Параллакс - это что такое? Параллакс в астрономии Параллакс и его использование для измерения расстояния.

Прямое определение расстояний до сравнительно близких небесных тел основано на явлении параллактического смещения. Суть его заключается в следующем. Близкий предмет при наблюдении его из разных точек проецируется на различные расположенные далеко предметы. Так, держа вертикально карандаш на фоне далекого многоквартирного дома, мы видим его левым и правым глазом на фоне разных окон. Для тел Солнечной системы такое смещение на фоне звезд заметно уже при наблюдении из точек, разнесенных на расстояние, сравнимое с радиусом Земли, а для близких звезд - при наблюдениях из точек, разнесенных на расстояние, сравнимое с радиусом орбиты Земли.

11.1. Горизонтальный экваториальный параллакс

Координаты небесных тел, определенные из разных точек земной поверхности, вообще говоря различны, и называются топоцентрическими координатами. Правда, это заметно лишь для тел Солнечной системы. Для устранения этой неопределенности все координаты тел Солнечной системы приводят к центру Земли и называют геоцентрическими . Угол между направлениями на какое-либо светило из данной точки земной поверхности и из центра Земли называется суточным параллаксом p " светила (рис. 22). Очевидно, что суточный параллакс равен нулю для светила, находящегося в зените, и максимален для светила на горизонте. Такой максимальный параллакс называется горизонтальным параллаксом светила p . Горизонтальный параллакс связан с суточным простым соотношением:

Здесь синусы углов заменены самими углами ввиду их малости.

По сути дела, p - это угол, под которым виден радиус Земли с данного светила. Однако Земля не является идеальным шаром и сплюснута к полюсам. Поэтому на каждой широте радиус Земли свой и горизонтальные параллаксы одного и того же светила разные. Для устранения этих различий принято вычислять горизонтальный параллакс для экваториального радиуса Земли (R 0 = 6378 км) и называть его горизонтальным экваториальным параллаксом p 0 .

Суточный параллакс необходимо учитывать при измерении высот и зенитных расстояний тел Солнечной системы и вносить поправку, приводя наблюдение к центру Земли:

Измерив горизонтальный экваториальный параллакс светила p 0 , можно определить расстояние d до него, т.к.


Заменив синус малого угла p 0 значением самого угла, выраженным в радианах, и имея в виду, что 1 радиан равен 206265", получим искомую формулу:
Замена синуса угла самим углом допустима, так как наибольший из известных горизонтальный экваториальный параллакс Луны равен 57" (у Солнца p 0 =8".79).

В настоящее время расстояния до тел Солнечной системы с гораздо большей точностью измеряются методом радиолокации.

11.2. Годичный параллакс

Угол, под которым с какой-либо звезды виден радиус земной орбиты a , при условии, что он перпендикулярен направлению на нее, называется годичным параллаксом звезды (рис. 23).

По аналогии с горизонтальным экваториальным параллаксом, зная годичный параллакс, можно определять расстояния до звезд:


В километрах расстояния до звезд измерять неудобно, поэтому обычно пользуются внесистемной единицей - парсеком пк , определяемой как расстояние, с которого параллакс равен 1". Само название составлено из первых слогов слов пар аллакс и сек унда. Нетрудно убедиться, что 1 пк = 206 265 а.е. = 3.086 10 18 см. Реже используется такая единица измерения расстояний до звезд, как световой год , определяемый как расстояние, проходимое светом за год (1 пк = 3.26 светового года).

Расстояние до звезды в парсеках определяется через величину годичного параллакса особенно просто

Задачи

60. (477) Параллакс Солнца p 0 =8".8, а видимый угловой радиус Солнца . Во сколько раз радиус Солнца больше радиуса Земли?

Решение: Так как параллакс Солнца есть ни что иное, как угловой радиус Земли, видимый с Солнца, следовательно, радиус Солнца во столько же раз больше радиуса Земли, во сколько его угловой диаметр больше параллакса .

61. (482) В момент кульминации наблюденное зенитное расстояние центра Луны (p 0 =57") было 50 o 00" 00". Исправить это наблюдение за влияние рефракции и параллакса.

Решение: За счет рефракции наблюденное топоцентрическое зенитное расстояние меньше истинного топоцентрического, т.е. . Истинное топоцентрическое зенитное расстояние больше геоцентрического на величину суточного параллакса .

62. (472) Чему равен горизонтальный параллакс Юпитера, когда он находится от Земли на расстоянии 6 а.е. Горизонтальный параллакс Солнца p 0 =8".8.

63. (474) Наименьшее расстояние Венеры от Земли равно 40 млн. км. В этот момент ее угловой диаметр равен 32".4. Определить линейный радиус этой планеты.

64. (475) Зная, что для Луны p 0 =57"02".7, а ее угловой радиус в это время r Л=15"32".6, вычислить расстояние до Луны и ее линейный радиус, выраженные в радиусах Земли, а так же площадь поверхности и объем Луны по сравнению с таковыми для Земли.

65. (483) Наблюденное зенитное расстояние верхнего края Солнца составляет 64 o 55" 33", а его видимый радиус . Найти геоцентрическое зенитное расстояние центра Солнца, учтя рефракцию и параллакс.

66. Из наблюдений известны годичные параллаксы звезд Вега () , Сириус () , Денеб () . Определить расстояние до этих звезд в пк и в а.е.

Вы едете в поезде и смотрите в окно… Мелькают столбы, стоящие вдоль рельсов. Медленнее убегают назад постройки, расположенные в нескольких десятках метров от железнодорожного полотна. И уже совсем медленно, нехотя отстают от поезда домики, рощи, которые вы видите вдали, где‑то у горизонта…

Почему это так происходит? На этот вопрос дает ответ рис. 1. В то время как направление на телеграфный столб при перемещении наблюдателя из первого положения во второе изменяется на большой угол P 1 направление на удаленное дерево изменится на значительно меньший угол P 2 . Скорость изменения направления на предмет при движении наблюдателя тем меньше, чем дальше от наблюдателя находится предмет. А из этого следует, что величиной углового смещения предмета, которое называют параллактическим смещением или просто параллаксом, можно характеризовать расстояние до предмета, что широко используется в астрономии.

Разумеется, обнаружить параллактическое смещение звезды, двигаясь по земной поверхности, нельзя: звезды слишком далеки, и параллаксы при таких перемещениях находятся далеко за пределами возможности их измерения. Но если попытаться измерить параллактические смещения звезд при перемещении Земли из одной точки орбиты в противоположную (т. е. повторить наблюдения с интервалом в полгода, рис. 2), то вполне можно рассчитывать на успех. Во всяком случае таким путем измерены параллаксы нескольких тысяч ближайших к нам звезд.

Параллактические смещения, измеренные с использованием годичного движения Земли по орбите, называют годичными параллаксами. Годичный параллакс звезды - это угол (π), на который изменится направление на звезду, если воображаемый наблюдатель переместится из центра Солнечной системы на земную орбиту (точнее - на среднее расстояние Земли от Солнца) в направлении, перпендикулярном направлению на звезду. Легко понять из рис. 2, что годичный параллакс можно определить и как угол, под которым со звезды видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения.

С годичным параллаксом связана и основная единица длины, принятая в астрономии для измерения расстояний между звездами и галактиками, - парсек (см. Единицы расстояний). Параллаксы некоторых ближайших звезд приведены в таблице.

Для более близких небесных тел - Солнца, Луны, планет, комет и других тел Солнечной системы - параллактическое смещение можно обнаружить и при перемещении наблюдателя в пространстве вследствие суточного вращения Земли (рис. 3). В этом случае параллакс вычисляют для воображаемого наблюдателя, перемещаемого из центра Земли в точку экватора, в которой светило находится на горизонте. Для определения расстояния до светила вычисляют угол, под которым виден со светила экваториальный радиус Земли, перпендикулярный лучу зрения. Такой параллакс называют суточным горизонтальным экваториальным параллаксом или просто суточным параллаксом. Суточный параллакс Солнца на среднем расстоянии от Земли равен 8,794″; средний суточный параллакс Луны равен 3422,6″, или 57,04′.

Как уже говорилось, годичные параллаксы непосредственным измерением параллактического смещения (так называемые тригонометрические параллаксы) можно определить только у ближайших звезд, расположенных не далее нескольких сотен парсек.

Однако изучение звезд, для которых тригонометрические параллаксы были измерены, позволило обнаружить статистическую зависимость между видом спектра звезды (её спектральным классом) и абсолютной звездной величиной (см. «Спектр-светимость» диаграмма). Распространив эту зависимость также и на звезды, для которых тригонометрический параллакс неизвестен, получили возможность по виду спектра оценивать абсолютные звездные величины звезд, а затем, сравнивая их с видимыми звездными величинами, астрономы стали оценивать и расстояния до звезд (параллаксы). Параллаксы, определенные таким методом, называются спектральными параллаксами (см. Спектральная классификация звезд).

Существует еще один метод определения расстояний (и параллаксов) до звезд, а также звездных скоплений и галактик - по переменным звездам типа цефеид (этот метод описан в статье Цефеиды) ; такие параллаксы иногда называют цефеидными параллаксами.

Космос - одно из самых загадочных понятий в мире. Если ночью посмотреть на небо, можно увидеть несметное количество звёзд. Да, наверное, каждый из нас слышал, что во Вселенной больше звёзд, чем песчинок в Сахаре. И учёные с древних времён тянулись к ночному небу, стараясь разгадать загадки, скрывающиеся за этой чёрной пустотой. Начиная с древних времён они совершенствовали методы измерения космических расстояний и свойств звёздного вещества (температуры, плотности, скорости вращения). В этой статье мы расскажем о том, что такое параллакс звезд и как он применяется в астрономии и астрофизике.

Явление параллакса тесно связано с геометрией, но прежде чем рассмотреть геометрические законы, лежащие в основе этого явления, окунёмся в историю астрономии и разберёмся в том, кто и когда открыл это свойство движения звёзд и первым применил его на практике.

История

Параллакс как явление изменения положения звёзд в зависимости от расположения наблюдателя известно очень давно. Ещё Галилео Галилей писал об этом в далёком Средневековье. Он лишь предполагал, что если бы можно было заметить изменение параллакса для далёких звёзд, это было бы доказательством того, что Земля вращается вокруг Солнца, а не наоборот. И это было сущей правдой. Однако доказать это Галилео не смог из-за недостаточной чувствительности тогдашней аппаратуры.

Ближе к нашим дням, в 1837 году, Василий Яковлевич Струве провёл серию экспериментов по измерению годичного параллакса для звезды Веги, входящей в созвездие Лира. Позже эти измерения признали недостоверными, когда в следующем после публикации Струве году, 1838-м, Фридрих Вильгельм Бессель измерил годичный параллакс для звезды 61 Лебедя. Поэтому, как бы это ни было печально, приоритет открытия годичного параллакса принадлежит всё-таки Бесселю.

Сегодня параллакс используется как основной метод измерения расстояний до звёзд и при достаточно точной измерительной аппаратуре даёт результаты с минимальной погрешностью.

Нам следует перейти к геометрии перед непосредственным рассмотрением того, что такое метод параллакса. И для начала вспомним самые азы этой интересной, хотя и нелюбимой многими науки.

Основы геометрии

Итак, то, что нам необходимо знать из геометрии для понимания явления параллакса, - это то, как связаны значения углов между сторонами треугольника и их длины.

Начнём с того, что представим себе треугольник. В нём есть три соединяющихся прямых и три угла. И для каждого разного треугольника - свои величины углов и длин сторон. Нельзя изменить размер одной или двух сторон треугольника при неизменных значениях углов между ними, это одна из фундаментальных истин геометрии.

Представим, что перед нами стоит задача узнать значение длин двух сторон, если мы знаем только длину основания и величины углов, прилегающих к нему. Это возможно с помощью одной математической формулы, связывающей значения длин сторон и величин углов, лежащих напротив них. Итак, представим, что у нас есть три вершины (можете взять карандаш и нарисовать их), образующие треугольник: A, B, C. Они образуют три стороны: AB, BC, CA. Напротив каждой из них лежит по углу: угол BCA напротив AB, угол BAC напротив BC, угол ABC напротив CA.

Формула, которая связывает все эти шесть величин вместе, выглядит так:

AB / sin(BCA) = BC / sin(BAC) = CA / sin(ABC).

Как мы видим, всё не совсем просто. У нас откуда-то появился синус углов. Но как нам найти этот синус? Об этом мы расскажем ниже.

Основы тригонометрии

Синус является тригонометрической функцией, определяющей координату Y угла, построенного на координатной плоскости. Чтобы показать это наглядно, обычно чертят координатную плоскость с двумя осями - OX и OY - и отмечают на каждой из них точки 1 и -1. Эти точки расположены на одинаковом расстоянии от центра плоскости, поэтому через них можно провести окружность. Итак, мы получили так называемую единичную окружность. Теперь построим какой-нибудь отрезок с началом в начале координат и концом на какой-нибудь точке нашей окружности. Конец отрезка, который лежит на окружности, имеет определённые координаты на осях OX и OY. И значения этих координат и будут представлять собой соответственно косинус и синус.

Мы выяснили, что такое синус и как его можно найти. Но на самом деле этот способ чисто графический и создан скорее, чтобы понять саму суть того, что представляют собой тригонометрические функции. Он может быть эффективен для углов, не имеющих бесконечных рациональных значений косинуса и синуса. Для последних же более эффективен другой метод, который основа на применении производных и биномиального вычисления. Он носит название ряда Тейлора. Рассматривать этот способ мы не будем потому, как он достаточно сложен для вычисления в уме. Ведь быстрые вычисления - это работа для компьютеров, которые созданы для этого. Ряд Тейлора используется в калькуляторах для вычисления многих функций, включая синус, косинус, логарифм и так далее.

Всё это довольно интересно и затягивающе, но нам пора двигаться дальше и вернуться к тому, на чём мы закончили: на задаче по вычислению значений неизвестных сторон треугольника.

Стороны треугольника

Итак, вернёмся к нашей задаче: нам известны два угла и сторона треугольника, к которой эти углы прилежат. Нам нужно узнать всего лишь один угол и две стороны. Самым лёгким представляется нахождение угла: ведь сумма всех трёх углов треугольника равна 180 градусам, а значит, можно легко найти третий угол, вычтя из 180 градусов значения двух известных углов. А зная значения всех трёх углов и одной из сторон, можно найти длины двух других сторон. Вы можете проверить это самостоятельно на примере любого из треугольников.

А теперь наконец поговорим о параллаксе как о способе измерения расстояния между звёздами.

Параллакс

Это, как мы уже выяснили, один из самых простых и действенных методов измерения межзвёздных расстояний. Параллакс основан на изменении положения звезды в зависимости от расстояния до неё. Например, измерив угол видимого положения звезды в одной точке орбиты, а затем в прямо ей противоположной, мы получим треугольник, в котором известна длина одной стороны (расстояние между противоположными точками орбиты) и два угла. Отсюда мы сможем найти две оставшиеся стороны, каждая из которых равна расстоянию от звезды до нашей планеты в разных точках её орбиты. В этом и заключается метод, с помощью которого можно вычислить параллакс звезд. Да и не только звезд. Параллакс, эффект которого оказывается на деле очень простым, несмотря на это, используется во многих своих вариациях в совершенно разных областях.

В следующих разделах рассмотрим подробнее области применения параллакса.

Космос

Мы говорили об этом не раз, ведь параллакс - это исключительное изобретение астрономов, призванное измерять расстояния до звезд и прочих космических объектов. Однако тут не всё так однозначно. Ведь параллакс - это метод, у которого есть свои вариации. Например, различают суточный, годичный и вековой параллаксы. Можно догадаться, что все они различаются промежутком времени, которое проходит между этапами измерений. Нельзя сказать, что увеличение временного промежутка увеличивает точность измерения, потому как цели у каждого вида этого метода свои, а точность измерений зависит лишь от чувствительности аппаратуры и выбранного расстояния.

Суточный параллакс

Суточный параллакс, расстояние с помощью которого определяется с помощью угла между прямыми, идущими к звезде из двух разных точек: центра Земли и выбранной точки на Земле. Так как мы знаем радиус нашей планеты, не составит особого труда, используя угловой параллакс, вычислить расстояние до звезды, пользуясь описанными нами ранее математическим методом. В основном суточным параллаксом пользуются для измерения недалёких объектов, таких как планеты, карликовые планеты или астероиды. Для более больших используют следующий метод.

Годичный параллакс

Годичный параллакс - это всё тот же метод измерения расстояний с той лишь разницей, что он сфокусирован на измерение расстояний до звёзд. Это как раз тот случай параллакса, что мы рассматривали в примере выше. Параллакс, определение расстояния до звезды с помощью которого может быть довольно точным, должен обладать одной важной чертой: расстояние, с которого измеряется параллакс, должно быть чем больше, тем лучше. Годичный параллакс удовлетворяет этому условию: ведь между крайними точками орбиты расстояние достаточно велико.

Параллакс, примеры методов которого мы рассмотрели, безусловно, представляет собой важную часть астрономии и служит незаменимым инструментом в измерении расстояний до звёзд. Но на деле сегодня пользуются лишь годичным параллаксом, так как суточный может заменить более продвинутая и быстрая эхолокация.

Фотография

Пожалуй, самым известным видом фотографического параллакса можно считать бинокулярный параллакс. Вы его наверняка замечали и сами. Если поднести к глазам палец и по очереди закрывать каждый глаз, можно заметить, что угол зрения на объект меняется. То же самое происходит и при съёмке близких объектов. В объектив мы видим изображение под одним углом зрения, но на самом деле фотография получится с немного другим углом, так как есть разница в расстоянии между объективом и видоискателем (отверстием, через которое мы смотрим, чтобы сделать фотографию).

Перед тем как мы закончим эту статью - пара слов о том, чем же может быть полезно такое явление, как оптический параллакс, и почему стоит узнать о нём больше.

Почему это интересно?

Для начала, параллакс - это уникальное физическое явление, позволяющее нам без особого труда узнать многое об окружающем нас мире и даже о том, что находится за сотни световых лет от него: ведь с помощью этого явления можно вычислять и размеры звёзд.

Как мы уже убедились, параллакс не такое уж далёкое от нас явление, он окружает нас везде, и с помощью него мы видим так, как есть. Это, безусловно, интересно и захватывающе, и именно поэтому стоит обратить внимание на метод параллакса, хотя бы из любопытства. Знание никогда не бывает лишним.

Заключение

Итак, мы разобрали, в чём заключается суть параллакса, почему для определения расстояния до звёзд необязательно иметь сложную аппаратуру, а лишь телескоп и знание геометрии, как это применяется в нашем организме и почему нам может быть это так важно в повседневной жизни. Надеемся, представленная информация была вам полезна!

Параллакс (в астрономии) Параллакс (параллактическое смещение) в астрономии, видимое перемещение светил на небесной сфере, обусловленное перемещением наблюдателя в пространстве вследствие вращения Земли (суточный П.), обращения Земли вокруг Солнца (годичный П.) и движения Солнечной системы в Галактике (вековой П.). Точно измеренные П. небесных светил и групп светил позволяют определять расстояния до них.

Суточный П. определяют как угол с вершиной в центре небесного светила и со сторонами, направленными к центру Земли и к точке наблюдения на земной поверхности. Величина суточного П. зависит от зенитного расстояния светила и меняется с суточным периодом. П. светила, находящегося на горизонте места наблюдения, называется горизонтальным П., а если при этом место наблюдения лежит на экваторе,- горизонтальным экваториальным П., постоянным для светил, находящихся на неизменном расстоянии от Земли. Горизонтальный экваториальный П. небесного светила p o связан с его геоцентрическим расстоянием r соотношением

где R - радиус земного экватора. В значениях горизонтального экваториального П. выражают расстояния до Солнца, Луны и др. тел в пределах Солнечной системы. Для среднего расстояния Солнца принята величина 8,79", для среднего расстояния Луны 57"2,6". На положение звёзд вследствие их большой удалённости суточный П. практически не влияет.

Годичный П.- малый угол (при светиле) в прямоугольном треугольнике, в котором гипотенуза есть расстояние от Солнца до звезды, а малый катет - большая полуось земной орбиты. Годичные П. служат для определения расстояний до звёзд; эти П. вследствие их малости могут считаться обратно пропорциональными расстояниям до звёзд (параллаксу 1" соответствует расстояние в 1 парсек ). П. ближайшей звезды - Проксимы Центавра - 0,76". П., определённые путём непосредственных измерений видимых смещений звёзд на фоне значительно более удалённых звёзд, называются тригонометрическими. Тригонометрические П. вследствие их малости удалось измерить лишь для ближайших звёзд. Однако сопоставление вычисленных с их помощью абсолютных звёздных величин этих звёзд с некоторыми особенностями их спектров позволило выявить зависимости, используемые для оценки расстояний до других, более удалённых звёзд, для которых определение тригонометрический П. невозможно. П., вычисленные таким путём, называется спектральными.

Вековой П.- угловое смещение звезды (за год), обусловленное движением Солнечной системы и отнесённое к направлению, перпендикулярному этому движению. В отличие от суточного и годичного П., связанных с периодическими смещениями звёзд на небесной сфере, вековой П. определяется по параллактическому смещению, непрерывно возрастающему стечением времени. Вследствие собственных движений звёзд вековые П. определяются только статистически по отношению к достаточно большой группе звёзд (при этом предполагается, что пекулярные движения звёзд в этой группе в среднем равны нулю). Вековые П. используются в звёздной астрономии, так как с их помощью можно оценивать расстояния, значительно большие, чем те, которые получают при измерениях годичных П. Однако соответствующие им расстояния верны лишь в среднем для всей охваченной измерениями группы звёзд, для индивидуальных же звёзд они могут значительно отличаться от действительных.

Лит.: Паренаго П. П., Курс звёздной астрономии, , М., 1954.

Н. П. Ерпылёв.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Параллакс (в астрономии)" в других словарях:

    Параллакс (от греч. parállaxis отклонение), видимое изменение относительных положений предметов вследствие перемещения глаза наблюдателя. П. может приводить к ошибкам при отсчётах по шкалам, не расположенным вплотную к предметам, длины которых… …

    I Параллакс (от греч. parállaxis отклонение) видимое изменение относительных положений предметов вследствие перемещения глаза наблюдателя. П. может приводить к ошибкам при отсчётах по шкалам, не расположенным вплотную к предметам … Большая советская энциклопедия

    Параллакс Солнца, суточный параллакс Солнца горизонтальный экваториальный параллакс Солнца, угол, под которым со среднего расстояния Солнца виден экваториальный радиус Земли. До введения в астрономическую практику радиолокационных методов… … Википедия

    - (от греч. parallaxis отклонение) 1) видимое изменение положения предмета (тела) вследствие перемещения глаза наблюдателя.2) В астрономии видимое изменение положения небесного светила вследствие перемещения наблюдателя. Различают параллакс,… … Большой Энциклопедический словарь

    - (от греч. parallaxis уклонение) в астрономии изменение направления наблюдатель астр. объектпри смещении точки наблюдения, равное углу, под к рым из центра объектавидно расстояние между двумя положениями точки наблюдения. Обычно используютсяП.,… … Физическая энциклопедия

    Горизонтальный экваториальный параллакс Солнца, угол, под которым со среднего расстояния Солнца виден экваториальный радиус Земли. До введения в астрономическую практику радиолокационных методов определения расстояний до планет численное… … Большая советская энциклопедия

    А; м. [греч. parallaxis отклонение] 1. Спец. Кажущееся смещение рассматриваемого предмета вследствие перемещения глаза наблюдателя. Поправка на п. Ошибка в расчётах вследствие параллакса. 2. Астрон. Кажущееся смещение светила (звезды относительно … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Параллакс (значения). Схема параллакса Параллакс (греч … Википедия

    Схема параллакса Параллакс (греч. παραλλάξ, от παραλλαγή, «смена, чередование») изменение видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя. Зная расстояние между точками наблюдения (база) и угол… … Википедия

    параллакс - I. ПАРАЛЛАКС I а, м. parallaxe <, гр. parallaxis уклонение 1. Видимое изменение положения предмета вследствие перемещения глаза наблюдателя. Поправка на параллакс. БАС 1. 2. В астрономии угол, измеряющий видимое смещение светила при… … Исторический словарь галлицизмов русского языка

Координаты небесных тел, определенные из наблюдений на поверхности Земли, называются топоцентрическими. Топоцентрические координаты одного и того же светила в один и тот же момент, вообще говоря, различны для различных точек на поверхности Земли. Различие это заметно лишь для тел Солнечной системы и практически не ощутимо для звезд (меньше 0",00004). Из множества направлений, по которым светило видно из разных точек Земли, основным считается направление из центра Земли. Оно дает геоцентрическое положение светила и определяет его геоцентрические координаты. Угол между направлениями, по которым светило М" было бы видно из центра Земли и из какой-нибудь точки на ее поверхности, называется суточным параллаксом светила (рис. 20). Иными словами, суточный параллакс есть угол ", под которым со светила был бы виден радиус Земли в месте наблюдения.

Для светила, находящегося в момент наблюдения в зените, суточный параллакс равен нулю. Если светило М наблюдается на горизонте, то суточный параллакс его принимает максимальное значение и называется горизонтальным параллаксом .

Из соотношения между сторонами и углами треугольников ТОМ" и ТОМ (рис. 20) имеем

Отсюда получаем

sin " = sin sin ".

Горизонтальный параллакс у всех тел Солнечной системы - величина небольшая (у Луны в среднем = 57", у Солнца= 8",79, у планет меньше 1’).

Поэтому синусы углов и" в последней формуле можно заменить самими углами и написать

" =sin z". (1.40)

Вследствие суточного параллакса светило кажется нам ниже над горизонтом, чем это было бы, если бы наблюдение проводилось из центра Земли; при этом влияние параллакса на высоту светила пропорционально синусу зенитного расстояния, а максимальное его значение равно горизонтальному параллаксу .

Так как Земля имеет форму сфероида, то во избежание разногласий в определении горизонтальных параллаксов необходимо вычислять их значения для определенного радиуса Земли. За такой радиус принят экваториальный радиус Земли R 0 = 6378 км, а горизонтальные параллаксы, вычисленные для него, называются горизонтальными экваториальными параллаксами 0 . Именно эти параллаксы тел Солнечной системы приводятся во всех справочных пособиях.

4.5. Вычисление моментов времени и азимутов восхода и захода светил

Часовой угол светила определяется из первой формулы (1.37), а именно:

(1.41)

Если какая-нибудь точка небесного свода восходит или заходит, то она находится на горизонте и, следовательно, ее видимое зенитное расстояние z" = 90°. Ее истинное зенитное расстояние z в этот момент вследствие рефракции будет больше видимого на величину = 35". Суточный параллакс понижает светило над горизонтом, т. е. увеличивает видимое зенитное расстояние z" на величину горизонтального параллакса. Следовательно, истинное зенитное расстояние точки в момент ее восхода или захода

z = z" +90 -= 90° +90 -.

Кроме того, для Солнца и Луны, имеющих заметные размеры, координаты относятся к центру их видимого диска, а восходом (или заходом) этих светил считается момент появления (пли исчезновения) на горизонте верхней точки края диска. Следовательно, истинное зенитное расстояние центра диска этих светил в момент восхода или захода будет больше зенитного расстояния верхней точки края диска на величину видимого углового радиуса R диска. (У Солнца и Луны их видимые угловые радиусы приблизительно одинаковы и в среднем равны 16’.)

Таким образом, при вычислении часового угла светила в момент его восхода и захода в формуле (1.41), в самом общем случае, z = 90°+90-+R, и она напишется тогда в следующем виде:

По формуле (1.42) часовые углы восхода и захода вычисляются только для Луны. В этом случае R R = 16’, р R = 57’ и 90 = 35". и формула (1.42) принимает вид

При вычислении часовых углов восхода и захода Солнца его горизонтальным параллаксом можно пренебречь, и при R ¤ = 16" и 90 = 35" формула (1.42) принимает вид

(1.43)

Для звезд и планет можно пренебречь также и их видимыми радиусами и вычислять часовые углы восхода и захода по формуле

Наконец, если пренебречь и рефракцией, то часовой угол восхода и захода вычисляется по формуле

cost= -tg tg. (1.44)

Каждое из приведенных уравнений дает два значения часового угла: t 1 = t и t 2 = - t. Положительное значение соответствует заходу, отрицательное - восходу светила. Местное звездное время восхода и захода, согласно формуле (1.15), получается таким:

s восх = - t.

s зах = +t.

Затем можно вычислить моменты восхода и захода светила по местному среднему солнечному времени и по декретному времени.

Если вычисляется восход и заход Солнца, то нет необходимости вычислять звездное время явлений, так как, увеличив часовые углы t 1 и t 2 на 12h, мы сразу получаем моменты по местному истинному солнечному времени Т ¤ = t ¤ + 12h. Тогда местное среднее время

T восх = 12h - t ¤ + h,

Т зах = 12h + t ¤ + h,

где h - уравнение времени, которое берется, так же как иСолнца, из Астрономического Ежегодника.

Азимуты точек восхода и захода светил (без учета рефракции, параллакса и углового радиуса) получим, если в первой формуле (1.36) положим z = 90°; тогда cos z = 0, sin z =1 и

(1.45)

По формуле (1.45) получаем два значения азимута: А 1 = A и A 2 = 360° - A. Первое значение является азимутом точки захода, второе - азимутом точки восхода светила.

Представим теперь формулы (1.45) и (1.44) в виде

Так как косинус не может быть больше 1, то из этих формул следует, что восход и заход светила возможны только при условии

| | < (90° - | |)