OLAP-КУБ (динамическая управленческая отчетность). Введение в OLAP и многомерные базы данных

Данных, как правило, разрежённый и долговременно хранимый. Может быть реализован на основе универсальных реляционных СУБД или специализированным программным обеспечением (см. также OLAP). В программных продуктах компании SAP используется термин «инфокуб».

Индексам массива соответствуют измерения (dimensions) или оси куба, а значениям элементов массива - меры (measures) куба.

w : (x ,y ,z ) → w xyz ,

где x , y , z - измерения, w - мера.

В отличие от обычного массива в языке программирования, доступ к элементам- OLAP-куба может осуществляться как по полному набору индексов-измерений, так и по их подмножеству, и тогда результатом будет не один элемент, а их множество.

W : (x ,y ) → W = {w z1 , w z2 , …, w zn }

Также известно описание OLAP-куба с использованием терминологии реляционной алгебры, как проекции отношений .

См. также


Wikimedia Foundation . 2010 .

  • Схема звезды
  • Наш дом - Россия (фракция)

Смотреть что такое "OLAP-куб" в других словарях:

    OLAP куб - … Википедия

    OLAP - (англ. online analytical processing, аналитическая обработка в реальном времени) технология обработки данных, заключающаяся в подготовке суммарной (агрегированной) информации на основе больших массивов данных, структурированных по… … Википедия

    Куб (значения) - Куб многозначный термин: В математике В стереометрии куб шестигранный правильный многогранник В алгебре третья степень числа Фильм Серия фантастических фильмов: «Куб» «Куб 2: Гиперкуб» «Куб Ноль» Сленг и жаргон медицинское… … Википедия

    Куб - У этого термина существуют и другие значения, см. Куб (значения). Куб Тип Правильный многогранник Грань квадрат … Википедия

    Mondrian - OLAP Server Тип OLAP сервер Разработчик Pentaho Операционная система кроссплатформенное программное обеспечение Последняя версия 3.4.1 (2012 05 07) Лицензия свободное программное обеспечение … Википедия - Информационно аналитическая система автоматизированная система позволяющая экспертам быстро анализировать большие объемы данных, как правило является одним из элементов ситуационных центров. Так же, иногда в состав ИАС включают систему сбора… … Википедия

Аннотация: В настоящей лекции рассматриваются основы проектирования кубов данных для OLAP-хранилищ данных. На примере показана методика построения куба данных с помощью CASE-инструмента.

Цель лекции

Изучив материал настоящей лекции, вы будете знать:

  • что такое куб данных в OLAP-хранилище данных ;
  • как проектировать куб данных для OLAP-хранилищ данных ;
  • что такое измерение куба данных ;
  • как факт связан с кубом данных ;
  • что такое атрибуты измерения ;
  • что такое иерархия ;
  • что такое метрика куба данных ;

и научитесь:

  • строить многомерные диаграммы ;
  • проектировать простые многомерные диаграммы .

Введение

Технология OLAP - это не отдельно взятый программный продукт , не язык программирования . Если постараться охватить OLAP во всех его проявлениях, то это совокупность концепций, принципов и требований, лежащих в основе программных продуктов, облегчающих аналитикам доступ к данным.

Аналитики являются основными потребителями корпоративной информации. Задача аналитика состоит в том, чтобы находить закономерности в больших массивах данных. Поэтому аналитик не будет обращать внимания на отдельно взятый факт , что в определенный день покупателю Иванову была продана партия шариковых авторучек, - ему нужна информация о сотнях и тысячах подобных событий. Одиночные факты в ХД могут заинтересовать, к примеру, бухгалтера или начальника отдела продаж, в компетенции которого находится сопровождение определенного контракта. Аналитику одной записи недостаточно - ему, например, может понадобиться информация обо всех контрактах точки продажи за месяц, квартал или год. Аналитика может не интересовать ИНН покупателя или его телефон, - он работает с конкретными числовыми данными, что составляет сущность его профессиональной деятельности.

Централизация и удобное структурирование - это далеко не все, что нужно аналитику. Ему требуется инструмент для просмотра, визуализации информации. Традиционные отчеты, даже построенные на основе единого ХД, лишены, однако, определенной гибкости. Их нельзя "покрутить", "развернуть" или "свернуть", чтобы получить необходимое представление данных. Чем больше "срезов" и "разрезов" данных аналитик может исследовать, тем больше у него идей, которые, в свою очередь , для проверки требуют все новых и новых "срезов". В качестве такого инструмента для исследования данных аналитиком выступает OLAP .

Хотя OLAP и не представляет собой необходимый атрибут ХД, он все чаще и чаще применяется для анализа накопленных в этом ХД сведений.

Оперативные данные собираются из различных источников, очищаются, интегрируются и складываются в ХД. При этом они уже доступны для анализа при помощи различных средств построения отчетов. Затем данные (полностью или частично) подготавливаются для OLAP -анализа. Они могут быть загружены в специальную БД OLAP или оставлены в реляционном ХД. Важнейшим элементом использования OLAP являются метаданные , т. е. информация о структуре, размещении и трансформации данных . Благодаря им обеспечивается эффективное взаимодействие различных компонентов хранилища.

Таким образом, OLAP можно определить как совокупность средств многомерного анализа данных, накопленных в ХД . Теоретически средства OLAP можно применять и непосредственно к оперативным данным или их точным копиям. Однако при этом существует риск подвергнуть анализу данные, которые для этого анализа не пригодны.

OLAP на клиенте и на сервере

В основе OLAP лежит многомерный анализ данных . Он может быть произведен с помощью различных средств, которые условно можно разделить на клиентские и серверные OLAP -средства.

Клиентские OLAP-средства представляют собой приложения, осуществляющие вычисление агрегатных данных (сумм, средних величин, максимальных или минимальных значений) и их отображение, при этом сами агрегатные данные содержатся в кэше внутри адресного пространства такого OLAP-средства .

Если исходные данные содержатся в настольной СУБД , вычисление агрегатных данных производится самим OLAP -средством. Если же источник исходных данных - серверная СУБД , многие из клиентских OLAP -средств посылают на сервер SQL -запросы, содержащие оператор GROUP BY , и в результате получают агрегатные данные, вычисленные на сервере.

Как правило, OLAP -функциональность реализована в средствах статистической обработки данных (из продуктов этого класса на российском рынке широко распространены продукты компаний Stat Soft и SPSS) и в некоторых электронных таблицах. В частности, неплохими средствами многомерного анализа обладает Microsoft Excel 2000. С помощью этого продукта можно создать и сохранить в виде файла небольшой локальный многомерный OLAP -куб и отобразить его двух- или трехмерные сечения.

Многие средства разработки содержат библиотеки классов или компонентов, позволяющие создавать приложения, реализующие простейшую OLAP -функциональность (такие, например, как компоненты Decision Cube в Borland Delphi и Borland C++Builder). Помимо этого многие компании предлагают элементы управления ActiveX и другие библиотеки, реализующие подобную функциональность.

Отметим, что клиентские OLAP -средства применяются, как правило, при малом числе измерений (обычно рекомендуется не более шести) и небольшом разнообразии значений этих параметров - ведь полученные агрегатные данные должны умещаться в адресном пространстве подобного средства, а их количество растет экспоненциально при увеличении числа измерений . Поэтому даже самые примитивные клиентские OLAP -средства, как правило, позволяют произвести предварительный подсчет объема требуемой оперативной памяти для создания в ней многомерного куба.

Многие (но не все) клиентские OLAP -средства позволяют сохранить содержимое кэша с агрегатными данными в виде файла, что, в свою очередь , позволяет не производить их повторное вычисление . Отметим, что нередко такая возможность используется для отчуждения агрегатных данных с целью передачи их другим организациям или для публикации. Типичным примером таких отчуждаемых агрегатных данных является статистика заболеваемости в разных регионах и в различных возрастных группах, которая является открытой информацией, публикуемой министерствами здравоохранения различных стран и Всемирной организацией здравоохранения. При этом собственно исходные данные, представляющие собой сведения о конкретных случаях заболеваний, являются конфиденциальными данными медицинских учреждений и ни в коем случае не должны попадать в руки страховых компаний и тем более становиться достоянием гласности.

Идея сохранения кэша с агрегатными данными в файле получила свое дальнейшее развитие в серверных OLAP-средствах, в которых сохранение и изменение агрегатных данных, а также поддержка содержащего их хранилища осуществляются отдельным приложением или процессом, называемым OLAP-сервером . Клиентские приложения могут запрашивать подобное многомерное хранилище и в ответ получать те или иные данные. Некоторые клиентские приложения могут также создавать такие хранилища или обновлять их в соответствии с изменившимися исходными данными.

Преимущества применения серверных OLAP -средств по сравнению с клиентскими OLAP -средствами сходны с преимуществами применения серверных СУБД по сравнению с настольными: в случае применения серверных средств вычисление и хранение агрегатных данных происходит на сервере, а клиентское приложение получает лишь результаты запросов к ним, что позволяет в общем случае снизить сетевой трафик, время выполнения запросов и требования к ресурсам, потребляемым клиентским приложением. Отметим, что средства анализа и обработка данных масштаба предприятия, как правило, базируются именно на серверных OLAP -средствах, например, таких как Oracle Express Server , Microsoft SQL Server 2000 Analysis Services, Hyperion Essbase, продуктах компаний Crystal Decisions, Business Objects, Cognos, SAS Institute. Поскольку все ведущие производители серверных СУБД производят (либо лицензировали у других компаний) те или иные серверные OLAP -средства, выбор их достаточно широк, и почти во всех случаях можно приобрести OLAP - сервер того же производителя, что и у самого сервера баз данных.

Отметим, что многие клиентские OLAP -средства (в частности, Microsoft Excel 2003, Seagate Analysis и др.) позволяют обращаться к серверным OLAP-хранилищам , выступая в этом случае в роли клиентских приложений, выполняющих подобные запросы. Помимо этого имеется немало продуктов, представляющих собой клиентские приложения к OLAP -средствам различных производителей.

Технические аспекты многомерного хранения данных

В многомерных ХД содержатся агрегатные данные различной степени подробности, например, объемы продаж по дням, месяцам, годам, по категориям товаров и т.п. Цель хранения агрегатных данных - сократить время выполнения запросов, поскольку в большинстве случаев для анализа и прогнозов интересны не детальные, а суммарные данные. Поэтому при создании многомерной базы данных всегда вычисляются и сохраняются некоторые агрегатные данные.

Отметим, что сохранение всех агрегатных данных не всегда оправданно. Дело в том, что при добавлении новых измерений объем данных, составляющих куб, растет экспоненциально (иногда говорят о "взрывном росте" объема данных). Если говорить более точно, степень роста объема агрегатных данных зависит от количества измерений куба и членов измерений на различных уровнях иерархий этих измерений . Для решения проблемы "взрывного роста" применяются разнообразные схемы, позволяющие при вычислении далеко не всех возможных агрегатных данных достичь приемлемой скорости выполнения запросов.

Как исходные, так и агрегатные данные могут храниться либо в реляционных, либо в многомерных структурах. Поэтому в настоящее время применяются три способа хранения данных.

  • MOLAP ( Multidimensional OLAP) - исходные и агрегатные данные хранятся в многомерной базе данных. Хранение данных в многомерных структурах позволяет манипулировать данными как многомерным массивом, благодаря чему скорость вычисления агрегатных значений одинакова для любого из измерений . Однако в этом случае многомерная база данных оказывается избыточной, так как многомерные данные полностью содержат исходные реляционные данные.
  • ROLAP (Relational OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально и находились. Агрегатные же данные помещают в специально созданные для их хранения служебные таблицы в той же базе данных.
  • HOLAP ( Hybrid OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально находились, а агрегатные данные хранятся в многомерной базе данных.

Некоторые OLAP -средства поддерживают хранение данных только в реляционных структурах, некоторые - только в многомерных. Однако большинство современных серверных OLAP -средств поддерживают все три способа хранения данных. Выбор способа хранения зависит от объема и структуры исходных данных, требований к скорости выполнения запросов и частоты обновления OLAP -кубов.

Отметим также, что подавляющее большинство современных OLAP -средств не хранит "пустых" значений (примером "пустого" значения может быть отсутствие продаж сезонного товара вне сезона).

Основные понятия OLAP

Тест FAMSI

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации ХД. Концепция OLAP была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных. В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information) - быстрый анализ разделяемой многомерной информации, включающий следующие требования к приложениям для многомерного анализа :

  • Fast (Быстрый) - предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;
  • Analysis (Анализ) - возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;
  • Shared (Разделяемый) - многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;
  • Multidimensional (Многомерный) - многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это ключевое требование OLAP);
  • Information (Информация) - приложение должно иметь возможность обращаться к любой нужной информации, независимо от ее объема и места хранения.

Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах.

Многомерное представление информации

Кубы

OLAP предоставляет удобные быстродействующие средства доступа, просмотра и анализа деловой информации. Пользователь получает естественную, интуитивно понятную модель данных, организуя их в виде многомерных кубов (Cubes) . Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса. Например, для продаж это могут быть товар, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей измерений (Dimensions) находятся данные, количественно характеризующие процесс - меры (Measures). Это могут быть объемы продаж в штуках или в денежном выражении, остатки на складе, издержки и т. п. Пользователь, анализирующий информацию, может "разрезать" куб по разным направлениям, получать сводные (например, по годам) или, наоборот, детальные (по неделям) сведения и осуществлять прочие манипуляции, которые ему придут в голову в процессе анализа.

В качестве мер в трехмерном кубе, изображенном на рис. 26.1 , использованы суммы продаж, а в качестве измерений - время, товар и магазин. Измерения представлены на определенных уровнях группировки: товары группируются по категориям, магазины - по странам, а данные о времени совершения операций - по месяцам. Чуть позже мы рассмотрим уровни группировки (иерархии ) подробнее.


Рис. 26.1.

"Разрезание" куба

Даже трехмерный куб сложно отобразить на экране компьютера так, чтобы были видны значения интересующих мер. Что уж говорить о кубах с количеством измерений , большим трех. Для визуализации данных, хранящихся в кубе, применяются, как правило, привычные двумерные, т. е. табличные представления, имеющие сложные иерархические заголовки строк и столбцов.

Двумерное представление куба можно получить, "разрезав" его поперек вдоль одной или нескольких осей (измерений ): мы фиксируем значения всех измерений , кроме двух, - и получаем обычную двумерную таблицу. В горизонтальной оси таблицы (заголовки столбцов) представлено одно измерение , в вертикальной (заголовки строк) - другое, а в ячейках таблицы - значения мер. При этом набор мер фактически рассматривается как одно из измерений : мы либо выбираем для показа одну меру (и тогда можем разместить в заголовках строк и столбцов два измерения ), либо показываем несколько мер (и тогда одну из осей таблицы займут названия мер, а другую - значения единственного "неразрезанного" измерения ).

(levels). Например, метки, представленная на поддерживаются далеко не всеми OLAP-средствами. Например, в Microsoft Analysis Services 2000 поддерживаются оба типа иерархии , а в Microsoft OLAP Services 7.0 - только сбалансированные. Различными в разных OLAP-средствах могут быть и число уровней иерархии , и максимально допустимое число членов одного уровня, и максимально возможное число самих измерений .

Архитектура OLAP-приложений

Все, что говорилось выше про OLAP, по сути, относилось к многомерному представлению данных. То, как данные хранятся, грубо говоря, не волнует ни конечного пользователя, ни разработчиков инструмента, которым клиент пользуется.

Многомерность в OLAP-приложениях может быть разделена на три уровня.

  • Многомерное представление данных - средства конечного пользователя, обеспечивающие многомерную визуализацию и манипулирование данными; слой многомерного представления абстрагирован от физической структуры данных и воспринимает данные как многомерные.
  • Многомерная обработка - средство (язык) формулирования многомерных запросов (традиционный реляционный язык SQL здесь оказывается непригодным) и процессор, умеющий обработать и выполнить такой запрос.
  • Многомерное хранение - средства физической организации данных, обеспечивающие эффективное выполнение многомерных запросов.

Первые два уровня в обязательном порядке присутствуют во всех OLAP-средствах. Третий уровень, хотя и является широко распространенным, не обязателен, так как данные для многомерного представления могут извлекаться и из обычных реляционных структур; процессор многомерных запросов в этом случае транслирует многомерные запросы в SQL-запросы, которые выполняются реляционной СУБД.

Конкретные OLAP-продукты, как правило, представляют собой либо средство многомерного представления данных (OLAP-клиент - например, Pivot Tables в Excel 2000 фирмы Microsoft или ProClarity фирмы Knosys), либо многомерную серверную СУБД (OLAP-сервер - например, Oracle Express Server или Microsoft OLAP Services).

Слой многомерной обработки обычно бывает встроен в OLAP-клиент и/или в OLAP-сервер, но может быть выделен в чистом виде, как, например, компонент Pivot Table Service фирмы Microsoft.

Возможно, для кого-то использование OLAP-технологии (On-line Analytic Processing) при построении отчетности покажется какой-то экзотикой, поэтому применение OLAP-КУБа для них вовсе не является одним из важнейших требований при автоматизации бюджетирования и управленческого учета .

На самом деле очень удобно пользоваться многомерным КУБом при работе с управленческой отчетностью. При разработке форматов бюджетов можно столкнуться с проблемой многовариантности форм (подробнее об этом можно прочитать в Книге 8 "Технология постановки бюджетирования в компании" и в книге "Постановка и автоматизация управленческого учета").

Это связано с тем, что для эффективного управления компанией требуется все более детализированная управленческая отчетность. То есть в системе используется все больше различных аналитических срезов (в информационных системах аналитики определяются набором справочников).

Естественно, это приводит к тому, что руководители хотят получать отчетность во всех интересующих их аналитических срезах. А это значит, что отчеты нужно как-то заставить «дышать». Иными словами можно сказать, что в данном случае речь идет о том, что по смыслу один и тот же отчет должен предоставлять информацию в различных аналитических разрезах. Поэтому статичные отчеты уже не устраивают многих современных руководителей. Им нужна динамика, которую может дать многомерный КУБ.

Таким образом, OLAP-технология уже сейчас стала обязательным элементом в современных и перспективных информационных системах. Поэтому при выборе программного продукта нужно обращать внимание на то, используется ли в нем OLAP-технология.

Причем нужно уметь отличать настоящие КУБы от имитации. Одной из таких имитаций являются сводные таблицы в MS Excel. Да, этот инструмент похож на КУБ, но на самом деле таковым не является, поскольку это статические, а не динамические таблицы. Кроме того, в них гораздо хуже реализована возможность построения отчетов, использующих элементы из иерархических справочников.

Для подтверждения актуальности использования КУБа при построении управленческой отчетности можно привести простейший пример с бюджетом продаж. В рассматриваемом примере для компании актуальными являются следующие аналитические срезы: продукты, филиалы и каналы сбыта. Если для компании важны эти три аналитики, то бюджет (или отчет) продаж можно выводить в нескольких вариантах.

Следует отметить, что если создавать строки бюджетов на основе трех аналитических срезов (как в рассматриваемом примере), это позволяет создавать достаточно сложные бюджетные модели и составлять детализированные отчеты с использованием КУБа.

Например, бюджет продаж можно составлять с использованием только одной аналитики (справочника). Пример бюджета продаж, построенного на основе одной аналитики "Продукты" представлен на рисунке 1 .

Рис. 1. Пример бюджета продаж, построенного на основе одной аналитики "Продукты" в OLAP-КУБе

Этот же бюджет продаж можно составлять с использованием двух аналитик (справочников). Пример бюджета продаж, построенного на основе двух аналитик "Продукты" и "Филиалы" представлен на рисунке 2 .

Рис. 2. Пример бюджета продаж, построенного на основе двух аналитик "Продукты" и "Филиалы" в OLAP-КУБе программного комплекса "ИНТЕГРАЛ"

.

Если есть необходимость строить более детальные отчеты, то можно тот же бюджет продаж составлять с использованием трех аналитик (справочников). Пример бюджета продаж, построенного на основе трех аналитик "Продукты", "Филиалы" и "Каналы сбыта" представлен на рисунке 3 .

Рис. 3. Пример бюджета продаж, построенного на основе трех аналитик "Продукты", "Филиалы" и "Каналы сбыта" в OLAP-КУБе программного комплекса "ИНТЕГРАЛ"

Нужно напомнить о том, что КУБ, используемый для формирования отчетов, позволяет выводить данные в различной последовательности. На рисунке 3 бюджет продаж сначала "разворачивается" по продуктам, затем по филиалам, а потом по каналам сбыта.

Те же самые данные можно представить в другой последовательности. На рисунке 4 тот же самый бюджет продаж "разворачивается" сначала по продуктам, затем по каналам сбыта, а потом по филиалам.

Рис. 4. Пример бюджета продаж, построенного на основе трех аналитик "Продукты", "Каналы сбыта" и "Филиалы" в OLAP-КУБе программного комплекса "ИНТЕГРАЛ"

На рисунке 5 тот же самый бюджет продаж "разворачивается" сначала по филиалам, затем по продуктам, а потом по каналам сбыта.

Рис. 5. Пример бюджета продаж, построенного на основе трех аналитик "Филиалы", "Продукты" и "Каналы сбыта" в OLAP-КУБепрограммного комплекса "ИНТЕГРАЛ"

На самом деле это не все возможные варианты вывода бюджета продаж.

Кроме того, нужно обратить внимание на то, что КУБ позволяет работать с иерархической структурой справочников. В представленных примерах иерархическими справочниками являются "Продукты" и "Каналы сбыта".

С точки зрения пользователя он в данном примере получает несколько управленческих отчетов (см. Рис. 1-5 ), а с точки зрения настроек в программном продукте – это один отчет. Просто с помощью КУБа его можно просматривать несколькими способами.

Естественно, что на практике возможно очень большое количество вариантов вывода различных управленческих отчетов, если их статьи строятся на одной или нескольких аналитиках. А уж сам набор аналитик зависит от потребности пользователей в детализации. Правда, при этом не следует забывать, что, с одной стороны, чем больше аналитик, тем более детализированные отчеты можно строить. Но, с другой стороны, значит, и финансовая модель бюджетирования будет более сложной. В любом случае при наличии КУБа компания будет иметь возможность просмотра необходимой отчетности в различных вариантах, в соответствии с интересующими аналитическими разрезами.

Необходимо упомянуть еще о нескольких возможностях OLAP-КУБа.

В многомерном иерархическом OLAP-КУБе есть несколько измерений: тип строки, дата, строки, справочник 1, справочник 2 и справочник 3 (см. Рис. 6 ). Естественно, в отчет выводится столько кнопок со справочниками, сколько есть в строке бюджета, содержащей максимальное количество справочников. Если ни в одной строке бюджета нет ни одного справочника, то в отчете не будет ни одной кнопки со справочниками.

Изначально OLAP-КУБ строится по всем измерениям. По умолчанию при первоначальном построении отчета измерения расположены именно в тех областях, как показано на рисунке 6 . То есть такое измерение, как «Дата», располагается в области вертикальных измерений (измерения в области столбцов), измерения «Строки», «Справочник 1», «Справочник 2» и «Справочник 3» – в области горизонтальных измерений (измерения в области строк), а измерение «Тип строки» – в области «нераскрываемых» измерений (измерения в страничной области). Если измерение находится в последней области, то данные в отчете не будут «раскрываться» по этому измерению.

Каждое из этих измерений можно поместить в любую из трех областей. После переноса измерений отчет мгновенно перестраивается в соответствии с новой конфигурацией измерений. Например, можно поменять местами дату и строки со справочниками. Или можно в вертикальную область измерений перенести один из справочников (см. Рис. 7 ). Иными словами, отчет в OLAP-КУБе можно «крутить» и выбирать тот вариант вывода отчета, который является наиболее удобным для пользователя.

Рис. 7. Пример перестройки отчета после изменения конфигурации измерений программного комплекса "ИНТЕГРАЛ"

Конфигурацию измерений можно менять либо в основной форме КУБа, либо в редакторе карты изменений (см. Рис. 8 ). В этом редакторе также можно мышкой перетаскивать измерения из одной области в другую. Помимо этого, можно менять местами измерения в одной области.

Кроме того, в этой же форме можно настраивать некоторые параметры измерений. По каждому измерению можно настраивать расположение итогов, порядок сортировки элементов и названия элементов (см. Рис. 8 ). Также можно задавать, какое название элементов выводить в отчет: сокращенное (Name) или полное (FullName).

Рис. 8. Редактор карты измерений программного комплекса "ИНТЕГРАЛ"

Редактировать параметры измерений можно непосредственно в каждом из них (см. Рис. 9 ). Для этого нужно нажать на пиктограмму, расположенную на кнопке рядом с названием измерения.

Рис. 9. Пример редактирования справочника 1 Продукты и услуги в

С помощью этого редактора можно выбирать элементы, которые нужно показывать в отчете. По умолчанию в отчет выводятся все элементы, но при необходимости часть элементов или папок можно не показывать. Например, если нужно выводить в отчет только одну продуктовую группу, то у всех остальных необходимо убрать галочки в редакторе измерений. После чего в отчете будет только одна продуктовая группа (см. Рис. 10 ).

Также в этом редакторе можно сортировать элементы. Кроме того, элементы можно перегруппировывать различными способами. После такой перегруппировки отчет мгновенно перестраивается.

Рис. 10. Пример вывода в отчете только одной продуктовой группы (папки) в программном комплексе "ИНТЕГРАЛ"

В редакторе измерения можно оперативно создавать свои группы, перетаскивать туда элементы из справочников и т.д. По умолчанию автоматически создается только группа «Прочие», но можно создавать и другие группы. Таким образом, с помощью редактора измерений можно настраивать, какие элементы справочников и в каком порядке нужно выводить в отчет.


Следует отметить, что все такие перегруппировки не записываются. То есть после закрытия отчета или после его перерасчета в отчет будут выводиться все справочники в соответствии с настроенной методикой.

На самом деле все такие изменения можно было сделать изначально при настройке строк.

Например, с помощью ограничений также можно задавать, какие элементы или группы справочников нужно выводить в отчет, а какие – нет.

Примечание : более подробно тема данной статьи рассматривается на семинарах-практикумах "Бюджетное управление предприятием" и "Постановка и автоматизация управленческого учета" , которые проводит автор данной статьи - Александр Карпов .

Если пользователю практически регулярно нужно выводить в отчет только определенные элементы или папки справочников, то подобные настройки лучше заранее сделать при создании строк отчетов. Если же для пользователя важны различные комбинации элементов справочников в отчетах, тогда при настройке методики никакие ограничения ставить не нужно. Все такие ограничения можно будет оперативно настраивать с помощью редактора измерения.

Что такое OLAP сегодня, в общем-то знает каждый специалист. По крайней мере, понятия "OLAP" и "многомерные данные" устойчиво связаны в нашем сознании. Тем не менее тот факт, что эта тема вновь поднимается, надеюсь, будет одобрен большинством читателей, т. к. для того, чтобы представление о чем-либо с течением времени не устаревало, нужно периодически общаться с умными людьми или читать статьи в хорошем издании...

Хранилища данных (место OLAP в информационной структуре предприятия)

Термин "OLAP" неразрывно связан с термином "хранилище данных" (Data Warehouse).

Приведем определение, сформулированное "отцом-основателем" хранилищ данных Биллом Инмоном: "Хранилище данных - это предметно-ориентированное, привязанное ко времени и неизменяемое собрание данных для поддержки процесса принятия управляющих решений".

Данные в хранилище попадают из оперативных систем (OLTP-систем), которые предназначены для автоматизации бизнес-процессов. Кроме того, хранилище может пополняться за счет внешних источников, например статистических отчетов.

Зачем строить хранилища данных - ведь они содержат заведомо избыточную информацию, которая и так "живет" в базах или файлах оперативных систем? Ответить можно кратко: анализировать данные оперативных систем напрямую невозможно или очень затруднительно. Это объясняется различными причинами, в том числе разрозненностью данных, хранением их в форматах различных СУБД и в разных "уголках" корпоративной сети. Но даже если на предприятии все данные хранятся на центральном сервере БД (что бывает крайне редко), аналитик почти наверняка не разберется в их сложных, подчас запутанных структурах. Автор имеет достаточно печальный опыт попыток "накормить" голодных аналитиков "сырыми" данными из оперативных систем - им это оказалось "не по зубам".

Таким образом, задача хранилища - предоставить "сырье" для анализа в одном месте и в простой, понятной структуре. Ральф Кимбалл в предисловии к своей книге "The Data Warehouse Toolkit" пишет, что если по прочтении всей книги читатель поймет только одну вещь, а именно: структура хранилища должна быть простой, - автор будет считать свою задачу выполненной.

Есть и еще одна причина, оправдывающая появление отдельного хранилища - сложные аналитические запросы к оперативной информации тормозят текущую работу компании, надолго блокируя таблицы и захватывая ресурсы сервера.

На мой взгляд, под хранилищем можно понимать не обязательно гигантское скопление данных - главное, чтобы оно было удобно для анализа. Вообще говоря, для маленьких хранилищ предназначается отдельный термин - Data Marts (киоски данных), но в нашей российской практике его не часто услышишь.

OLAP - удобный инструмент анализа

Централизация и удобное структурирование - это далеко не все, что нужно аналитику. Ему ведь еще требуется инструмент для просмотра, визуализации информации. Традиционные отчеты, даже построенные на основе единого хранилища, лишены одного - гибкости. Их нельзя "покрутить", "развернуть" или "свернуть", чтобы получить желаемое представление данных. Конечно, можно вызвать программиста (если он захочет придти), и он (если не занят) сделает новый отчет достаточно быстро - скажем, в течение часа (пишу и сам не верю - так быстро в жизни не бывает; давайте дадим ему часа три). Получается, что аналитик может проверить за день не более двух идей. А ему (если он хороший аналитик) таких идей может приходить в голову по нескольку в час. И чем больше "срезов" и "разрезов" данных аналитик видит, тем больше у него идей, которые, в свою очередь, для проверки требуют все новых и новых "срезов". Вот бы ему такой инструмент, который позволил бы разворачивать и сворачивать данные просто и удобно! В качестве такого инструмента и выступает OLAP.

Хотя OLAP и не представляет собой необходимый атрибут хранилища данных, он все чаще и чаще применяется для анализа накопленных в этом хранилище сведений.

Компоненты, входящие в типичное хранилище, представлены на рис. 1.

Рис. 1. Структура хранилища данных

Оперативные данные собираются из различных источников, очищаются, интегрируются и складываются в реляционное хранилище. При этом они уже доступны для анализа при помощи различных средств построения отчетов. Затем данные (полностью или частично) подготавливаются для OLAP-анализа. Они могут быть загружены в специальную БД OLAP или оставлены в реляционном хранилище. Важнейшим его элементом являются метаданные, т. е. информация о структуре, размещении и трансформации данных. Благодаря им обеспечивается эффективное взаимодействие различных компонентов хранилища.

Подытоживая, можно определить OLAP как совокупность средств многомерного анализа данных, накопленных в хранилище. Теоретически средства OLAP можно применять и непосредственно к оперативным данным или их точным копиям (чтобы не мешать оперативным пользователям). Но мы тем самым рискуем наступить на уже описанные выше грабли, т. е. начать анализировать оперативные данные, которые напрямую для анализа непригодны.

Определение и основные понятия OLAP

Для начала расшифруем: OLAP - это Online Analytical Processing, т. е. оперативный анализ данных. 12 определяющих принципов OLAP сформулировал в 1993 г. Е. Ф. Кодд - "изобретатель" реляционных БД. Позже его определение было переработано в так называемый тест FASMI, требующий, чтобы OLAP-приложение предоставляло возможности быстрого анализа разделяемой многомерной информации ().

Тест FASMI

Fast (Быстрый) - анализ должен производиться одинаково быстро по всем аспектам информации. Приемлемое время отклика - 5 с или менее.

Analysis (Анализ) - должна быть возможность осуществлять основные типы числового и статистического анализа, предопределенного разработчиком приложения или произвольно определяемого пользователем.

Shared (Разделяемой) - множество пользователей должно иметь доступ к данным, при этом необходимо контролировать доступ к конфиденциальной информации.

Multidimensional (Многомерной) - это основная, наиболее существенная характеристика OLAP.

Information (Информации) - приложение должно иметь возможность обращаться к любой нужной информации, независимо от ее объема и места хранения.

OLAP = многомерное представление = Куб

OLAP предоставляет удобные быстродействующие средства доступа, просмотра и анализа деловой информации. Пользователь получает естественную, интуитивно понятную модель данных, организуя их в виде многомерных кубов (Cubes). Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса. Например, для продаж это могут быть товар, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей - измерений (Dimensions) - находятся данные, количественно характеризующие процесс - меры (Measures). Это могут быть объемы продаж в штуках или в денежном выражении, остатки на складе, издержки и т. п. Пользователь, анализирующий информацию, может "разрезать" куб по разным направлениям, получать сводные (например, по годам) или, наоборот, детальные (по неделям) сведения и осуществлять прочие манипуляции, которые ему придут в голову в процессе анализа.

В качестве мер в трехмерном кубе, изображенном на рис. 2, использованы суммы продаж, а в качестве измерений - время, товар и магазин. Измерения представлены на определенных уровнях группировки: товары группируются по категориям, магазины - по странам, а данные о времени совершения операций - по месяцам. Чуть позже мы рассмотрим уровни группировки (иерархии) подробнее.


Рис. 2. Пример куба

"Разрезание" куба

Даже трехмерный куб сложно отобразить на экране компьютера так, чтобы были видны значения интересующих мер. Что уж говорить о кубах с количеством измерений, большим трех? Для визуализации данных, хранящихся в кубе, применяются, как правило, привычные двумерные, т. е. табличные, представления, имеющие сложные иерархические заголовки строк и столбцов.

Двумерное представление куба можно получить, "разрезав" его поперек одной или нескольких осей (измерений): мы фиксируем значения всех измерений, кроме двух, - и получаем обычную двумерную таблицу. В горизонтальной оси таблицы (заголовки столбцов) представлено одно измерение, в вертикальной (заголовки строк) - другое, а в ячейках таблицы - значения мер. При этом набор мер фактически рассматривается как одно из измерений - мы либо выбираем для показа одну меру (и тогда можем разместить в заголовках строк и столбцов два измерения), либо показываем несколько мер (и тогда одну из осей таблицы займут названия мер, а другую - значения единственного "неразрезанного" измерения).

Взгляните на рис. 3 - здесь изображен двумерный срез куба для одной меры - Unit Sales (продано штук) и двух "неразрезанных" измерений - Store (Магазин) и Время (Time).


Рис. 3. Двумерный срез куба для одной меры

На рис. 4 представлено лишь одно "неразрезанное" измерение - Store, но зато здесь отображаются значения нескольких мер - Unit Sales (продано штук), Store Sales (сумма продажи) и Store Cost (расходы магазина).


Рис. 4. Двумерный срез куба для нескольких мер

Двумерное представление куба возможно и тогда, когда "неразрезанными" остаются и более двух измерений. При этом на осях среза (строках и столбцах) будут размещены два или более измерений "разрезаемого" куба - см. рис. 5.


Рис. 5. Двумерный срез куба с несколькими измерениями на одной оси

Метки

Значения, "откладываемые" вдоль измерений, называются членами или метками (members). Метки используются как для "разрезания" куба, так и для ограничения (фильтрации) выбираемых данных - когда в измерении, остающемся "неразрезанным", нас интересуют не все значения, а их подмножество, например три города из нескольких десятков. Значения меток отображаются в двумерном представлении куба как заголовки строк и столбцов.

Иерархии и уровни

Метки могут объединяться в иерархии, состоящие из одного или нескольких уровней (levels). Например, метки измерения "Магазин" (Store) естественно объединяются в иерархию с уровнями:

Country (Страна)

State (Штат)

City (Город)

Store (Магазин).

В соответствии с уровнями иерархии вычисляются агрегатные значения, например объем продаж для USA (уровень "Country") или для штата California (уровень "State"). В одном измерении можно реализовать более одной иерархии - скажем, для времени: {Год, Квартал, Месяц, День} и {Год, Неделя, День}.

Архитектура OLAP-приложений

Все, что говорилось выше про OLAP, по сути, относилось к многомерному представлению данных. То, как данные хранятся, грубо говоря, не волнует ни конечного пользователя, ни разработчиков инструмента, которым клиент пользуется.

Многомерность в OLAP-приложениях может быть разделена на три уровня:

  • Многомерное представление данных - средства конечного пользователя, обеспечивающие многомерную визуализацию и манипулирование данными; слой многомерного представления абстрагирован от физической структуры данных и воспринимает данные как многомерные.
  • Многомерная обработка - средство (язык) формулирования многомерных запросов (традиционный реляционный язык SQL здесь оказывается непригодным) и процессор, умеющий обработать и выполнить такой запрос.
  • Многомерное хранение - средства физической организации данных, обеспечивающие эффективное выполнение многомерных запросов.

Первые два уровня в обязательном порядке присутствуют во всех OLAP-средствах. Третий уровень, хотя и является широко распространенным, не обязателен, так как данные для многомерного представления могут извлекаться и из обычных реляционных структур; процессор многомерных запросов в этом случае транслирует многомерные запросы в SQL-запросы, которые выполняются реляционной СУБД.

Конкретные OLAP-продукты, как правило, представляют собой либо средство многомерного представления данных, OLAP-клиент (например, Pivot Tables в Excel 2000 фирмы Microsoft или ProClarity фирмы Knosys), либо многомерную серверную СУБД, OLAP-сервер (например, Oracle Express Server или Microsoft OLAP Services).

Слой многомерной обработки обычно бывает встроен в OLAP-клиент и/или в OLAP-сервер, но может быть выделен в чистом виде, как, например, компонент Pivot Table Service фирмы Microsoft.

Технические аспекты многомерного хранения данных

Как уже говорилось выше, средства OLAP-анализа могут извлекать данные и непосредственно из реляционных систем. Такой подход был более привлекательным в те времена, когда OLAP-серверы отсутствовали в прайс-листах ведущих производителей СУБД. Но сегодня и Oracle, и Informix, и Microsoft предлагают полноценные OLAP-серверы, и даже те IT-менеджеры, которые не любят разводить в своих сетях "зоопарк" из ПО разных производителей, могут купить (точнее, обратиться с соответствующей просьбой к руководству компании) OLAP-сервер той же марки, что и основной сервер баз данных.

OLAP-серверы, или серверы многомерных БД, могут хранить свои многомерные данные по-разному. Прежде чем рассмотреть эти способы, нам нужно поговорить о таком важном аспекте, как хранение агрегатов. Дело в том, что в любом хранилище данных - и в обычном, и в многомерном - наряду с детальными данными, извлекаемыми из оперативных систем, хранятся и суммарные показатели (агрегированные показатели, агрегаты), такие, как суммы объемов продаж по месяцам, по категориям товаров и т. п. Агрегаты хранятся в явном виде с единственной целью - ускорить выполнение запросов. Ведь, с одной стороны, в хранилище накапливается, как правило, очень большой объем данных, а с другой - аналитиков в большинстве случаев интересуют не детальные, а обобщенные показатели. И если каждый раз для вычисления суммы продаж за год пришлось бы суммировать миллионы индивидуальных продаж, скорость, скорее всего, была бы неприемлемой. Поэтому при загрузке данных в многомерную БД вычисляются и сохраняются все суммарные показатели или их часть.

Но, как известно, за все надо платить. И за скорость обработки запросов к суммарным данным приходится платить увеличением объемов данных и времени на их загрузку. Причем увеличение объема может стать буквально катастрофическим - в одном из опубликованных стандартных тестов полный подсчет агрегатов для 10 Мб исходных данных потребовал 2,4 Гб, т. е. данные выросли в 240 раз! Степень "разбухания" данных при вычислении агрегатов зависит от количества измерений куба и структуры этих измерений, т. е. соотношения количества "отцов" и "детей" на разных уровнях измерения. Для решения проблемы хранения агрегатов применяются подчас сложные схемы, позволяющие при вычислении далеко не всех возможных агрегатов достигать значительного повышения производительности выполнения запросов.

Теперь о различных вариантах хранения информации. Как детальные данные, так и агрегаты могут храниться либо в реляционных, либо в многомерных структурах. Многомерное хранение позволяет обращаться с данными как с многомерным массивом, благодаря чему обеспечиваются одинаково быстрые вычисления суммарных показателей и различные многомерные преобразования по любому из измерений. Некоторое время назад OLAP-продукты поддерживали либо реляционное, либо многомерное хранение. Сегодня, как правило, один и тот же продукт обеспечивает оба этих вида хранения, а также третий вид - смешанный. Применяются следующие термины:

  • MOLAP (Multidimensional OLAP) - и детальные данные, и агрегаты хранятся в многомерной БД. В этом случае получается наибольшая избыточность, так как многомерные данные полностью содержат реляционные.
  • ROLAP (Relational OLAP) - детальные данные остаются там, где они "жили" изначально - в реляционной БД; агрегаты хранятся в той же БД в специально созданных служебных таблицах.
  • HOLAP (Hybrid OLAP) - детальные данные остаются на месте (в реляционной БД), а агрегаты хранятся в многомерной БД.

Каждый из этих способов имеет свои преимущества и недостатки и должен применяться в зависимости от условий - объема данных, мощности реляционной СУБД и т. д.

При хранении данных в многомерных структурах возникает потенциальная проблема "разбухания" за счет хранения пустых значений. Ведь если в многомерном массиве зарезервировано место под все возможные комбинации меток измерений, а реально заполнена лишь малая часть (например, ряд продуктов продается только в небольшом числе регионов), то бо/льшая часть куба будет пустовать, хотя место будет занято. Современные OLAP-продукты умеют справляться с этой проблемой.

Продолжение следует. В дальнейшем мы поговорим о конкретных OLAP-продуктах, выпускаемых ведущими производителями.

Довольно давно являюсь обитателем Хабра, но так и не доводилось читать статьи на тему многомерных кубов, OLAP и MDX, хотя тема очень интересная и с каждым днем становится все более актуальной.
Не секрет, что за тот небольшой промежуток времени развития баз данных, электронного учета и онлайн систем, самих данных накопилось очень много. Теперь же интерес также представляет полноценный анализ архивов, а возможно и попытка прогнозирования ситуаций для подобных моделей в будущем.
С другой стороны, большие компании даже за несколько лет, месяцев или даже недель могут накапливать настолько большие массивы данных, что даже их элементарный анализ требует неординарных подходов и жестких аппаратных требований. Такими могут быть системы обработки банковских транзакций, биржевые агенты, телефонные операторы и т.д.
Думаю, всем хорошо известны 2 разных подхода построения дизайна баз данных: OLTP и OLAP. Первый подход (Online Transaction Processing - обработка транзакций в реальном времени) рассчитан на эффективный сбор данных в реальном времени, второй же (Online Analytical Processing – аналитическая обработка в реальном времени) нацелен именно на выборку и обработку данных максимально эффективным способом.

Давайте рассмотрим основные возможности современных OLAP кубов, и какие задачи они решают (за основу взяты Analysis Services 2005/2008):

  • быстрый доступ к данным
  • преагрегация
  • иерархии
  • работа с временем
  • язык доступа к многомерным данным
  • KPI (Key Performance Indicators)
  • дата майнинг
  • многоуровневое кэширование
  • поддержка мультиязычности
Итак, рассмотрим возможности OLAP кубов немного подробнее.

Немного подробнее о возможностях

Быстрый доступ к данным
Собственно быстрый доступ к данным, независимо от размеров массива, и является основой OLAP систем. Так как основной упор именно на этом, хранилище данных обычно строится по принципам, отличным от принципов реляционных баз данных.
Здесь, время на выборку простых данных измеряется в долях секунды, а запрос, превышающий несколько секунд, скорее всего, требует оптимизации.

Преагрегация
Кроме быстрой выборки существующих данных, также предоставляется возможность преагрегировать «наиболее вероятно-используемые» значения. Например, если мы имеем ежедневные записи о продажах какого-то товара, система может преагрегировать нам также месячные и квартальные суммы продаж, а значит, если мы запросим данные помесячно или поквартально, система нам мгновенно выдаст результат. Почему же преагрегация происходит не всегда – потому, что теоретически возможных комбинаций товаров/времени/и т.д. может быть огромное количество, а значит, нужно иметь четкие правила для каких элементов агрегация будет построена, а для каких нет. Вообще тема учета этих правил и собственно непосредственного дизайна агрегаций довольно обширна и сама по себе заслуживает отдельную статью.

Иерархии
Закономерно, что анализируя данные и строя конечные отчеты, возникает потребность учитывать то, что месяцы состоят из дней, а сами образуют кварталы, а города входят в области, которые в свою очередь являются частью регионов или стран. Хорошая новость то, что OLAP кубы изначально рассматривают данные с точки зрения иерархий и взаимоотношений с другими параметрам одной и той же сущности, так что построение и использования иерархией в кубах – дело очень простое.

Работа с временем
Так как в основном анализ данных происходит на временных участках, именно времени в OLAP системах выделено особое значение, а значит, просто определив для системы, где у нас тут время, в дальнейшем можно с легкостью пользоваться функциями типа Year To Date, Month To Date (период от начала года/месяца и до текущей даты), Parallel Period (в этот же день или месяц, но в прошлом году) и т.п.

Язык доступа к многомерным данным
MDX (Multidimensional Expressions) - язык запросов для простого и эффективного доступа к многомерным структурам данных. И этим все сказано – внизу будет несколько примеров.

Key Performance Indicators (KPI)
Ключевые показатели эффективности - это финансовая и нефинансовая система оценки, которая помогает организации определить достижение стратегических целей. Ключевые показатели эффективности могут быть достаточно просто определены в OLAP системах и использоваться в отчетах.

Дата майнинг
Интеллектуальный анализ данных (Data Mining) - по сути, выявление скрытых закономерностей или взаимосвязей между переменными в больших массивах данных.
Английский термин «Data Mining» не имеет однозначного перевода на русский язык (добыча данных, вскрытие данных, информационная проходка, извлечение данных/информации) поэтому в большинстве случаев используется в оригинале. Наиболее удачным непрямым переводом считается термин «интеллектуальный анализ данных» (ИАД). Впрочем, это отдельная, не менее интересная тема для рассмотрения.

Многоуровневое кэширование
Собственно для обеспечения наиболее высокой скорости доступа к данным, кроме хитрых структур данных и преагрегаций, OLAP системы поддерживают многоуровневое кэширование. Кроме кэширования простых запросов, также кэшируются части вычитанных из хранилища данных, агрегированные значения, вычисленные значения. Таким образом, чем дольше работаешь с OLAP кубом, тем быстрее он, по сути, начинает работать. Также существует понятие «разогрев кэша» - операция, подготавливающая OLAP систему к работе с конкретными отчетами, запросами или всем вместе взятым.

Поддержка мультиязычности
Да-да-да. Как минимум Analysis Services 2005/2008 (правда, Enterprise Edition) нативно поддерживают мультиязычность. Достаточно привести перевод строковых параметров ваших данных, и клиенту, указавшему свой язык, будут приходить локализированные данные.

Многомерные кубы

Так что же все-таки эти многомерные кубы?
Представим себе 3-х мерное пространство, у которого по осям Время, Товары и Покупатели.
Точка в таком пространстве будет задавать факт того, что кто-то из покупателей в каком-то месяце купил какой-то конкретный товар.

Фактически, плоскость (или множество всех таких точек) и будет являться кубом, а, соответственно, Время, Товары и Покупатели – его измерениями.
Представить (и нарисовать) четырехмерный и более куб немного сложнее, но суть от этого не меняется, а главное, для OLAP систем совершенно неважно в скольких измерениях вы будете работать (в разумных пределах, конечно).

Немного MDX

Итак, в чем же прелесть MDX – скорее всего в том, что описывать нужно не то как мы хотим выбрать данные, а что именно мы хотим.
Например,
SELECT
{ . } ON COLUMNS,
{ ., . } ON ROWS
FROM
WHERE (., .)

Что означает – хочу количество iPhone-ов, проданных в июне и июле в Мозамбике.
При этом я описываю какие именно данные я хочу и как именно я хочу их увидеть в отчете.
Красиво, не правда ли?

А вот чуть посложнее:

WITH MEMBER AverageSpend AS
. / .
SELECT
{ AverageSpend } ON COLUMNS,
{ .., .. } ON ROWS
FROM
WHERE (.)

* This source code was highlighted with Source Code Highlighter .

Фактически, вначале определяем формулу подсчета «среднего размера покупки» и пытаемся сравнить – кто же (какой пол), за один заход в магазин Apple, тратит больше денег.

Сам язык чрезвычайно интересен и для изучения и для использования, и, пожалуй, заслуживает немало обсуждений.

Заключение

На самом деле, данная статья очень мало покрывает даже базовых понятий, я бы назвал ее «appetizer» - возможность заинтересовать хабра-сообщество данной тематикой и развивать ее дальше. Что же касается развития – тут огромное непаханое поле, а я буду рад ответить на все интересующие вопросы.

P.S. Это мой первый пост об OLAP и первая публикацию на Хабре - буду очень признателен за конструктивный фидбек.
Update: Перенес в SQL, перенесу в OLAP как только разрешат создавать новые блоги.

Теги: Добавить метки