Почему мкс не падает на землю. Орбита и скорость МКС

Как известно, геостационарные спутники висят неподвижно над землёй над одной и той же точкой. Почему они не падают? На той высоте не действует сила притяжения?

Ответ

Геостационарный искусственный спутник Земли представляет собой аппарат, который движется вокруг планеты в восточном направлении (в том же, в каком вращается сама Земля), по круговой экваториальной орбите с периодом обращения, равным периоду собственного вращения Земли.

Таким образом, если смотреть с Земли на геостационарный спутник, мы будем видеть его неподвижно висящим на одном и том же месте. Из-за этой неподвижности и большой высоты около 36 000 км, с которой видна почти половина поверхности Земли, на геостационарную орбиту выводят спутники-ретрансляторы для телевидения, радио и коммуникаций.

Из того, что геостационарный спутник висит постоянно над одной и той же точкой поверхности Земли, некоторые делают неверный вывод, что на геостационарный спутник не действует сила притяжения к Земле, что сила тяготения на определённом расстоянии от Земли исчезает, т. е. они опровергают самого Ньютона. Конечно это не так. Сам запуск спутников на геостационарную орбиту рассчитывается именно по закону всемирного тяготения Ньютона.

Геостационарные спутники, как и все остальные спутники, на самом деле падают на Землю, но не достигают её поверхности. На них действует сила притяжения к Земле (гравитационная сила), направленная к её центру, а в обратном направлении на спутник действует отталкивающая от Земли центробежная сила (сила инерции), которые уравновешивают друг друга - спутник не улетает от Земли и не падает на неё точно так же, как ведро, раскручиваемое на верёвке, остаётся на своей орбите.

Если бы спутник совсем не двигался, то он упал бы на Землю под действием притяжения к ней, но спутники движутся, в том числе и геостационарные (геостационарные - с угловой скоростью равной угловой скорости вращения Земли, т. е. один оборот за сутки, а у спутников нижележащих орбит угловая скорость больше, т. е. за сутки они успевают совершить вокруг Земли несколько оборотов). Линейная скорость, сообщаемая спутнику параллельно поверхности Земли при непосредственном выводе на орбиту сравнительно большая (на низкой околоземной орбите - 8 километров в секунду, на геостационарной орбите - 3 километра в секунду). Если бы не было Земли, то спутник с такой скоростью летел бы по прямой, но наличие Земли заставляет спутник падать на неё под действием силы притяжения, искривляя траекторию по направлению к Земле, но поверхность Земли не плоская, она искривлена. На сколько спутник приближается к поверхности Земли, на столько поверхность Земли уходит из-под спутника и, таким образом, спутник постоянно находится на одной и той же высоте, двигаясь по замкнутой траектории. Спутник всё время падает, но никак не может упасть.

Итак, все искусственные спутники Земли падают на Землю, но - по замкнутой траектории. Спутники находятся в состоянии невесомости, как все падающие тела (если лифт в небоскрёбе сорвётся и начнёт свободно падать, то люди внутри тоже будут находиться в состоянии невесомости). Космонавты внутри МКС находятся в невесомости не потому, что на орбите не действует сила притяжения к Земле (она там почти такая же как и на поверхности Земли), а потому, что МКС свободно падает на Землю - по замкнутой круговой траектории.

На вопрос, по какой причине предметы, а также сами космонавты во время пребывания на орбите находятся в невесомости, часто можно услышать неверные ответы. В действительности в космосе присутствует сила тяжести, ведь благодаря ей удерживаются планеты.

Без действия силы притяжения галактики могли бы просто разлететься во все стороны. На самом деле невесомость возникает благодаря наличию скорости движения.

Падение “около Земли”

В действительности, космонавты, а также другие предметы, которые находятся на земной орбите, падают. Однако это падение происходит не в привычном смысле (на Землю, с орбитальной скоростью), а как бы вокруг Земли.

При этом их движение должно составлять не менее семнадцати с половиной миль в час. При ускорении относительно Земли сила тяжести тут переносит траекторию движения, направляя ее вниз, поэтому космонавты во время полета никогда не смогут преодолеть минимум сближения с Землей. А в силу того, что ускорение космонавтов равно ускорению космической станции, они находятся в состоянии невесомости.

Атмосфера нашей планеты защищает нас от ультрафиолетового излучения и от многочисленных метеоритов, приближающихся к Земле. Большинство из них полностью сгорает в плотных слоях атмосферы, так же как и космический мусор, падающий с орбиты. Но это обстоятельство является целой проблемой для космической отрасли, ведь космонавтов нужно не только отправлять на орбиту, но и возвращать обратно. Но астронавты благополучно завершают пребывание на Международной космической станции, возвращаясь в специальных капсулах, которые не сгорают в атмосфере. Сегодня мы посмотрим, почему так происходит.

Космические корабли, так же как и внеземные объекты, страдают от разрушительного воздействия атмосферы. При аэродинамическом сопротивлении газовых слоев атмосферы поверхность любого тела, движущегося со значительной скоростью, нагревается до критических значений. Поэтому конструкторам пришлось приложить немало усилий для решения этой проблемы. Технология защиты космической техники от подобного воздействия получила название абляционной защиты. Она включает в себя поверхностный слой на основе асбестосодержащих соединений, который наносится на внешнюю часть летательного аппарата и частично разрушается, но позволяет сохранить в целости сам космический аппарат.


Возвращение космонавтов с МКС на Землю происходит в специальной капсуле, которая находится на корабле «Союз». После отстыковки от МКС корабль начинает движение к Земле, и на высоте около 140 километров происходит его распад на три части. Приборно-агрегатный и бытовой отсеки корабля «Союз» полностью сгорают в атмосфере, а вот спускаемый аппарат с космонавтами имеет защитный слой и продолжает движение дальше. Примерно на высоте около 8,5 километров происходит выпуск тормозного парашюта, который существенно замедляет скорость и готовит аппарат к приземлению.

Если посмотреть на снимки капсул с космонавтами после их приземления, то можно увидеть, что они почти черного цвета и имеют следы обгорания, как результат пролета сквозь слои атмосферы.

Мы говорим о том, что на любой объект, находящийся в непосредственной близости от Земли, действует ее сила гравитации. А раз так, то он не может долго находится на ее орбите, и обязательно упадет на поверхность, если до этого не сгорит в верхних слоях атмосферы. Эта же участь, по идее, должна постигнуть МКС, которая находится на удалении 400 километров от поверхности планеты. Но даже столь солидное расстояние не может избавить космическую станцию от силы земной гравитации. Но тогда каким образом она столь продолжительное время удерживается на стационарной орбите?

Давай те сначала разберемся, что собой представляет международная космическая станция. Это сложная модульная конструкция, весом 400 тонн. Если говорить о ее размерах, то они примерно такие же, как поле для игры в американский футбол. Чтобы собрать такую конструкцию, понадобилось 13 лет. За это время была проведена огромная работа, которая включает в себя: многочисленные запуски космических грузовых кораблей «Прогресс», американских «Шатлов», выход космонавтов в открытый космос. В настоящий момент стоимость международной космической станции составляет более 150 миллиардов американских долларов. На станции постоянно находятся шесть космонавтов, которые являются представителями разных стран мира.

Но вернемся к нашему первоначальному вопросу, и попробуем разобраться, почему станция, под действием сил гравитации, не падает на поверхность Земли.

На самом деле она потихоньку падает. В течение года ее снижение достигает двух километров. И если бы не корректировка орбиты, то мы давно бы с ней распрощались. Именно своевременная корректировка позволяет МКС оставаться на стационарной орбите. Вы не поверите, но столь сложная и тяжелая конструкция обладает высочайшей мобильностью. Она может менять параметры орбиты, двигаться во всех направлениях, и даже переворачиваться при необходимости, для того, например, чтобы увернуться от различных космических объектов, в число которых входит и космический мусор.

Все перемещения осуществляются с помощью специальных двигателей, именуемых гиродинами. На станции их четыре. Чтобы сориентировать станцию или же скорректировать ее орбиту, с Земли поступает команда на их запуск, после чего станция начинает свое движение. За столь ответственную операцию отвечает специальный оператор. В его обязанность входит не только своевременная корректировка орбиты МКС, но и обеспечение ее безопасности, с целью недопущения столкновения с метеоритами и космическим мусором. Аналогичные ускорители и двигатели имеются на грузовых космических кораблях «Прогресс», которые пристыковываются к МКС. С их помощью также можно корректировать ее орбиту.

Также оператор следит за массой станции. Без этого невозможно точно рассчитать тягу геродинов, которая не должна быть меньше 1 м/секунду. Масса станции постоянно меняется. Как правило, это происходит в момент пристыковки к ней очередного грузового корабля «Прогресс», который доставляет на борт полезный груз. Космонавты в процессе планового перемещения станции никакого участия не принимают. Всем руководит оператор с Земли.

Сегодня мы можем выйти за пределы своего дома ранним утром или вечером и увидеть яркую космическую станцию, пролетающую над головой. Хотя космические путешествия стали обыденной частью современного мира, для многих людей космос и вопросы, связанные с ним, остаются загадкой. Так, например, многим людям непонятно, почему спутники не падают на Землю и не улетают в космос?

Элементарная физика

Если мы бросим мяч в воздух, он скоро возвратится на Землю, как и любой другой объект, как, например, самолет, пуля или даже воздушный шар.

Чтобы понять, почему космический корабль способен вращаться вокруг Земли, не падая, по крайней мере, при нормальных обстоятельствах, нужно провести мысленный эксперимент. Представьте, что вы находитесь на но на ней нет воздуха и атмосферы. Нам нужно избавиться от воздуха, чтобы мы могли сделать нашу модель максимально простой. Теперь, вам придется мысленно подняться на вершину высокой горы с орудием, чтобы понять, почему спутники не падают на Землю.

Поставим эксперимент

Направляем ствол орудия ровно горизонтально и стреляем к западному горизонту. Снаряд вылетит из дула с огромной скоростью и направится на запад. Как только снаряд покинет ствол, он начнет приближаться к поверхности планеты.

Поскольку пушечный шар быстро продвигается на запад, он упадет на землю на некотором расстоянии от вершины горы. Если мы будем продолжать увеличивать мощность пушки, снаряд упадет на землю намного дальше от места выстрела. Поскольку наша планета имеет форму шара, каждый раз, когда пуля будет вылетать из дула, она будет падать дальше, потому что планета также продолжает вращаться вокруг своей оси. Вот почему спутники не падают на Землю под действием силы тяжести.

Поскольку это мысленный эксперимент, мы можем сделать выстрел пистолета более мощным. В конце концов, мы может вообразить ситуацию, в которой снаряд двигается с той же скоростью, что и планета.

На этой скорости, без сопротивления воздуха, которое его замедляет, снаряд будет продолжать вращаться вокруг Земли вечно, поскольку он будет непрерывно падать к планете, но Земля также будет продолжать падать с той же скоростью, как бы «ускользая» от снаряда. Это условие называется свободным падением.

На практике

В реальной же жизни, все не так просто, как в нашем мысленном эксперименте. Теперь мы должны иметь дело с сопротивлением воздуха, которое вызывает замедление скорости движения снаряда, в конечном итоге лишая его скорости, необходимой ей для того, чтобы оставаться на орбите и не падать на Землю.

Даже на расстоянии нескольких сотен километров от поверхности Земли все еще существует некоторое сопротивление воздуха, которое действует на спутники и космические станции и приводит к их замедлению. Это сопротивление в конечном итоге приводит к тому, что космический корабль или спутник попадают в слои атмосферы, где они обычно сгорают из-за трения с воздухом.

Если бы космические станции и другие спутники не имели ускорения, способного подтолкнуть их выше по орбите, все они безуспешно упали бы на Землю. Таким образом, скорость спутника регулируется таким образом, чтобы он падал на планету с той же скоростью, с которой планета по кривой движется по направлению от спутника. Вот почему спутники не падают на Землю.

Взаимодействие планет

Тот же процесс применим к нашей Луне, которая перемещается на орбите свободного падения вокруг Земли. Каждую секунду Луна приближается примерно на 0,125 см к Земле, но в то же время поверхность нашей сферической планеты смещается на то же расстояние, уклоняясь от Луны, поэтому относительно друг друга они остаются на своих орбитах.

Нет ничего волшебного в отношении орбит и такого явления, как свободное падение — они лишь объясняют, почему спутники не падают на Землю. Это просто сила тяжести и скорость. Но это невероятно интересно, впрочем, как и все остальное, связанное с космосом.