Как установить вентиляторы в системном блоке. Все об охлаждении компьютера

Всем бодрого времени суток))) Как и обещал, постараюсь максимально подробно изложить процесс изготовления данной модификации корпуса. Для начала прошу прощения у модераторов данного проекта, т.к. используются ссылка, а используемые фотографии сделаны в разное время и не все имеют прямое отношение к данной модификации, хотя максимально приближены. Но, ссылка с данного сайта)))) Итак, приступим. Для этого нам потребуется: (а) твердая уверенность необходимости модификации Вашего корпуса, (б) обычная сантиметровая линейка, (в) циркуль либо простой карандаш + тонкий маркер, цветом отличающимся от цвета корпуса, (г) дрель либо шуруповерт с двумя сверлами (на 4 и на 8), (д) электролобзик с установленным на нем полотном (пилкой) по металлу, (е) крестовая отвертка,вентилятор и крепления (винты), (ж) защитное приспособление (решетка, сетка, либо без оного). Далее, по порядку: а) Необходимо выяснить местоположение нашей модификации. В моем случае - напротив и чуть пониже видеокарты, чтобы поток свежего воздуха дул непосредственно на видеокарту. Также можно подать поток воздуха на жесткий диск, центральный процессор, северный либо южный мост материнской платы, совсем редкий случай - на блок питания. б) Линейкой выясним диаметр (диаметр вентилятора) вырезаемого в корпусе отверстия, который можно будет нарисовать (в) циркулем на стенке корпуса. Либо же обведем внутреннюю часть вентилятора карандашом либо маркером на данной поверхности..jpg г) Дрель и сверла нам понадобятся для сверления отверстий в корпусе. Сверло на 8 - чтобы вставить пилку от (д) лобзика и начать пилить (на фото красным), а сверло на 4 - чтобы прикрепить винтами вентилятор. Выпилив необходимый радиус приступим к креплению. Для этого нам нужно разметить крепежные места от (е) вентилятора и высверлить их (на фото черным). (ж) Решетку либо ее аналог (все что душе угодно, даже можно обойтись без нее. Но я использовал защитную решетку от блока питания, т.к. в доме маленький ребенок) будем крепить одновременно с вентилятором винтами, которые идут в комплекте почти со всеми "карлсонами" с магазина. После крепления, я подал на вентилятор питание. Использовал разъем на материнской плате и понижающий обороты резистор.

Обычные вентиляторы верой и правдой служат владельцам компьютеров уже многие годы, до сих пор оставаясь основным методом охлаждения – есть и другие, но те скорее для энтузиастов. Системы фазового перехода неприлично дорогие, а жидкостное охлаждение со всяческими трубками, помпами и резервуарами дополняется постоянными переживаниями по поводу протечек. А охлаждение в жидкостной системе всё равно происходит воздухом, только радиатор вынесен подальше.

Отбросив переживания за возраст технологии, трудно не признать, что продувка радиатора воздухом комнатной температуры – эффективный способ отвода тепла. Проблемы возникают, когда вся система не позволяет воздуху нормально циркулировать в корпусе. Данное руководство поможет оптимизировать работу системы охлаждения и тем самым повысить производительность, стабильность работы и долговечность комплектующих.

Компоновка корпуса

Большинство современных корпусов относится к ATX-компоновке: оптические приводы спереди сверху, жёсткие диски сразу под ними, материнская плата крепится к правой крышке, блок питания сзади сверху, разъёмы плат расширения выводятся на заднюю часть. У этой схемы есть вариации: жёсткие диски могут крепиться в нижней передней части сбоку с помощью адаптеров быстрого подключения, что упрощает их снятие и установку и обеспечивает дополнительное охлаждение со стороны отсеков дисковых приводов. Иногда блок питания размещается снизу, чтобы через него не проходил выводимый тёплый воздух. В целом подобные отличия не оказывают негативного влияния на циркуляцию воздуха, но должны учитываться при прокладке кабелей (об этом чуть далее).

Размещение кулеров

Вентиляторы обычно устанавливаются в четырёх возможных позициях: спереди, сзади, сбоку и сверху. Передние работают на вдув, охлаждая нагретые комплектующие, а задние выводят тёплый воздух из корпуса. В прошлом такой простой системы уже хватало, но с современными греющимися видеокартами (которых может быть и несколько), увесистыми комплектами оперативной памяти и разогнанными процессорами следует серьёзнее задуматься о грамотной циркуляции воздуха.

Общие правила

Не поддавайтесь соблазну выбрать корпус с наибольшим количеством вентиляторов в надежде на наилучшее охлаждение: как мы скоро узнаем, эффективность и плавность движения воздуха заметно важнее показателя CFM (объём воздушного потока в кубических футах в минуту).

Первым шагом в сборке любого компьютера является выбор корпуса, в котором есть нужные вам вентиляторы и нет ненужных. Неплохой стартовой точкой будет корпус с тремя вертикально расположенными кулерами спереди, поскольку они будут равномерно втягивать воздух по всей поверхности. Однако такое количество кулеров на вдуве приведёт к повышенному давлению воздуха в корпусе (подробнее о давлении читайте в конце статьи). Для выведения накапливающегося тёплого воздуха понадобятся вентиляторы на задней и верхней стенках.

Не покупайте корпус с очевидными помехами для циркуляции воздуха. К примеру, отсеки с быстрым подключением жёстких дисков – это замечательно, но если они требуют вертикальной установки накопителей, это будет серьёзно сдерживать воздушный поток.

Подумайте насчёт модульного блока питания. Возможность отключения лишних проводов сделает системный блок просторнее, а в случае апгрейда можно будет без труда добавить нужные кабели.

Не устанавливайте необязательные комплектующие: вытащите старые PCI-карты, которые уже никогда не пригодятся, дополнительное охлаждение для памяти пусть остаётся в коробке, а несколько старых жёстких дисков можно заменить на один такого же объёма. И бога ради, избавьтесь уже от флоппи-дисковода и привода для дисков.

Массивные воздуховоды на корпусе могут казаться неплохой идеей в теории, но на деле будут скорее мешать движению воздуха, так что отсоедините их, если это возможно.

Вентиляторы на боковых стенках бывают полезны, но чаще создают проблемы. Если они работают со слишком большим CFM, то сделают неэффективными кулеры на видеокарте и процессоре. Они могут вызывать турбулентность в корпусе, затрудняя циркуляцию воздуха, а также приводить к ускоренному накоплению пыли. Использовать боковые кулеры можно только для слабого отведения воздуха, скапливающегося в «мёртвой зоне» под слотами PCIe и PCI. Идеальным выбором для этого будет крупный кулер с небольшой скоростью вращения.

Регулярно проводите чистку корпуса! Скопление пыли представляет серьёзную угрозу для электроники, ведь пыль – это диэлектрик, к тому же, она забивает пути вывода воздуха. Просто откройте корпус в хорошо проветриваемом месте и продуйте его компрессором (еще в продаже можно найти баллончики с сжатым воздухом для продувки) или слегка пройдитесь мягкой кистью. Пылесос не рекомендую, может отломать и засосать что-нибудь нужное. Подобные меры останутся обязательными, по крайней мере до тех пор, пока мы все не перейдём на кулеры с самоочисткой.

Крупные, медленные кулеры обычно гораздо тише и эффективнее, так что по возможности берите их.

Окружение

Не запихивайте системный блок в какое бы то ни было подобие закрытой коробки. Не доверяйте производителям компьютерной мебели, они ничего не понимают в том, что и для чего делают. Внутренние отсеки в столах выглядят очень удобными, но сравните это с неудобством замены перегревшихся комплектующих. Нет смысла в продумывании системы охлаждения, если в итоге вы поставите компьютер туда, где воздуху некуда будет выходить. Как правило, конструкция стола позволяет убрать заднюю стенку отсека для компьютера – это обычно решает проблему.

Старайтесь не ставить системный блок на ковёр, иначе в корпусе будет быстрее скапливаться пыль и ворс.

Климат в вашей местности тоже стоит учитывать. Если вы живёте в жаркой области, понадобится серьёзнее отнестись к охлаждению, возможно, даже подумать насчёт водяного охлаждения. Если у вас обычно холодно, то воздух в помещении представляет особенную ценность, а значит использовать его следует с умом.

Если вы курите, настоятельно рекомендуется делать это не рядом с компьютером. Пыль и без того вредна для комплектующих, а сигаретный дым порождает худший из возможных видов пыли из-за своей влажности и химического состава. Отмывать такую липкую пыль очень сложно, и в результате электроника выходит из строя быстрее обычного.

Прокладка кабелей

Правильная прокладка кабелей требует обстоятельного планирования, а необходимое терпение найдётся не у каждого, кто радуется покупке нового железа. Хочется поскорее закрутить все болтики и подключить все провода, но торопиться не надо: время, потраченное на грамотное размещение кабелей, не затрудняющее циркуляцию воздуха, окупится с лихвой.

Начните с установки материнской платы, блока питания, накопителей и приводов. Затем, подводите кабели к устройствам, примерно обозначая их группировку. Так у вас появится представление об итоговом количестве отдельных пучков и вы поймёте, хватает ли им запаса для размещения под материнской платой. Возможно, для этого вам понадобятся дополнительные переходники.

Затем надо выбрать инструменты для стяжки кабелей, исходя из личных предпочтений. На рынке представлено много продукции для стягивания кабелей в пучки и их закрепления на корпусе.

  • Кабелепровод – это пластиковая трубка, разделённая с одной стороны. Пучок проводов помещается внутрь и трубка закрывается. При умелом использовании выглядит аккуратно, но могут возникнуть трудности, если пучок должен изгибаться.
  • Спиральная обмотка – отличный вариант. Это закрученная в виде штопора пластиковая лента, которую можно размотать и обхватить ей пучок кабелей. Очень гибкая, поэтому в некоторых случаях удобнее кабелепровода.
  • Кабельная оплётка сегодня часто встречается на проводах, идущих от блока питания, в первую очередь в материнскую плату. Можно приобрести отдельно для стяжки кабелей – выглядит восхитительно, но проделать всю работу будет непросто.
  • Кабельные хомуты обязаны иметься в достатке у каждого сборщика компьютеров. В сочетании с клейкими крепёжными площадками они делают прокладку кабелей простой и непринуждённой.
  • Хомуты-липучки (как застежки у курток) можно использовать повторно – если вы регулярно вносите изменения в систему проводов – но выглядят они уже не столь аккуратно.
  • Если вы умеете обращаться с паяльником и хотите самостоятельно укоротить/удлинить провода, удобным и надёжным средством изоляции и дополнительной фиксации будет термоусадочная плёнка. Под воздействием высокой температуры такая плёнка сжимается, крепко стягивая провода в месте контакта.

Кабели передачи данных можно без труда подвернуть под накопитель или поверх него или же поместить их в свободном соседнем отсеке. Если кабели располагаются на пути движения воздуха, закрепите их на стенке корпуса или отсека. В наши дни IDE-кабели – редкость, но если что, замените их плоские версии на круглые.

Теперь, когда все кабели на своих местах, осталось подключить устройства, не волнуясь, что провода будут мешать потокам воздуха.

Положительное или отрицательное давление?

Как ни странно, не стоит уравнивать вытяжные и втягивающие вентиляторы по CFM. Лучше выбирать между положительным и отрицательным давлением.

В конфигурации с положительным давлением на вдув ставятся кулеры с более высоким CFM.

Преимущества:

  • Воздух выходит через все мельчайшие отверстия в корпусе, заставляя каждую щёлочку вносить свой вклад в охлаждение;
  • В корпус попадает меньше пыли;
  • Полезнее для видеокарт с пассивным охлаждением.

Недостатки:

  • Видеокарты с системой прямого отвода тепла будут частично противодействовать работе кулеров;
  • Не лучший выбор для энтузиастов.

В конфигурации с отрицательным давлением CFM выше на выводе воздуха, что создаёт частичный вакуум в корпусе.

Преимущества:

  • Хорошо подходит для энтузиастов;
  • Усиливает естественную конвекцию;
  • Прямой, линейный воздушный поток;
  • Подходит для видеокарт с системой прямого отвода тепла;
  • Усиливает действие вертикального процессорного кулера.

Недостатки:

  • Пыль накапливается быстрее, поскольку воздух втягивается через все отверстия;
  • Видеокарты с пассивным охлаждением не получают никакой поддержки.

Выбирайте схему давления с учётом начинки своего компьютера. Можно купить корпус с настраиваемой скоростью вентиляторов. Можно прибегнуть у сторонним решениям для управления скоростью кулеров, но они обходятся недёшево и выглядят зачастую безвкусно. Посоветуйтесь со своим кошельком и чувством прекрасного.

Теперь, когда воздух беспрепятственно и эффективно охлаждает компьютер, вы можете быть уверены, что ваши драгоценные комплектующие прослужат долго и будут работать на полную мощь.

Инструкция

Основное пекло в системнике создают блок питания, видеокарта, процессор и чипсеты матери. Именно эти детали обдувать необходимо в первую очередь. Горячие винчестеры можно остужать специальными системами, оперативную память – радиаторами. Правильная организация вентиляторов должна направлять воздух, чтобы он проходил сквозь корпус мимо главных источников тепла.

Расположение дополнительных вентиляторов и их габариты зависят от перфорации корпуса. Часто встречаются системные блоки, у которых крышки сплошные сверху и по бокам. В таких конструкциях правильным будет ставить нагнетающие кулеры спереди (или снизу, если передняя панель сплошная), а блок питания настроить на выдув. Сзади можно воткнуть дополнительный выдувающий вентилятор. Если на процессоре стоит кулер-башня, он должен выталкивать тепло в выходные вертушки.

Если в системном блоке есть боковая перфорация напротив процессора и видеокарты, то боковые вентиляторы разворачивайте вовнутрь. Задние, процессорный и передние кулеры ставятся как в предыдущем варианте. Обратите внимание на соотношение производительности вентиляторов на выдув и вдув – по статистике, ниже температура внутри ПК, где на выдув работают равная или большая суммарная мощность кулеров. Если вытягивают воздух мало кулеров, боковой должен им помогать. Положительное давление может хорошо охлаждать лишь при наличии мощных и больших, расположенных очень близко к горячим железкам вертушек и хорошей перфорации частей корпуса.

Верхние кулеры ставьте на выдув, если блок питания сверху. Если же он снизу, они должны нагнетать воздух, а снизу и сзади придется установить побольше развернутых наружу вентиляторов.

Видео по теме

Жесткие диски обладают неприятной особенностью в процессе эксплуатации перегреваться, что существенно сокращает их жизненный срок. Обычно помогает покупка хорошего корпуса для ПК и дополнительные вентиляторы. Однако есть еще один метод, продлевающий срок службы HDD за счет уменьшения его температуры в работе. Этот метод – установка специального охлаждения на сам винчестер. Чтобы операция установки прошла успешно, нужно соблюдать некоторые правила.

Инструкция

При выборе охлаждения на винчестер необходимо посмотреть, влезет ли HDD в крепежную стойку после установки на него дополнительного устройства. Лучше брать охлаждение с парой вентиляторов – они обеспечивают как поступление, так и выход воздуха из пространства возле винчестера, поэтому справляются с задачей гораздо лучше. Еще нужно посмотреть, есть ли в системе незанятые molex-разъемы, к которым охлаждение будет подключаться. Если таковых нет, следует запастись переходником.

Купив охлаждение, можно начать установку. Сначала выключите компьютер и выдерните питание. Чтобы получить доступ к винчестеру, придется открутить болты с боковых крышек и снять их. Затем извлеките HDD. Для этого открутите болты, держащие винчестер на стойке, отцепите кабель питания и SATA, после чего вытащите диск из салазок. Извлеченное устройство нужно положить лицевой стороной (той, что полностью закрыта металлическим корпусом) вниз. Со стороны контроллера прижмите к винчестеру охлаждающее приспособление, чтобы его отверстия под болты совпали с отверстиями диска, а затем прикрутите вентилятор к HDD.

Винчестер с вентилятором задвиньте обратно в салазки, подцепите извлеченные SATA и molex обратно к диску, а вентилятор присоедините к разъему питания. После этого можно включать компьютер и работать, будучи спокойным за свой жесткий диск.

Чтобы избежать порчи определенных устройств в компьютере, необходимо иногда следить за их температурой. Обычно для этого используются специальные программы, считывающие показания датчиков.

Вам понадобится

  • - Speccy.

Инструкция

Чаще всего температурные датчики устанавливаются на следующие устройства: видеокарта, центральный процессор и жесткие диски. Первые два оборудования, как правило, обладают собственной системой охлаждения. К жесткому диску крайне редко крепят кулеры. Установите программу Speccy. Перезагрузите компьютер и запустите ее.

Откройте меню «Жесткие диски» и найдите показания температурного датчика. Если температура этого устройства не поднимается выше 50 градусов Цельсия, то причин для беспокойства нет. Если же при определенных условиях температура превышает данный показатель, то обеспечьте жесткому диску дополнительное охлаждение.

Сначала попробуйте просто снять стенки системного блока. Достаточно часто этого вполне достаточно. Если же ваш винчестер все еще сильно , то установите в системный блок дополнительный кулер. Лучше закрепить новый вентилятор таким образом, чтобы он обдувал жесткий диск.

Выберите место, к которому вы будете крепить дополнительный вентилятор. Найдите на материнской плате разъемы для подключения питания кулера. Обязательно посмотрите число жил в этом разъеме. Приобретите вентилятор, который вы сможете установить внутрь системного блока. Естественно, обратите внимание на варианты подключения питания для этого устройства.

Прикрепите новый кулер к корпусу системного блока. Обычно для этого используют специальные шурупы, но в некоторых ситуациях можно воспользоваться клеем. Подключите питание к новому устройству. Естественно, все операции необходимо проводить с выключенным компьютером.

Включите ПК и убедитесь в том, что лопасти вентилятора крутятся стабильно. Запустите утилиту Speccy и посмотрите жесткого диска. Если она все еще выше нормы, значит данное оборудование скоро выйдет из строя.

При работе с ПК раздражают вечные подвисания и тормоза системы. При этом темп работы ОС может замедляться неприлично сильно. Причины такого поведения железного помощника могут быть разными, но от них необходимо избавиться.

Инструкция

Сначала позаботьтесь о здоровье железа, ведь необычное поведение ПК может быть вызвано перегревами. Снимите крышки с боковин системника и почистите все изнутри кисточкой. Особое внимание стоит обращать на вентиляторы и радиаторы, которые систематически забиваются пылью.

Охлаждение с процессора нужно снять, намазать посадочную площадку самой микросхемы термопастой, а затем поставить вентилятор и собрать . Установите программу, измеряющую температуру в корпусе, например, Aida64 или Everest. Запустите ПК и если тест показывает, что генеральная уборка не помогла, купите дополнительное охлаждение или более просторный корпус.

Часто тормоза рождаются из-за того, что мощности у ПК недостаточно для новых программ. Нужно сравнить показания, указанные в системных свойствах с требованиями ПО. Вероятно, стоит поставить больше оперативки или заменить процессор на более производительный. Зависания могут идти и из-за видеокарты, если вы работаете с графикой или играете в новинки видеоигр. В случае, если менять придется множество деталей, может оказаться выгодным купить новый ПК с современной архитектурой.

Причиной замедления работы бывает и забитый до предела системный диск. Оцените размер свободного места, удалите или переместите часть файлов, если места осталось мало, и запустите дефрагментацию.

Позаботьтесь также о самой операционной системе. Windows рекомендуется заново ставить не реже, чем раз в три года. Если система новая, но работает со сбоями, следует удалить весь неиспользуемый софт, почистить автозагрузку и реестр специальными утилитами или вручную. Не стоит игнорировать – вредоносные программы могут также мешать ПК нормально функционировать.

Подключение телевизора к персональному компьютеру осуществляется при помощи специально предусмотренных интерфейсов. В зависимости от наличия разъемов на устройствах можно использовать также переходники.

Кулеры на процессоры, кулеры на винчестеры, кулеры на видеокарты и системные чипсеты. Прибавьте к этому кардкулеры, системные бловеры и кулеры для ноутбуков. В таком количестве устройств для охлаждения легко можно запутаться, и помаленьку начинаешь верить, что кулеры - основная составляющая сегодняшнего компьютера. К счастью, или к сожалению, но пока что это не так, и на сегодняшний день ещё нет необходимости обвешивать Ваш любимый ПК шумными вентиляторами до тех пор, пока он не взлетит. В этой статье мы постараемся разобраться, что же в компьютере является источниками тепла, какие существуют способы охлаждения этих компонентов, и надо ли вообще бороться с повышенной температурой компьютера.

Теоретические основы охлаждения

Итак, немного теории. Из курса физики известно, что любой проводник, по которому протекает электрический ток, выделяет тепло. Это означает, что абсолютно все составляющие компьютера, начиная от центрального процессора и заканчивая проводами питания, подогревают окружающий воздух. Количество теплоты, выделяемое тем или иным компонентом компьютера напрямую зависит от его энергопотребления, которое, в свою очередь, определяется множеством других факторов: если мы говорим о жёстком диске, то мощностью электромоторчика и электроникой контроллера, а если о процессоре или другом чипе, то числом интегрированных в него элементов и технологическим процессом его производства. Такова физика нашего мира, и от этого никуда не деться. Но ведь никому до сих пор не пришла в голову идея клеить радиаторы на электрические провода и обдувать, скажем, внутренние модемы! Это потому, что различные компоненты компьютера влияют на температуру в корпусе по-разному, и если такое "холодное" устройство, как модем не требует никакого дополнительного охлаждения, то той же самой видеокарте мы уделяем слишком много внимания, поэтому на современные платы и ставят огромные кулеры, иногда даже с двумя вентиляторами.
Но прежде всего, давайте повторим, что же такое кулер. Кулер (от англ. Cool - холод) представляет собой устройство для охлаждения чего-либо. Основной задачей любого кулера является снижение и поддержание температуры охлаждаемого тела на заданном уровне. И в зависимости от типа охлаждаемого устройства, будь то транзистор, чип, процессор или даже винчестер, применяются различные типы кулеров. В нашем понятии кулер укрепился, как "большая железяка с пропеллером", и чем она больше, тем она лучше. Однако, кулеры могут представлять из себя и более сложные устройства, стоимостью сотни долларов. Обычно, кулеры, применяющиеся в компьютерах, состоят из вентилятора, радиатора и крепления.

Радиаторы

Радиатор (от англ. Radiate - излучать) служит для отвода тепла от охлаждаемого объекта. Он находится в непосредственном контакте с охлаждаемым объектом, и его основная функция - принять на себя часть выделяемого телом тепла и рассеять её в окружающий воздух. Как известно, опять же из курса физики, объект отдаёт тепло только со своей поверхности, а это означает, что для достижения наилучшего отвода тепла, охлаждаемый объект должен иметь как можно большую площадь поверхности. В сегодняшних радиаторах площадь поверхности увеличивается за счёт установки большего количества рёбер. Тепло от охлаждаемого объекта переходит к основанию радиатора, а потом равномерно распределяется по его рёбрам, после чего оно уходит в окружающий воздух, и этот процесс называется излучением. Воздух вокруг радиатора постепенно нагревается, и процесс теплообмена становится менее эффективным, поэтому эффективность теплообмена можно будет поднять, если постоянно подавать холодный воздух к рёбрам радиатора. Для этого сегодня используются вентиляторы. Но о них мы поговорим чуть позже.
Радиатор должен иметь хорошую теплопроводность и теплоёмкость. Теплопроводность определяет скорость распространения тепла по телу. Для радиатора теплопроводность должна быть как можно более высокой, потому что зачастую площадь охлаждаемого объекта в разы меньше, чем площадь основания радиатора, и при низкой теплопроводности тепло от охлаждаемого объекта не сможет равномерно распределиться по всему объёму, по всем рёбрам радиатора. Если радиатор выполнен из материала с высокой теплопроводностью, то в каждой его точке температура будет одинакова, и со всей площади его поверхности тепло будет выделяться с одинаковой эффективностью, то есть не возникнет ситуации, когда одна часть радиатора будет раскалённой, а другая - останется холодной и не будет отдавать тепло в окружающий воздух. Теплоёмкость определяет количество теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 градус. Для радиаторов теплоёмкость должна быть как можно более высокой, потому что при остывании на один градус тело отдаёт то же самое количество теплоты. Теплоёмкость и теплопроводность радиатора зависят от материала, используемого для его изготовления.

Таблица термических свойств материалов

Как видно, для изготовления радиаторов выгоднее всего использовать два материала: алюминий и медь. Первый из-за низкой стоимости и высокой теплоёмкости, а второй - из-за большой теплопроводности. Серебро слишком дорого стоит, чтобы его можно было использовать для создания радиаторов, но даже если не брать в расчёт его высокую цену, благодаря хорошей теплопроводности, этот металл лучше всего применять для изготовления только лишь оснований радиаторов.
Конструкция радиатора также имеет большое значение. К примеру, рёбра могут быть установлены под разным углом к воздушному потоку. Они могут быть прямыми по всей длине радиатора, или рассечены поперёк, они бывают толстые и с заусенцами, если радиатор произведён по технологии выдавливания, или тонкими и гладкими, если он был отлит из расплавленного металла. Рёбра могут быть плоскими, согнутыми из пластин и впрессованными в основание. Радиатор вообще может быть игольчатым, то есть вместо рёбер иметь цилиндрические или квадратные иглы. Сегодня известно, что по конструкции рёбер лучше всего показывают себя игольчатые радиаторы.

Тепловой интерфейс

Радиаторы прилегают своим основанием к охлаждаемому объекту, и тепло от него к радиатору переходит лишь через поверхность их соприкосновения, поэтому надо стремиться, чтобы она была как можно больше. Но даже имеющуюся обычно площадь соприкосновения (к примеру, поверхность ядра процессора) надо использовать на все сто процентов. Дело в том, что при соприкосновении двух поверхностей, между ними остаются мельчайшие полости, заполненные воздухом. Этого невозможно избежать, и какой бы ровной и гладкой не казалась Вам поверхность радиатора, она всё равно имеет трещинки и впадины, где собирается воздух. Воздух очень плохо проводит тепло, а потому эффективность охлаждения будет существенно ниже возможностей радиатора.
Чтобы избавиться от воздушных подушек и увеличить эффективность охлаждения, применяют различные тепловые интерфейсы. Они имеют высокую теплопроводность и за счёт текучести заполняют собой все неровности основания радиатора. В результате, те места, где раньше был мешающий нам воздух, теперь заполнены хорошо проводящим тепло материалом, и радиатор уже работает с максимальной отдачей. Тепловые интерфейсы бывают различных типов: термопасты или проводящие прокладки. Прокладки представляют собой резиноподобные полимерные пластинки, нанесённые на основание радиаторов. При нагреве они изменяют своё агрегатное состояние и размягчаясь заливают собой все неровности. Сейчас термопасты поставляются в комплекте с подавляющим большинством фирменных кулеров. Чаще термопаста просто вкладывается в коробочку с кулером в шприце или маленьком целофановом пакетике. Но бывает, что она уже нанесена на основание радиатора. В этом случае её хватит лишь на одну-две установки, так как собрать её с охлаждаемого чипа или процессора будет сложнее, чем купить ещё один пакетик с пастой. При выборе термоинтерфейса я бы рекомендовал использовать термопасты, а не термопрокладки. Большая текучесть термопаст позволяет им лучше заполнять собой все неровности радиатора, а за счёт использования в своём составе таких материалов, как серебро или алюминий, они обладают более высокой теплопроводностью. Сегодня в продаже можно встретить термопасты с 90%-ным содержанием серебра. И хотя серебро является отличным электрическим проводником, изготовители гарантируют, что термопаста не замкнёт контакты элементов платы или устройства, на которое она нанесена, но всё же рекомендуют не проверять изолирующие свойства их продукта и по возможности избегать попадания термопаст на электрические элементы компьютера.

Вентиляторы

Вентиляторы обеспечивают непрерывный поток воздуха, обдувающий радиатор, превращая менее эффективный процесс излучения в более эффективный - конвекцию. Конвекция - это процесс обмена тепла, отличающийся от излучения тем, что охлаждающий воздух постоянно находится в движении. В активных кулерах он принудительно поступает в радиатор и нагреваясь, рассеивается в окружающей среде. С использованием вентилятора кулер становится намного производительнее, и температура охлаждаемого объекта может падать в два раза, а то и больше, в зависимости от производительности вентилятора. Производительность вентилятора - это основная его характеристика, измеряющаяся в количестве кубических футов воздуха, перегоняемых им в минуту, сокращённо - CFM (Cubic Feet per Minute). Она главным образом зависит от площади вентилятора, его высоты, профиля лопастей и частоты их вращения. Чем эти величины больше, тем большее количество воздуха сможет перегонять вентилятор, и соответственно тем более эффективным будет охлаждение. Сегодня в вентиляторах для компьютерных кулеров нет возможности бесконечно увеличивать ни размеры, ни скорость вращения крыльчатки. Понятно, что вентилятор размером больше 80 мм уже трудно разместить в корпусе, а частота вращения пропеллера напрямую влияет на уровень его шума. Кроме того, больший по размерам вентилятор должен будет иметь более мощный и более дорогой электрический моторчик, что скажется на его стоимости.
Все вентиляторы, используемые сегодня в компьютерах, питаются от постоянного тока, чаще всего напряжением 12В. Для подключения к питанию они используют трёхконтактные Molex-коннекторы (для Smart-вентиляторов) или четырёхконтактные PC-Plug коннекторы.

Разъём Molex имеет три провода: чёрный (земля), красный (плюс) и жёлтый (сигнальный). PC-Plug имеет четыре провода: два чёрных (земля), жёлтый (+12 Вольт) и красный (+5 Вольт). Разъёмы Molex устанавливаются на материнских платах, чтобы система сама могла контролировать скорость вращения вентилятора, подавая на красный провод различное напряжение (обычно от 8 до 12 В), и изменять её в случае необходимости. По жёлтому сигнальному проводу материнская плата получает от вентилятора информацию о частоте вращения его лопастей. Сегодня это стало очень актуальным, поскольку остановившийся на кулере процессора вентилятор может привести к повреждению процессора. Поэтому современные материнские платы следят, чтобы вентилятор всегда вращался, и если он останавливается, то выключают компьютер. Подключение через Molex имеет один недостаток: к материнским платам опасно цеплять вентиляторы с потребляемой мощностью более 6 Вт. Разъём же PC-Plug выдержит десятки Ватт, но при подключении к нему Вы не сможете узнать, работает ли Ваш вентилятор или нет. Сегодня всё чаще вентиляторы имеют в комплекте переходники PC-Plug - Molex, чтобы подключать их к блоку питания, или даже сразу оба разъёма: PC-Plug и Molex, чтобы получать питание от БП компьютера, а по сигнальному проводу Molex-а сообщать материнской плате о скорости работы моторчика.
Также вентиляторы могут иметь различный тип подвески ротора. Для этого используются подшипники скольжения (Sleeve bearing) или качения (Ball bearing). В вентиляторе может быть один или два подшипника, причём иногда в них совмещаются разные типы - Sleeve и Ball. Наиболее надёжными считаются вентиляторы с подшипниками качения (обычные шариковые подшипники). Компании-производители обещают им непрерывную работу в течение 50 000 часов, что составляет более пяти лет, а те же, которые используют подшипники скольжения, обещают жить не более 30 000 часов, около трёх с половиной лет. Сегодня уже существуют вентиляторы с керамическими подшипниками, которым обещают почти что бессмертие - 300 000 часов беспрерывной работы, а ведь это тридцать шесть лет! Однако, с одной стороны, заявленные времена жизни вентиляторов очень редко соответствуют действительности, и зачастую их надо делить на два, а то и на три, а с другой стороны, поверьте мне - тридцать шесть лет компьютер не проживёт. Стоит рассчитывать, что обычный вентилятор может жить год-два. Потом он начинает гудеть, и его надо смазывать, но даже смазка решит проблему лишь на время, и в скором времени вентилятор придётся заменить на новый.
Некоторые современные вентиляторы имеют автоматическую регулировку скорости, в зависимости от температуры окружающего воздуха или температуры радиатора. Мы расскажем Вам об одном таком в конце статьи. Практически у всех них датчик температуры стоит непосредственно на самом вентиляторе и может не отражать реальную температуру охлаждаемого объекта. То есть, при повышении температуры процессора, кулер, на котором установлен такой автоматический вентилятор, может только через пару минут повысить свои обороты. Другое дело, это вентиляторы с установленными на них сигнализациями остановки. При снижении частоты вращения ротора ниже определённого предела, специальный электронный блок на проводе вентилятора подаёт громкий писк, и Вы точно знаете, что пришло время выключить компьютер и заменить кулер.

Пассивные кулеры

Пассивные кулеры - это обычные радиаторы, установленные на охлаждаемый объект. Они отводят тепло только излучением, в случае, если не обдуваются какими-нибудь вентиляторами компьютера, и применяются для охлаждения маломощных и малых по размерам элементов, например, чипов памяти или транзисторов. Радиаторы устанавливаются сегодня на видеокарты, некоторые материнские платы, где ещё нет полноценных кулеров, модули памяти, да и вообще практически на всё, что приходится охлаждать, и даже на центральные процессоры, если они имеют малую мощность.

Частный случай пассивного кулера - распределитель тепла. Выглядит он как "лысый" радиатор, полученный из пластины, без рёбер и с небольшой площадью поверхности. Распределители тепла применяют сегодня для охлаждения системной памяти. В частности, компания Thermaltake выпускает специальные наборы для DDR SDRAM DIMM модулей. Недостатком распределителей тепла, как и пассивных кулеров, является их малая эффективность.

Активные кулеры

Активными называются кулеры, работающие за счёт конвекции. Проще говоря, это радиатор с установленным на него вентилятором. Чаще всего они используются для охлаждения процессоров. И сегодня, говоря слово "кулер", мы и подразумеваем, в первую очередь, именно их. Активные кулеры используются практически везде, где требуется охлаждение, заменяя собой обычные радиаторы. Преимуществами такого охлаждения можно назвать значительно большую эффективность в сравнении с обычными радиаторами. Активные кулеры в состоянии охлаждать раскалённые процессоры, имея при этом небольшие размеры. Но вентиляторы всегда являются источниками шума в компьютерах, а иногда и вибрации. Поэтому охлаждать ими надо лишь сильно греющиеся элементы, иначе работать за шумной машиной станет невыносимо. Ещё один недостаток активных кулеров в том, что они недолговечны. Лопасти вентилятора вращаются, и рано или поздно подшипники на роторе выйдут из строя, и он остановится. Естественно, в этом случае охлаждаемый элемент перегреется и, возможно, выйдет из строя. Но чаще всего вентиляторы перед остановкой начинают громко гудеть, так что Вы будете предупреждены заранее.

Теперь, когда мы разобрались в основах охлаждения компьютера, мы можем перейти к рассмотрению источников тепла в компьютере и способов их охлаждения.

Что в компьютере греется, и как оно охлаждается

Ну что же, имея представление о кулерах, давайте теперь составим картину, что же греется в компьютерах, и как это нужно (если нужно) охлаждать. Начнём мы с самого основного элемента любого ПК - центрального процессора. Сегодня охлаждению процессоров уделяется особое внимание, и поэтому каждый производитель кулеров для PC обязательно имеет в своём ассортименте и охладители для CPU.

Процессоры

Если не рассматривать серверные и переносные компьютеры (в том числе и ноутбуки), то сегодня в персональных компьютерах используются процессоры двух компаний-производителей: Intel и AMD. Они используют три основные платформы: Socket 370, Socket 478 и Socket 462 (Socket A). Цифры в обозначении платформы показывают число контактов каждого процессора. Естественно, между собой все эти стандарты не совместимы, и Pentium III под Socket 370 не установишь в материнскую плату с каким-нибудь другим гнездом. До недавнего времени был распространён ещё и стандарт Socket 423 под первые Pentium 4, но с приходом более современного Socket 478, он почти исчез и сейчас успешно забывается. Для каждого типа процессоров существуют свои стандарты кулеров.

В Socket 370 используют процессоры Intel Pentium III, Intel Celeron (кроме новых под Socket 478) и VIA C3. Процессоры же производства AMD (Duron, Athlon на ядре Thunderbird, Palomino и Thoroughbred) используют разъём Socket A. Кулеры для Socket 370 и Socket A почти совместимы друг с другом. Точнее, можно сказать, что они и полностью совместимы, но это не означает, что Вы сможете установить кулер под Athlon на Pentium III. Дело в том, что хотя гнезда Socket 370 и Socket A имеют одинаковые размеры, всё же стандарты, по которым AMD рекомендует строить материнские платы, отличаются от Intel-овских. Прежде всего, посмотрите на фотографию. Гнездо Socket A имеет по три зубчика спереди и сзади для крепления кулера. Изначально подразумевалось, что на процессоры Athlon будут ставиться более мощные охладители, которые потребуют более жёсткое крепление, и один зубчик может сломаться под пружиной кулера. Кроме того, AMD рекомендовала производителям материнских плат оставлять так называемую свободную зону слева и справа от гнезда. В этой зоне не должно быть никаких элементов, которые бы могли помешать установке прямоугольных кулеров длиной более 55 мм (ширина гнезда). Таким образом, на процессоры Athlon и Duron можно устанавливать кулеры размером 60x80мм и высотой насколько позволяет Ваш корпус. На Pentium III, конечно же, такие большие охладители вряд ли станут, но это опять же зависит от материнской платы.

Кроме того, многие материнские платы под Athlon/Duron имеют вокруг гнезда четыре отверстия. Это ещё один способ крепления кулера - не к гнезду, а к материнской плате. С одной стороны, он более удобный, поскольку кулер уже не отвалится, отломав зубчик, а с другой стороны - для его замены или апгрейда процессора придётся снимать материнскую плату. Хорошо это или плохо, но недавно AMD перестала требовать наличия четырёх отверстий в свободной зоне возле гнезда процессора, и все будущие кулеры будут крепиться только к нему, а не к материнской плате.
Процессоры Athlon выделяют до 73 Вт тепла в неразогнанном состоянии. Для мощных серверов такое тепловыделение процессора - обычное дело, а вот для настольных компьютеров это очень много, а к тому же площадь ядра процессора постоянно уменьшается, поэтому охладители для современных процессоров активно используют медь в своих радиаторах. И в продаже Вы сможете увидеть кулеры не только с алюминиевыми радиаторами, но и с медным основанием, или полностью медные. Некоторые производители, пытаясь увеличить эффективность кулеров, покрывают сверху медь ещё и никелем, серебром или другими материалами с высокой теплопроводностью. Вентиляторы на таких кулерах чаще всего имеют размер 60x60x25 мм, хотя сейчас большое распространение получают 70мм и 80мм модели. Они имеют меньшую скорость вращения и работают намного тише.

Процессор Тепловыделение, Вт
AMD Duron 1100 51
AMD Duron 1200 55
AMD Duron 1300 57
AMD Athlon Thunderbird 1400 73
AMD AthlonXP (Palomino) 2100+ 72
AMD AthlonXP (Thoroughbred) 2600+ 68.3

В случае с охладителями для Socket 370 всё намного проще: все они цепляются за два зубчика гнезда и имеют размеры, не превышающие размеров гнезда. Обычно от 50x50 до 60x60 мм. Тепловыделение процессоров Pentium III примерно в два раза меньше, чем у Athlon, поэтому охлаждать их проще, и на Pentium III чаще всего используются кулеры с полностью алюминиевыми радиаторами или с медным основанием. Они стоят дешевле полностью медных, в которых к тому же и нет необходимости.

Если продолжать разговор про Socket 370 и вспомнить про процессоры VIA C3, то можно и вовсе забыть про кулеры. Дело в том, что VIA C3 имеют репутацию "холодных" процессоров, потому что они выделяют слишком мало тепла и могут работать и с пассивными охладителями - обычными радиаторами, или совсем простенькими кулерами. Для них тепловыделение не проблема, и поэтому компьютеры на их базе работают очень тихо.
Сегодня выгоднее выпускать кулеры для процессоров Intel Pentium 4 и Celeron под Socket478. Дело в том, что рынок охладителей под Athlon уже достаточно насыщен, а к тому же цена на компьютеры с процессорами AMD невысоки, и не каждый пользователь готов дорого заплатить за хороший кулер. С Pentium 4 ситуация совсем другая, так как они стоят намного дороже конкурентов от AMD, и на рынок высокопроизводительных процессоров можно продавать кулеры стоимостью несколько десятков долларов.

В компьютерах с процессорами Pentium 4 и Celeron под Socket 478 кулер крепится к специальной стойке на материнской плате. Есть мнение, что процессоры Pentium 4 вообще не перегреваются. Оно в корне неверно, и первые Pentium 4 действительно грелись слабее своих товарищей Athlon, но сейчас энергопотребление Pentium 4 с частотой 2.8 ГГц находится в районе 64 Вт, а Pentium 4 3.0 ГГц обещает требовать до 80 Вт. Конечно, современные технологические процессы и конструкция Pentium 4 со встроенным распределителем тепла помогают ему лучше бороться с выделяемым теплом, но он также, как и Athlon требует большой кулер. Правда, коробочные варианты процессоров уже поставляются с кулерами, но при необходимости в магазинах можно найти широкий ассортимент охладителей для Pentium 4.

Кулеры под Socket 478 имеют, в основном, один вид крепления: двумя стальными скобами они цепляются за пластиковые упоры материнской платы и крепко прижимаются к поверхности процессора. Иногда от слишком сильных пружин кулера материнская плата слегка изгибается, но по большому счёту это не страшно. Для компьютеров, использующих Pentium 4 в низких или серверных корпусах, существуют кулеры, крепящиеся к материнской плате без использования стоек вокруг процессора.

Так же, как и в случае с некоторыми охладителями под Athlon, в них крепление проходит сквозь отверстия в материнской плате (для этого с неё придётся снять стандартные держатели для кулера) и фиксируется сверху на процессоре. В этом случае на плату подаётся куда меньшая физическая нагрузка. К сожалению, такие кулеры мало распространены.
Под Pentium 4 выпускаются кулеры с различными радиаторами. Здесь есть как чисто алюминиевые, так и с медными основаниями, или полностью медные. Вентиляторы для таких кулеров обычно ставятся тихие, потому что их низкая производительность компенсируется большими размерами радиаторов. Хотя, громкие модели тоже нередкое явление среди охладителей для Socket 478.


Самым энергоемким в компьютере является процессор и отвод выделяемой тепловой энергии является актуальной задачей, особенно когда температура окружающей среды высокая. От температуры нагрева процессора зависит не только стабильность и долговечность его работы, но быстродействие, о чем производители процессоров обычно умалчивают.

В подавляющем числе компьютеров система охлаждения процессора выполнена с игнорированием элементарных законов физики. Кулер системы работает в режиме короткого замыкания, так как нет экрана, исключающего возможность всасывания кулером горячего воздуха, выходящего из радиатора процессора. В результате эффективность работы системы охлаждения процессора не превышает 50%. В дополнение, охлаждение производится воздухом, подогретым другими компонентами и узлами, размещенными в системном блоке.

Иногда в системном блоке на задней стенке устанавливают дополнительный кулер, но это не лучшее решение. Дополнительный кулер работает на выталкивание воздуха из системного блока в окружающую среду, как и кулер блока питания. В результате эффективность обоих кулеров намного ниже, если бы они работали по отдельности - один всасывал воздух в системный блок, а другой выталкивал. В результате потребляется дополнительная электроэнергия и что самое не приятное, появляется дополнительный акустический шум.


Предлагаемая конструкция системы охлаждения процессора освобождена от выше перечисленных недостатков, проста в реализации и обеспечивает высокую эффективность охлаждения процессора и как следствие, других компонентов материнской платы. Идея не новая и простая, воздух для охлаждения радиатора процессора берется из-за пределов системного блока, то есть из помещения.

Решил улучшить систему охлаждения процессора своего компьютера, когда на глаза попался конструктив от системы охлаждения брендового, морально устаревшего системного блока.

Осталось закрепить эту деталь в системном блоке и соединить с кулером процессора. Так как длина патрубка была недостаточной, пришлось ее нарастить с помощью полиэтиленовой ленты, свитой в трубку. Диаметр трубки выбран с учетом плотной посадки на корпусе кулера процессора. Чтобы лента не развилась, она зафиксирована металлической скобкой с помощью степлера.

Система закреплена с помощью самостоятельно изготовленных двух уголков саморезами к задней стенке системного блока. Точное позиционирование относительно центра кулера достигнуто за счет длин сторон уголков.

Такая простая конструкция позволила практически исключить поступление горячего воздуха из системного блока в систему охлаждения процессора.

В крышке моего системного блока уже было готовое отверстие, что упростило работу. Но сделать самостоятельно отверстие не сложно, нужно спроецировать точку центра кулера на боковую крышку, циркулем начертить окружность, чуть меньше диаметра трубки. Просверлить сверлом диаметром 2,5-3 мм с шагом 3,5 мм по всей длине линии окружности отверстия. Точки сверления обязательно нужно предварительно наметить керном. Затем рассверлить просверленные отверстия сверлом диаметром 4 мм. Края полученного отверстия обработать круглым напильником. Останется только установить декоративную решетку, хотя она не обязательна.

В качестве воздуховода с успехом можно использовать пластиковую бутылку от напитков. Если подходящего диаметра нет, то можно взять большего, разрезать вдоль и сшить нитками. Высокая герметичность тут не обязательна. Закрепить трубку можно и маленькими винтами непосредственно к корпусу кулера. Главное, обеспечить подачу воздуха в систему охлаждения процессора извне.

Измерения температуры показали высокую эффективность сделанной системы охлаждения процессора Pentium 2,8 ГГц. При 10% нагрузке процессора, при температуре окружающей среды 20°С, температура процессора не превышала 30°С, на ощупь радиатор был холодным. При этом кулер эффективно охлаждал радиатор в режиме самых низких оборотов.