и больше.

Данные этих снимков обрабатывает специальный микропроцессор и отправляет сигнал на компьютер. Преимущества такой мыши налицо. Ей не нужен коврик, она очень легкая по весу и может легко сканировать почти любую поверхность.

Оптическая лазерная мышь

Оптическая лазерная мышь – очень похожа на оптическую, но принцип работы у неё отличается тем, что вместо фотокамеры со светодиодом уже используется лазер. Потому и называется она – лазерной.

Это более усовершенствованная модель оптической мыши. Ей требуется гораздо меньше энергии. Точность считывания данных с рабочей поверхности у неё гораздо выше, чем у оптической мыши. Она может работать даже на стеклянной и зеркальной поверхности.

Трекбол-мышь

Трекбол-мышь – устройство, в котором используется выпуклый шарик (трекбол). Трекбол представляет собой перевернутую шариковую мышь. Шар находится сверху или сбоку. Его можно вращать ладонью или пальцами, а само устройство стоит на месте. Шар приводит во вращение пару валиков. В новых трекболах используются оптические датчики перемещения.

Индукционные мыши

Индукционные мыши – используют специальный коврик, работающий по принципу графического планшета.

Гироскопические мыши

Гироскопические мыши – при помощи гироскопа, распознаёт движение не только на поверхности, но и в пространстве. Её можно взять со стола и управлять движением кисти в воздухе.

Вот такие виды компьютерных мышей пока существуют на наших рынках.

Сейчас очень большое разнообразие таких устройств. Некоторые дизайны заслуживают особого внимания. И я буду описывать их. Следите за обновлениями сайта.