Системы обнаружения и предотвращения вторжения. Обнаружение и предотвращение вторжений

Подсистема обнаружения и предотвращения вторжений включает в себя:

Таблица 1. Подсистемы обнаружения и предотвращения вторжений

Обнаружение вторжений - это процесс мониторинга событий, происходящих в информационной системе и их анализа на наличие признаков, указывающих на попытки вторжения: нарушения конфиденциальности, целостности, доступности информации или нарушения политики информационной безопасности. Предотвращение вторжений - процесс блокировки выявленных вторжений.

Средства подсистемы обнаружения и предотвращения вторжений автоматизируют данные процессы и необходимы в организации любого уровня, чтобы предотвратить ущерб и потери, к которым могут привести вторжения.

По способу мониторинга средства подсистемы делятся на:

  • средства предотвращения вторжений сетевого уровня (network-based IDS/IPS), которые осуществляют мониторинг сетевого трафика сегментов сети.
  • средства предотвращения вторжений системного уровня (host-based IDS/IPS), которые выявляют события информационной безопасности и выполняют корректирующие действия в пределах защищаемого узла.

Выделяется несколько методов анализа событий:

  • обнаружение злоупотреблений, при котором событие или множество событий проверяются на соответствие заранее определенному образцу (шаблону), который описывает известную атаку. Шаблон известной атаки называется сигнатурой.
  • обнаружение аномалий, при котором определяются ненормальные (аномальные) события. Данный метод предполагает, что при попытке вторжении, полученные события отличаются от событий нормальной деятельности пользователей или взаимодействия узлов сети и могут, следовательно, быть определены. Сенсоры собирают данные о событиях, создают шаблоны нормальной деятельности и используют различные метрики для определения отклонения от нормального состояния.

В подсистеме выделяются средства защиты от DDoS атак, которые анализируют пограничный сетевой трафик методом обнаружения аномалий.

Решение по предотвращению вторжений состоит из сенсоров, одного или нескольких серверов управления, консоли оператора и администраторов. Иногда выделяется внешняя база данных для хранения информации о событиях информационной безопасности и их параметров.

Сервер управления получает информацию от сенсоров и управляет ими. Обычно на серверах осуществляется консолидация и корреляция событий. Для более глубокой обработки важных событий, средства предотвращения вторжений системного уровня интегрируются с подсистемой мониторинга и управления инцидентами.

Консоли представляют интерфейсы для операторов и администраторов подсистемы. Обычно это программное средство, устанавливаемое на рабочей станции.

Для организации централизованного администрирования, управления обновлениями сигнатур, управления конфигурациями применяется интеграция с подсистемой управления средствами защиты организации.

Необходимо учитывать, что только комплексное использование разных типов средств подсистемы позволяет достигнуть всестороннего и точного обнаружения и предотвращения вторжений.

Предотвращение вторжений системного уровня

Подсистема предотвращения вторжений системного уровня (host-based IDS/IPS) обеспечивает незамедлительное блокирование атак системного уровня и оповещение ответственных лиц. Агенты (сенсоры) обнаружения атак системного уровня собирают информацию, отражающую деятельность, которая происходит в отдельной операционной системе.

Преимуществами данной подсистемы является возможность контроля доступа к информационным объектам узла, проверка их целостности, регистрацию аномальной деятельности конкретного пользователя.

К недостаткам можно отнести не возможность обнаруживать комплексных аномальных событий, использование дополнительные ресурсы защищаемой системы, необходимость установки на все защищаемые узлы. Кроме того, уязвимости операционной системы могут нарушить целостность и работу сенсоров.

Варианты решения:

Cisco Security Agent

Check Point Endpoint Security
Symantec Endpoint Protection
Trend Micro OfficeScan Corporate Edition
IBM Proventia Server Intrusion Prevention System
Kaspersky Total Security


Предотвращение вторжений сетевого уровня

Подсистема предотвращения вторжений сетевого уровня (network-based IPS или NIPS) обеспечивает немедленное блокирование сетевых атак и оповещение ответственных лиц. Преимуществом применения средств сетевого уровня является возможность защиты одним средством сразу нескольких узлов или сегментов сети.

Программные или программно-аппаратные сенсоры, устанавливаются в разрыв соединения или пассивно просматривают сетевой трафик определенных узлов или сегментов сети и анализируют сетевые, транспортные и прикладные протоколы взаимодействия.

Захваченный трафик сравнивается с набором определенных образцов (сигнатур) атак или нарушений правил политики безопасности. Если сигнатуры будут обнаружены в сетевом пакете, применяются меры противодействия.

В качестве мер противодействия, может выполняться:

  • блокирование выбранных сетевых пакетов;
  • изменение конфигурации средств других подсистем обеспечения информационной безопасности (например, межсетевого экрана) для более эффективного предотвращения вторжения;
  • сохранения выбранных пакетов для последующего анализа;
  • регистрация событий и оповещение ответственных лиц.

Дополнительной возможностью данных средств может являться сбор информации о защищаемых узлах. Для получения информации о защищенности и критичности узла или сегмента сети применяется интеграция с подсистемой контроля эффективности защиты информации.

Пример решения предотвращения вторжений сетевого уровня на основе продуктов Cisco Systems приведен на рисунке:

Рисунок 1. Пример решения предотвращения вторжений сетевого уровня на основе продуктов Cisco Systems

Варианты решения:


Защита от DDoS атак

Одним из наиболее критичных, по последствиям, классов компьютерных атак являются атаки типа «Распределенный отказ в обслуживании» (Distributed Denial of Service, DDoS), направленные на нарушение доступности информационных ресурсов. Эти атаки осуществляются с использованием множества программных компонентов, размещаемых на хостах в сети Интернет. Они могут привести не только к выходу из строя отдельных узлов и сервисов, но и остановить работу корневых DNS-серверов и вызвать частичное или полное прекращение функционирования сети.

Основная цель защиты против DDoS-атак заключается в предотвращении их реализации, точном обнаружении этих атак и быстром реагировании на них. При этом важно также эффективно распознавать легитимный трафик, который имеет признаки, схожие с трафиком вторжения, и обеспечивать надежную доставку легитимного трафика по назначению.

Общий подход к защите от атак DDoS включает реализацию следующих механизмов:

  • обнаружение вторжения;
  • определение источника вторжения;
  • предотвращение вторжения.


Решение для операторов связи

Бизнес-преимущества внедряемого решения:

  • возможность предложить новый сервис высокого уровня с перспективой масштабирования для больших, средних и малых предприятий;
  • возможность позиционировать себя как доверенное лицо, участвующее в предотвращении ущерба и потерь клиентов;
  • улучшается управляемость сетевой инфраструктурой;
  • возможность предоставления абонентам отчетов об атаках.

Данное решение позволяет операторам связи предложить своим клиентам защиту от распределенных DoS-атак, одновременно укрепить и защитить собственные сети. Фундаментальной задачей решения является удаление аномального трафика из канала связи и доставка только легитимного трафика.

Провайдер услуг может предлагать защиту от DDoS-атак своим корпоративным клиентам по двум схемам:

  • выделенная услуга – подходит для компаний, бизнес которых связан с сетью Интернет: это компании, занимающиеся «онлайновой» торговлей, финансовые структуры и другие предприятия, занимающиеся электронной коммерцией. Выделенная услуга обеспечивает возможность очистки передаваемого трафика, а также дополнительные возможности обнаружения DDoS-атак и активацию процедур очистки трафика по требованию клиента;
  • услуга коллективного пользования – предназначена для корпоративных клиентов, которым необходим определенный уровень защиты от DDoS-атак для своих «онлайновых» сервисов. Однако эта проблема не стоит для них остро. Услуга предлагает возможность очистки трафика коллективно для всех клиентов и стандартную политику для обнаружения DDoS-атаки


Архитектура решения

Рисунок 2. Архитектура решения защиты от DDoS-атак для операторов связи

Архитектура решения предлагает упорядоченный подход к обнаружению распределенных DoS-атак, отслеживанию их источника и подавлению распределенных DoS-атак.

В начале своей работы средствам защиты от DDoS-атак необходимо пройти процесс обучения и создать модель нормального поведения трафика в пределах сети, используя поток данных, доступный с маршрутизаторов. После процесса обучения система переходит в режим мониторинга трафика и в случае обнаружения аномальной ситуации, системному администратору отправляется уведомление. Если атака подтверждается, администратор безопасности сети переводит устройство очистки трафика в режим защиты. Также возможно настроить устройства мониторинга на автоматическую активацию средств очистки трафика в случае обнаружения аномального трафика. При включении в режим защиты средство фильтрации изменяет таблицу маршрутизации граничного маршрутизатора с целью перенаправления входящего трафика на себя и производит очистку его очистку. После этого очищенный трафик перенаправляется в сеть.


Решение для предприятий

При разработке данного решения применялся комплексный подход для построения системы защиты, способной защитить не только отдельные сервера предприятия, но и каналы связи с соответствующими операторами связи. Решение представляет собой многоуровневую систему с четко выстроенной линией обороны. Внедрение решения позволяет повысить защищенность корпоративной сети, устройств маршрутизации, канала связи, почтовых серверов, web-серверов и DNS-серверов.

  • осуществление компаниями своего бизнеса через Интернет;
  • наличие корпоративного web-сайта компании;
  • использование сети Интернет для реализации бизнес-процессов.


Архитектура решения

Рисунок 3. Архитектура решения защиты от DDoS-атак для предприятий

В данном решении применяются сенсоры обнаружения аномалий, просматривающие проходящий внешний трафик в непрерывном режиме. Данная система находится на границе с оператором связи, таким образом, процесс очистки начинается еще до попадания трафика атаки во внутреннюю сеть компании.

Метод обнаружения аномалий не может обеспечить 100% вероятность очистки трафика, поэтому появляется необходимость интеграции с подсистемами предотвращения атак на сетевом и системном уровне.

Технические преимущества внедряемых решений:

  • мгновенная реакция на DDoS-атаки;
  • возможность включения системы только по требованию обеспечивает максимальную надежность и минимальные затраты на масштабирование.

Варианты решения:

Arbor Peakflow SP

Cisco Guard
Cisco Traffic Anomaly Detector

IDS/IPS системы — это уникальные инструменты, созданные для защиты сетей от неавторизованного доступа. Они представляют собой аппаратные или компьютерные средства, которые способны оперативно обнаруживать и эффективно предотвращать вторжения. Среди мер, которые принимаются для достижения ключевых целей IDS/IPS, можно выделить информирование специалистов по информационной безопасности о фактах попыток хакерских атак и внедрения вредоносных программ, обрыв соединения со злоумышленниками и перенастройку сетевого экрана для блокирования доступа к корпоративным данным.

Для чего применяют системы обнаружения вторжения в сеть

Кибератаки — одна из основных проблем, с которыми сталкиваются субъекты, владеющие информационными ресурсами. Даже известные антивирусные программы и брандмауэры — это средства, которые эффективны лишь для защиты очевидных мест доступа к сетям. Однако злоумышленники способны находить пути обхода и уязвимые сервисы даже в самых совершенных системах безопасности. При такой опасности неудивительно, что зарубежные и российские UTM-решения получают все более широкую популярность среди организаций, желающих исключить возможность вторжения и распространения вредоносного ПО (червей, троянов и компьютерных вирусов). Многие компании принимают решение купить сертифицированный межсетевой экран или другой инструмент для комплексной защиты информации.

Особенности систем обнаружения вторжений

Все существующие сегодня системы обнаружения и предотвращения вторжений объединены несколькими общими свойствами, функциями и задачами, которые с их помощью решают специалисты по информационной безопасности. Такие инструменты по факту осуществляют беспрерывный анализ эксплуатации определенных ресурсов и выявляют любые признаки нетипичных событий.

Организация безопасности корпоративных сетей может подчиняться нескольким технологиям, которые отличаются типами выявляемых инцидентов и методами, применяемыми для обнаружения таких событий. Помимо функций постоянного мониторинга и анализа происходящего, все IDS системы выполняют следующие функции:

  • сбор и запись информации;
  • оповещения администраторам администраторов сетей о произошедших изменениях (alert);
  • создание отчетов для суммирования логов.

Технология IPS в свою очередь дополняет вышеописанную, так как способна не только определить угрозу и ее источник, но и осуществить их блокировку. Это говорит и о расширенном функционале подобного решения. Оно способно осуществлять следующие действия:

  • обрывать вредоносные сессии и предотвращать доступ к важнейшим ресурсам;
  • менять конфигурацию «подзащитной» среды;
  • производить действия над инструментами атаки (например, удалять зараженные файлы).

Стоит отметить, что UTM межсетевой экран и любые современные системы обнаружения и предотвращения вторжений представляют собой оптимальную комбинацию технологий систем IDS и IPS.

Как происходит обнаружение вредоносных атак

Технологии IPS используют методы, основанные на сигнатурах — шаблонах, с которыми связывают соответствующие инциденты. В качестве сигнатур могут выступать соединения, входящие электронные письма, логи операционной системы и т.п. Такой способ детекции крайне эффективен при работе с известными угрозами, но очень слаб при атаках, не имеющих сигнатур.

Еще один метод обнаружения несанкционированного доступа, называемый HIPS, заключается в статистическом сравнении уровня активности происходящих событий с нормальным, значения которого были получены во время так называемого «обучающего периода». Средство обнаружения вторжений может дополнять сигнатурную фильтрацию и блокировать хакерские атаки, которые смогли ее обойти.

Резюмируя функции и принципы работы IDS и IPS систем предотвращения вторжений, можно сказать, что они решают две крупные задачи:

  • анализ компонентов информационных сетей;
  • адекватное реагирование на результаты данного анализа.

Детекторы атак Suricata

Одним из решений IPS предотвращения вторжений являются детекторы атак, которые предназначены для своевременного выявления множества вредоносных угроз. В Интернет Контроль Сервере они реализованы в виде системы Suricata — продвинутого, многозадачного и очень производительного инструмента, разработанного для превентивной защиты сетей, а также сбора и хранения информации о любых поступающих сигналах. Работа детектора атак основана на анализе сигнатур и эвристике, а удобство его обусловлено наличием открытого доступа к исходному коду. Такой подход позволяет настраивать параметры работы системы для решения индивидуальных задач.

К редактируемым параметрам Suricata относятся правила, которым будет подчиняться анализ трафика, фильтры, ограничивающие вывод предупреждения администраторам, диапазоны адресов разных серверов, активные порты и сети.

Таким образом, Suricata как IPS-решение — это довольно гибкий инструмент, функционирование которого подлежит изменениям в зависимости от характера атаки, что делает его максимально эффективным.

В ИКС фиксируется и хранится информация о подозрительной активности, блокируются ботнеты, DOS-атаки, а также TOR, анонимайзеры, P2P и торрент-клиенты.

При входе в модуль отображается его состояние, кнопка «Выключить» (или «Включить», если модуль выключен) и последние сообщения в журнале.

Настройки

Во вкладке настроек можно редактировать параметры работы детектора атак. Здесь можно указать внутренние, внешние сети, диапазоны адресов различных серверов, а также используемые порты. Всем этим переменным присвоены значения по умолчанию, с которыми детектор атак может корректно запуститься. По умолчанию, анализируется трафик на внешних интерфейсах.

Правила

Детектору атак можно подключать правила, с помощью которых он будет анализировать трафик. На данной вкладке можно посмотреть наличие и содержимое того или иного файла с правилами, а также включить или выключить его действие (с помощью флажков справа). В правом верхнем углу располагается поиск по названию или по количеству правил в файле.

Фильтры

Для того, чтобы настроить ограничения в выводе предупреждений детектором атак, необходимо перейти на вкладку «Фильтры». Здесь можно добавить следующие ограничения:

  • фильтр по количеству сообщений,
  • фильтр сообщений по частоте появления,
  • фильтр смешанного типа,
  • запрет на сообщения определённого типа;

При настройке необходимо помнить, что поле «Id правила» в различных фильтрах должно быть различным.

Тип организации

Выберите тип организации Образовательное учреждение Бюджетное учреждение Коммерческая организация

Цены НЕ РАСПРОСТРАНЯЮТСЯ на частные негосударственные учреждения и учреждения послевузовского профессионального образования

Редакции ИКС

Не требуется ИКС Стандарт ИКС ФСТЭК

Для расчета стоимости ФСТЭК обратитесь в отдел продаж

Тип поставки

ИКС ИКС + SkyDNS ИКС + Kaspersky Web Filtering

Тип лицензии

Новая лицензия Лицензия на обновления

Лицензия на обновления Премиум Расширение лицензии

Принципы использования IDS

Обнаружение и предотвращение вторжений ( IDP ) является подсистемой NetDefendOS, которая предназначена для защиты от попыток вторжения. Система просматривает сетевой трафик, проходящий через межсетевой экран , и ищет трафик, соответствующий шаблонам. Обнаружение такого трафика указывает на попытку вторжения. После обнаружения подобного трафика IDP выполняет шаги по нейтрализации как вторжения, так и его источника.

Для обнаружения и предотвращения вторжения, необходимо указать следующую информацию:

  1. Какой трафик следует анализировать.
  2. Что следует искать в анализируемом трафике.
  3. Какое действие необходимо предпринять при обнаружении вторжения.

Эта информация указывается в IDP-правилах .

Maintenance и Advanced IDP

Компания D-Link предоставляет два типа IDP :

  1. Maintenance IDP

    Maintenance IDP является основой системы IDP и включено в стандартную комплектацию NetDefendDFL-210, 800, 1600 и 2500.

    Maintenance IDP является упрощенной IDP, что обеспечивает базовую защиту от атак, и имеет возможность расширения до более комплексной Advanced IDP.

    IDP не входит в стандартную комплектацию DFL-260, 860, 1660, 2560 и 2560G; для этих моделей межсетевых экранов необходимо приобрести подписку на Advanced IDP.

  2. Advanced IDP

    Advanced IDP является расширенной системой IDP с более широким диапазоном баз данных сигнатур и предъявляет более высокие требования к оборудованию. Стандартной является подписка сроком на 12 месяцев, обеспечивающая автоматическое обновление базы данных сигнатур IDP.

    Эта опция IDP доступна для всех моделей D-Link NetDefend, включая те, в стандартную комплектацию которых не входит Maintenance IDP.

    Maintenance IDP можно рассматривать, как ограниченное подмножество Advanced IDP. Рассмотрим функционирование Advanced IDP.

    Advanced IDP приобретается как дополнительный компонент к базовой лицензии NetDefendOS. Подписка означает, что база данных сигнатур IDP может быть загружена на NetDefendOS, а также, что база данных регулярно обновляется по мере появления новых угроз.

    Обновления базы данных сигнатур автоматически загружаются системой NetDefendOS через сконфигурированный интервал времени. Это выполняется с помощью HTTP-соединения с сервером сети D-Link, который предоставляет последние обновления базы данных сигнатур. Если на сервере существует новая версия базы данных сигнатур, она будет загружена, заменив старую версию.

    Термины Intrusion Detection and Prevention (IDP), Intrusion Prevention System (IDP) и Intrusion Detection System (IDS) взаимозаменяютдругдруга. Все они относятся к функции IDP.

Последовательность обработка пакетов

Последовательность обработки пакетов при использовании IDP является следующей:

  1. Пакет приходит на межсетевой экран. Если пакет является частью нового соединения, то первым делом ищется соответствующее IP-правило фильтрования. Если пакет является частью существующего соединения, он сразу же попадает в модуль IDP. Если пакет не является частью существующего соединения или отбрасывается IP-правилом, то дальнейшей обработки данного пакета не происходит.
  2. Адреса источника и назначения пакета сравниваются с набором правил IDP. Если найдено подходящее правило, то пакет передается на обработку системе IDP, в которой ищется совпадение содержимого пакета с одним из шаблонов. Если совпадения не обнаружено, то пакет пропускается системой IDP. Могут быть определены дальнейшие действия в IP-правилах фильтрования, такие как NAT и создание логов.

Поиск на соответствие шаблону

Сигнатуры

Для корректного определения атак система IDP использует шаблоны, связанные с различными типами атак. Эти предварительно определенные шаблоны, также называемые сигнатурами, хранятся в локальной базе данных и используются системой IDP для анализа трафика. Каждая сигнатура имеет уникальный номер.

Рассмотрим пример простой атаки, состоящий в обращении к FTP -серверу. Неавторизованный пользователь может попытаться получить файл паролей passwd с FTP -сервера с помощью команды FTP RETR passwd. Сигнатура , содержащая текстовые строки ASCII RETR и passwd, обнаружит соответствие, указывающее на возможную атаку. В данном примере шаблон задан в виде текста ASCII , но поиск на соответствие шаблону выполняется аналогично и для двоичных данных.

Распознавание неизвестных угроз

Злоумышленники, разрабатывающие новые атаки, часто просто модифицируют старый код. Это означает, что новые атаки могут появиться очень быстро как расширение и обобщение старых. Чтобы противостоять этому, D-Link IDP использует подход, при котором модуль выполняет сканирование, учитывая возможное многократное использование компонент , выявляя соответствие шаблону общих блоков, а не конкретного кода. Этим достигается защита как от известных, так и от новых, недавно разработанных, неизвестных угроз, созданных модификацией программного кода атаки.

Описания сигнатур

Каждая сигнатур имеет пояснительное текстовое описание. Прочитав текстовое описание сигнатуры, можно понять, какую атаку или вирус поможет обнаружить данная сигнатура . В связи с изменением характера базы данных сигнатур, текстовые описания не содержатся в документации D-Link, но доступны на веб-сайте D-Link: http ://security.dlink. com .tw

Типы сигнатур IDP

В IDP имеется три типа сигнатур, которые предоставляют различные уровни достоверности в определении угроз:

  • Intrusion Protection Signatures (IPS) – Данный тип сигнатур обладает высокой точностью, и соответствие трафика данному шаблону в большинстве случаев означает атаку. Для данных угроз рекомендуется указывать действие Protect. Эти сигнатуры могут обнаружить действия, направленные на получение прав администратора, и сканеры безопасности.
  • Intrusion Detection Signatures (IDS) – У данного типа сигнатур меньше точности, чем у IPS, и они могут дать иметь ложные срабатывания, таким образом, поэтому перед тем как указывать действие Protect рекомендуется использовать действие Audit.
  • Policy Signatures – Этот тип сигнатур обнаруживает различные типы прикладного трафика. Эти сигнатуры могут использоваться для блокировки некоторых приложений, предназначенных для совместного использования приложений и мгновенного обмена сообщениями.

Предотвращение атак Denial-of-Service

Механизмы DoS-атак

DoS-атаки могут выполняться самыми разными способами, но все они могут быть разделены на три основных типа:

  • Исчерпание вычислительных ресурсов, таких как полоса пропускания, дисковое пространство, время ЦП.
  • Изменение конфигурационной информации, такой как информация маршрутизации.
  • Порча физических компонентов сети.

Одним из наиболее часто используемых методов является исчерпание вычислительных ресурсов, т.е. невозможность нормального функционирования сети из-за большого количества запросов, часто неправильно сформатированных, и расходования ресурсов, используемых для запуска критически важных приложений. Могут также использоваться уязвимые места в операционных системах Unix и Windows для преднамеренного разрушения системы.

Перечислим некоторые из наиболее часто используемых DoS-атак:

  • Ping of Death / атаки Jolt
  • Перекрытие фрагментов: Teardrop / Bonk / Boink / Nestea
  • Land и LaTierra атаки
  • WinNuke атака
  • Атаки с эффектом усиления: Smurf, Papasmurf, Fraggle
  • TCP SYN Flood
  • Jolt2

Атаки Ping of Death и Jolt

" Ping of Death" является одной из самых ранних атак, которая выполняется на 3 и 4 уровнях стека протоколов. Один из простейших способов выполнить эту атаку – запустить ping -l 65510 1.2.3.4 на Windows 95 , где 1.2.3.4 – это IP - адрес компьютера-жертвы. "Jolt" – это специально написанная программа для создания пакетов в операционной системе, в которой команда ping не может создавать пакеты, размеры которых превышают стандартные нормы.

Смысл атаки состоит в том, что общий размер пакета превышает 65535 байт , что является максимальным значением, которое может быть представлено 16-битным целым числом. Если размер больше, то происходит переполнение .

Защита состоит в том, чтобы не допустить фрагментацию, приводящую к тому, что общий размер пакета превышает 65535 байт . Помимо этого, можно настроить ограничения на длину IP -пакета.

Атаки Ping of Death и Jolt регистрируются в логах как отброшенные пакеты с указанием на правило "LogOversizedPackets". Следует помнить, что в этом случае IP - адрес отправителя может быть подделан.

Атаки, связанные с перекрытием фрагментов: Teardrop, Bonk, Boink и Nestea

Teardrop – это атака , связанная с перекрытием фрагментов. Многие реализации стека протоколов плохо обрабатывают пакеты, при получении которых имеются перекрывающиеся фрагменты. В этом случае возможно как исчерпание ресурсов, так и сбой.

NetDefendOS обеспечивает защиту от атак перекрытия фрагментов. Перекрывающимся фрагментам не разрешено проходить через систему.

Teardrop и похожие атаки регистрируются в логах NetDefendOS как отброшенные пакеты с указанием на правило "IllegalFrags". Следует помнить, что в этом случае IP - адрес отправителя может быть подделан.

Атаки Land и LaTierra

Атаки Land и LaTierra состоят в посылке такого пакета компьютеру-жертве, который заставляет его отвечать самому себе, что, в свою очередь , генерирует еще один ответ самому себе, и т.д. Это вызовет либо полную остановку работы компьютера, либо крах какой-либо из его подсистем

Атака состоит в использовании IP -адреса компьютера-жертвы в полях Source и Destination .

NetDefendOS обеспечивает защиту от атаки Land , используя защиту от IP -спуфинга ко всем пакетам. При использовании настроек по умолчанию все входящие пакеты сравниваются с содержанием таблицы маршрутизации; если пакет приходит на интерфейс , с которого невозможно достигнуть IP -адреса источника, то пакет будет отброшен.

Атаки Land и LaTierra регистрируются в логах NetDefendOS как отброшенные пакеты с указанием на правило по умолчанию AutoAccess, или, если определены другие правила доступа, указано правило правило доступа, в результате которого отброшен пакет. В данном случае IP - адрес отправителя не представляет интереса, так как он совпадает с IP -адресом получателя.

Атака WinNuke

Принцип действия атаки WinNuke заключается в подключении к TCP -сервису, который не умеет обрабатывать " out-of-band " данные ( TCP -пакеты с установленным битом URG), но все же принимает их. Это обычно приводит к зацикливанию сервиса и потреблению всех ресурсов процессора.

Одним из таких сервисов был NetBIOS через TCP / IP на WINDOWS -машинах, которая и дала имя данной сетевой атаке.

NetDefendOS обеспечивает защиту двумя способами:

  • Политики для входящего трафика как правило разработаны достаточно тщательно, поэтому количество успешных атак незначительно. Извне доступны только публичные сервисы, доступ к которым открыт. Только они могут стать жертвами атак.
  • Удаление бита URG из всех TCP-пакетов.

Веб- интерфейс

Advanced Settings -> TCP -> TCPUrg

Как правило, атаки WinNuke регистрируются в логах как отброшенные пакеты с указанием на правило, запретившего попытку соединения. Для разрешенных соединений появляется запись категории " TCP " или " DROP " (в зависимости от настройки TCP URG), с именем правила " TCP URG". IP - адрес отправителя может быть не поддельным, так как соединение должно быть полностью установлено к моменту отправки пакетов " out-of-band ".

Атаки, приводящие к увеличению трафика: Smurf, Papasmurf, Fraggle

Эта категория атак использует некорректно настроенные сети, которые позволяют увеличивать поток трафика и направлять его целевой системе. Целью является интенсивное использование полосы пропускания жертвы. Атакующий с широкой полосой пропускания может не использовать эффект усиления, позволяющий полностью загрузить всю полосу пропускания жертвы. Эти атаки позволяют атакующим с меньшей полосой пропускания, чем у жертвы, использовать усиление, чтобы занять полосу пропускания жертвы.

  • "Smurf" и "Papasmurf" отправляют эхо-пакеты ICMP по широковещательному адресу, указывая в качестве IP-адреса источника IP-адрес жертвы. После этого все компьютеры посылают ответные пакеты жертве.
  • "Fraggle" базирауется на "Smurf", но использует эхо-пакеты UDP и отправляет их на порт 7. В основном, атака "Fraggle" имеет более слабое усиление, так как служба echo активирована у небольшого количества хостов.

Атаки Smurf регистрируются в логах NetDefendOS как большое число отброшенных пакетов ICMP Echo Reply . Для подобной перегрузки сети может использоваться поддельный IP - адрес . Атаки Fraggle также отображаются в логах NetDefendOS как большое количество отброшенных пакетов. Для перегрузки сетb используется поддельный IP - адрес .

При использовании настроек по умолчанию пакеты, отправленные по адресу широковещательной рассылки, отбрасываются.

Веб- интерфейс

Advanced Settings -> IP -> DirectedBroadcasts

В политиках для входящего трафика следует учитывать, что любая незащищенная сеть может также стать источником подобных атак усиления.

Защита на стороне компьютера-жертвы

Smurf и похожие атаки являются атаками, расходующими ресурсы соединения. В общем случае межсетевой экран является узким местом в сети и не может обеспечить достаточную защиту против этого типа атак. Когда пакеты доходят до межсетевого экрана, ущерб уже нанесен.

Тем не менее система NetDefendOS может уменьшить нагрузку на внутренние сервера, делая их сервисы доступными изнутри или через альтернативное соединение, которое не стало целью атаки.

  • Типы flood-атак Smurf и Papasmurf на стороне жертвы выглядят как ответы ICMP Echo Response. Если не используются правила FwdFast, таким пакетам не будет разрешено инициировать новые соединения независимо от того, существуют ли правила, разрешающие прохождение пакетов.
  • Пакеты Fraggle могут прийти на любой UDP-порт назначения, который является мишенью атакующего. В этой ситуации может помочь увеличение ограничений в наборе правил.

Шейпинг трафика также помогает предотвращать некоторые flood -атаки на защищаемые сервера.

Атаки TCP SYN Flood

Принцип атак TCP SYN Flood заключается в отправке большого количества TCP -пакетов с установленным флагом SYN на определенный порт и в игнорировании отправленных в ответ пакетов с установленными флагами SYN ACK . Это позволяет исчерпать ресурсы стека протоколов на сервере жертвы, в результате чего он не сможет устанавливать новые соединения, пока не истечет таймаут существования полуоткрытых соединений.

Система NetDefendOS обеспечивает защиту от flood -атак TCP SYN , если установлена опция SYN Flood Protection в соответствующем сервисе, который указан в IP -правиле фильтрования. Иногда опция может обозначаться как SYN Relay .

Защита от flood -атак включена по умолчанию в таких сервисах, как http -in, https-in, smtp -in и ssh-in.

Механизм защиты от атак SYN Flood

Защиты от атак SYN Flood выполняется в течение трехкратного рукопожатия, которое происходит при установлении соединения с клиентом. В системе NetDefendOS как правило не происходит исчерпание ресурсов, так как выполняется более оптимальное управление ресурсами и отсутствуют ограничения, имеющие место в других операционных системах. В операционных системах могут возникнуть проблемы уже с 5 полуоткрытыми соединениями, не получившими подтверждение от клиента, NetDefendOS может заполнить всю таблицу состояний, прежде чем будут исчерпаны какие-либо ресурсы. Когда таблица состояний заполнена, старые неподтвержденные соединения отбрасываются, чтобы освободить место для новых соединений.

Обнаружение SYN Floods

Атаки TCP SYN flood регистрируются в логах NetDefendOS как большое количество новых соединений (или отброшенных пакетов, если атака направлена на закрытый порт ). Следует помнить, что в этом случае IP - адрес отправителя может быть подделан.

ALG автоматически обеспечивает защиту от flood-атак

Следует отметить, что нет необходимости включать функцию защиты от атак SYN Flood для сервиса, для которого указан ALG . ALG автоматически обеспечивает защиту от атак SYN flood .

Атака Jolt2

Принцип выполнения атаки Jolt2 заключается в отправке непрерывного потока одинаковых фрагментов компьютеру-жертве. Поток из нескольких сотен пакетов в секунду останавливает работу уязвимых компьютеров до полного прекращения потока.

NetDefendOS обеспечивает полную защиту от данной атаки. Первый полученный фрагмент ставится в очередь до тех пор, пока не придут предыдущие по порядку фрагменты, чтобы все фрагменты могли быть переданы в нужном порядке. В случае наличия атаки ни один фрагмент не будет передан целевому приложению. Последующие фрагменты будут отброшены, так как они идентичны первому полученному фрагменту.

Если выбранное злоумышленником значение смещения фрагмента больше, чем ограничения, указанные в настройках Advanced Settings -> Length Limit Settings в NetDefendOS, пакеты будут немедленно отброшены. Атаки Jolt2 могут быть зарегистрированы в логах. Если злоумышленник выбирает слишком большое значение смещения фрагмента для атаки, это будет зарегистрировано в логах как отброшенные пакеты с указанием на правило LogOversizedPackets. Если значение смещения фрагмента достаточно маленькое, регистрации в логах не будет. IP - адрес отправителя может быть подделан.

Атаки Distributed DoS (DDoS)

Наиболее сложной DoS-атакой является атака Distributed Denial of Service . Хакеры используют сотни или тысячи компьютеров по всей сети интернет , устанавливая на них программное обеспечение для выполнения DDoS-атак и управляя всеми этими компьютерами для осуществления скоординированных атак на сайты жертвы. Как правило эти атаки расходуют полосу пропускания, вычислительные мощности маршрутизатора или ресурсы для обработки стека протоколов, в результате чего сетевые соединения с жертвой не могут быть установлены.

Хотя последние DDoS-атаки были запущены как из частных, так и из публичных сетей, хакеры, как правило, часто предпочитают корпоративные сети из-за их открытого и распределенного характера. Инструменты, используемые для запуска DDoS-атак, включают Trin00, TribeFlood Network (TFN), TFN2K и Stacheldraht.

Описание практической работы

Общий список сигнатур

В веб-интерфейсе все сигнатуры перечислены в разделе IDP /IPS -> IDP Signatures.

IDP-правила

Правило IDP определяет, какой тип трафика необходимо анализировать. Правила IDP создаются аналогично другим правилам, например, IP -правилам фильтрования. В правиле IDP указывается комбинация адреса/интерфейса источника/назначения, сервиса, определяющего какие протоколы будут сканироваться. Главное отличие от правил фильтрования в том, что правило IDP определяет Действие, которое следует предпринять при обнаружении вторжения.

Веб-интерфейс:

IDP/IPS -> IDP Rules -> Add -> IDP Rule

Действия IDP

При выявлении вторжения будет выполнено действие, указанное в правиле IDP . Может быть указано одно из трех действий:

  1. Ignore – Если обнаружено вторжение, не выполнять никаких действий и оставить соединение открытым.
  2. Audit – Оставить соединение открытым, но зарегистрировать событие.
  3. Protect – Сбросить соединение и зарегистрировать событие. Возможно использовать дополнительную опцию занесения в "черный список" источник соединения.

Нормализация HTTP

IDP выполняет нормализацию HTTP ,т.е. проверяет корректность URI в HTTP -запросах. В IDP -правиле можно указать действие, которое должно быть выполнено при обнаружении некорректного URI .

IDP может определить следующие некорректные URI :

Некорректная кодировка UTF8

Выполняется поиск любых недействительных символов UTF8 в URI .

Некорректный шестнадцатеричный код

Корректной является шестнадцатеричная последовательность, где присутствует знак процента, за которым следуют два шестнадцатеричных значения, являющихся кодом одного байта. Некорректная шестнадцатеричная последовательность – это последовательность, в которой присутствует знак процента, за которым не следуют шестнадцатеричные значения, являющиеся кодом какого-либо байта.

Двойное кодирование

Выполняется поиск любой шестнадцатеричной последовательности, которая сама является закодированной с использованием других управляющих шестнадцатеричных последовательностей. Примером может быть последовательность %2526, при этом %25 может быть интерпретировано HTTP -сервером как %, в результате получится последовательность %26, которая будет интерпретирована как &.

Предотвращение атак, связанных со вставкой символов или обходом механизмов IDP

В IDP -правиле можно установить опцию Protect against Insertion/Evasion attack . Это защита от атак, направленных на обход механизмов IDP . Данные атаки используются тот факт, что в протоколах TCP / IP пакет может быть фрагментирован, и отдельные пакеты могут приходить в произвольном порядке. Атаки, связанные со вставкой символов и обходом механизмов IDP , как правило используют фрагментацию пакетов и проявляются в процессе сборки пакетов.

Атаки вставки

Атаки вставки состоят в такой модификации потока данных, чтобы система IDP пропускала полученную в результате последовательность пакетов, но данная последовательность будет являться атакой для целевого приложения. Данная атака может быть реализована созданием двух различных потоков данных.

В качестве примера предположим, что поток данных состоит из 4 фрагментов пакетов: p1, p2, p3 и p4. Злоумышленник может сначала отправить фрагменты пакетов p1 и p4 целевому приложению. Они будут удерживаться и системой IDP , и приложением до прихода фрагментов p2 и p3, после чего будет выполнена сборка . Задача злоумышленника состоит в том, чтобы отправить два фрагмента p2’ и p3’ системе IDP и два других фрагмента p2 и p3 приложению. В результате получаются различные потоки данных , который получены системой IDP и приложением.

Атаки обхода

У атак обхода такой же конечный результат, что и у атак вставки, также образуются два различных потока данных: один видит система IDP , другой видит целевое приложение , но в данном случае результат достигается противоположным способом, который заключается в отправке фрагментов пакетов, которые будут отклонены системой IDP , но приняты целевым приложением.

Обнаружение подобных атак

Если включена опция Insertion/Evasion Protect attacts, и

Выявление вторжений

1. Быстрое обнаружение вторжения позволяет идентифицировать и изгнать взломщика прежде чем он причинит вред.

2. Эффективная система обнаружения вторжений служит сдерживающим средством, предотвращающим вторжения.

3. 3 Обнаружение вторжений позволяет собирать информацию о методах вторжения, которую можно использовать для повышения надежности средств защиты.

Подходы к выявлению вторжений

· Выявление статистических отклонений (пороговое обнаружение, профильное обнаружение).

· Выявление на основе правил (выявление отклонений от обычных характеристик, идентификация проникновения –поиск подозрительного поведения).

Системы обнаружения вторжения (intrusion detection system - IDS) - это работающие процессы или устройства, анализирующие активность в сети или системе на предмет неавторизованных и/или злонамеренных действий. Некоторые системы IDS основаны на знаниях и заранее предупреждают администраторов о вторжении, используя базу данных распространённых атак. Системы IDS, основанные на поведении, напротив, обнаруживают аномалии, которые часто являются признаком активности злоумышленников, отслеживая использование ресурсов. Некоторые IDS - отдельные службы, работающие в фоновом режиме и анализирующие активность пассивно, регистрируя все подозрительные пакеты извне. Другие мощные средства выявления вторжений получаются в результате сочетания стандартных системных средств, изменённых конфигураций и подробного ведения журнала с интуицией и опытом администратора.

Основной инструмент выявления вторжений – записи данных аудита.

Аудит (auditing) – фиксация в системном журнале событий, происходящих в операционной системе, имеющих отношение к безопасности и связанных с доступом к защищаемым системным ресурсам.

· Регистрация успешных и неуспешных действий:

· Регистрация в системе;

· Управление учетной записью;

· Доступ к службе каталогов;

· Доступ к объекту;

· Использование привилегий;

· Изменение политики;

· Исполнение процессов и системные события.

Аудит включается в локальной (групповой) политике аудита.

Журнал безопасности содержит записи, связанные с системой безопасности.

Учет и наблюдение означает способность системы безопасности «шпионить» за выбранными объектами и их пользователями и выдавать сообщения тревоги, когда кто-нибудь пытается читать или модифицировать системный файл. Если кто-то пытается выполнить действия, определенные системой безопасности для отслеживания, то система аудита пишет сообщение в журнал регистрации, идентифицируя пользователя. Системный менеджер может создавать отчеты о безопасности, которые содержат информацию из журнала регистрации. Для «сверхбезопасных» систем предусматриваются аудио- и видеосигналы тревоги, устанавливаемые на машинах администраторов, отвечающих за безопасность.

Поскольку никакая система безопасности не гарантирует защиту на уровне 100 %, то последним рубежом в борьбе с нарушениями оказывается система аудита.

Действительно, после того как злоумышленнику удалось провести успешную атаку, пострадавшей стороне не остается ничего другого, как обратиться к службе аудита. Если при настройке службы аудита были правильно заданы события, которые требуется отслеживать, то подробный анализ записей в журнале может дать много полезной информации. Эта информация, возможно, позволит найти злоумышленника или по крайней мере предотвратить повторение подобных атак путем устранения уязвимых мест в системе защиты.

Подобные документы

    История развития стандарта SDH как системы высокоскоростных высокопроизводительных оптических сетей связи, его достоинства и недостатки. Измерение информации на сетях SDH, тестирование мультиплексорного оборудования. Измерения джиттера в сетях SDH.

    реферат, добавлен 10.11.2013

    Классификация информационных систем. Моделирование хранилищ данных. Системы поддержки принятия решений. Технические аспекты многомерного хранения данных. Системы автоматизации документооборота. Принципы иерархического проектирования корпоративных сетей.

    учебное пособие, добавлен 20.05.2014

    Понятие и изучение устройства корпоративных информационных систем; основные этапы их создания и методики внедрения. Описание моделей жизненного цикла программного обеспечения. Архитектура корпоративных компьютерных сетей, обеспечение их безопасности.

    контрольная работа, добавлен 21.03.2013

    Атаки на беспилотные летательные аппараты. Этапы воздействия на беспилотные авиационные комплексы и взаимодействующие сети и системы. Угрозы и уязвимые места беспилотных летательных аппаратов. Методы обнаружения и обезвреживания компьютерных атак.

    статья, добавлен 02.04.2016

    Разработка и проектирование информационного и программного обеспечения системы аттестационного тестирование по информатике. Архитектура и платформа реализации системы. Выбор технических средств и ресурсный анализ системы управления базами данных.

    дипломная работа, добавлен 08.10.2018

    Анализ и характеристика информационных ресурсов предприятия ООО "Овен". Цели и задачи формирования системы ИБ на предприятии. Предлагаемые мероприятия по улучшению системы информационной безопасности организации. Модель информационной защиты информации.

    курсовая работа, добавлен 03.02.2011

    Использование компьютерных технологий тестирования, их описание, значение и достоинства. Разработка технического задания для создания информационной системы. Выбор технического и программного обеспечения, проектирование приложения системы тестов.

    дипломная работа, добавлен 03.03.2015

    Компания "Гарант" как одна из крупнейших российских информационных компаний, история ее развития. Характеристика справочно-правовой системы "Гарант": услуги, клиентура, особенности функционирования. Главные преимущества поисковой системы "Гарант".

    реферат, добавлен 19.05.2013

    Определение информационной безопасности, ее угрозы в компьютерных системах. Базовые понятия политики безопасности. Криптографические методы и алгоритмы защиты компьютерной информации. Построение современной системы антивирусной защиты корпоративной сети.

    учебное пособие, добавлен 04.12.2013

    Общие принципы организации и функционирования сетевых технологий. Взаимодействие компьютеров в сети. Системы передачи данных и множество вычислительных сетей. Процесс маршрутизации и доменной системы имён в сети Интернет. Особенности DNS-сервиса.