Аккумуляторы для мобильных устройств. Батареи в мобильных устройствах: Все, что нужно знать

Аккумуляторы для мобильных устройств

Устройство и основные параметры

Сотовые телефоны и переносные компьютеры, радиостанции и радиотелефоны, источники бесперебойного питания, кинокамеры и фотоаппараты, ручные мощные инструменты, медицинские приборы, разнообразное производственное оборудование — вот далеко не полный перечень устройств, нормальная работоспособность которых напрямую зависит от состояния аккумуляторов. В связи с этим, знание характеристик, особенностей и условий эксплуатации различных типов аккумуляторов приобретает особое значение и является залогом безотказной работы мобильных устройств и портативного оборудования.

Если Вы любопытны и обладаете некоторыми навыками по порче игрушек, приобретенными еще в детстве, то уже наверняка познакомились с внутренним устройством своего бывшего в эксплуатации аккумулятора. Что же там внутри? (Не советую разбирать, это связано с риском получения физических повреждений). Вообще то ничего особенного. Круглые или призматические «батарейки», каких навалом в ближайшем магазине, причем по гораздо более низкой цене. Однако первое впечатление — обманчиво. Перед Вами не просто батарейки, а аккумуляторы. И отличаются они от батареек тем, что допускают (в силу обратимости протекающих в них реакций) многократные циклы разряда — заряда. В этом их преимущество перед батарейками, но с другой стороны и «головная боль», которую они приносят в случае потери работоспособности. И если с первыми все просто: купил, вставил, истощились, выбросил и купил новые, то с аккумуляторами дело обстоит сложнее. Для них последовательность действий иная: купил; подготовил к работе; пользуешься, соблюдая правила эксплуатации; и только когда уже совсем невмоготу — покупаешь новый.

Итак, чтобы не было мучительно больно за бесцельно потраченные деньги, ниже информация для любопытных и любознательных на тему: что нужно знать об аккумуляторах для мобильных телефонов и портативных компьютеров.

Устройство

Любой аккумулятор, как правило, состоит из нескольких единичных элементов, соединенных последовательно для увеличения значения вырабатываемого напряжения и упакованных в общий корпус. С конструкцией единичного элемента аккумулятора, например никель-металлгидридного, с электрохимическими реакциями, проходящими внутри него, и другими полезными сведениями (на английском языке) можно познакомиться на сайте фирмы Panasonic , загрузив файл в формате pdf Overview information on NiMH Batteries in PDF Format — 137KB .

Кроме единичных элементов аккумуляторы на основе никеля содержат внутри тепловой предохранитель и датчик температуры (последний в NiCd аккумуляторах может отсутствовать). Тепловой предохранитель обеспечивает безопасность при больших токах заряда, а выходной сигнал датчика температуры обрабатывается зарядным устройством. В зависимости от значения температуры «грамотное» зарядное устройство обеспечивает различные режимы заряда аккумулятора: быстрый, медленный и переключение от одного к другому.

Литий-ионные аккумуляторы помимо теплового предохранителя и датчика температуры содержат специальную управляющую интегральную схему и управляющие ключи. Все это в совокупности призвано защитить потребителя от физических повреждений в случае нарушения электрических режимов эксплуатации аккумулятора.

ОСНОВНЫЕ ПАРАМЕТРЫ АККУМУЛЯТОРОВ

Да будет Вам известно, что аккумулятор, как электрический прибор, характеризуется следующими основными параметрами: типом электрохимической системы, напряжением, электрической емкостью, внутренним сопротивлением, током саморазряда и сроком службы. Причем, в зависимости от сферы применения на первый план выступают то одни параметры, то другие. Например, аккумулятор для сотовых телефонов должен оцениваться по совокупности значений трех его основных характеристик: реальной емкости, внутреннему сопротивлению и току саморазряда, а аккумулятор домашнего радиотелефона с радиусом действия до 100 метров достаточно оценить только по емкости и саморазряду. При недооценке или игнорировании какого-либо параметра или преувеличении важности одного из них (как правило, емкости) можно оказаться в ситуации «у разбитого корыта».

Напряжение . Напряжение аккумулятора определяется тем устройством, для питания которого он предназначен. Если требуемое значение напряжения не обеспечивается одним элементом, то аккумулятор собирается из нескольких элементов, соединенных последовательно. Например, в сотовых телефонах различных моделей используются аккумуляторы напряжением 3,6 В (1 Li-ion элемент или 3 NiCd, или 3 NiMH элемента), 4,8 В (только 3 NiCd или 3 NiMH элемента), 6 В (только 5 NiCd или 5 NiMH элементов), 7,2 В (2 Li-ion элемента). Таким образом, если в телефоне используются 4 NiMH аккумулятора общим напряжением 4,8 В (как, например, в некоторых последних моделях фирмы Ericsson), то использование в нем Li-ion аккумуляторов невозможно. Напряжение аккумулятора в процессе работы не постоянно. Оно максимально сразу после окончания заряда, а затем в процессе работы или хранения уменьшается. В конце концов, оно уменьшается до такой величины, что сотовый телефон не включается или автоматически выключается. При оценке состояния аккумулятора измерение его напряжения необходимо производить под нагрузкой, на которую он рассчитан.

Электрическая емкость . Номинальная электрическая емкость — это то количество энергии, которым аккумулятор теоретически должен обладать в заряженном состоянии. Данный параметр аналогичен емкости какого-либо сосуда, например, стакана. Так в стандартный граненый стакан можно налить 200 мл воды (по ободок), в конкретный аккумулятор можно закачать также лишь вполне определенное количество энергии. Но определяется это количество энергии (емкость) не в момент закачивания (заливания), а при обратном процессе — разряде (выливании энергии) аккумулятора постоянным током в течение измеряемого промежутка времени до момента достижения заданного порогового напряжения. Измеряется емкость соответственно в ампер-часах (А·час) или миллиампер-часах (мА·час) и обозначается буквой «С». Значение емкости указывается на этикетке аккумулятора или зашифровано в обозначении его типа. Реальное значение емкости нового аккумулятора на момент ввода его в эксплуатацию колеблется от 80 до 110% от номинального значения и зависит: от фирмы-изготовителя, условий и срока хранения и технологии ввода в эксплуатацию. Теоретически аккумулятор, например, номинальной емкостью 1000 мА*час может отдавать ток 1000 мА в течение одного часа, 100 мА в течение 10 часов, или 10 мА в течение 100 часов. Практически же, при высоком значении тока разряда номинальная емкость не достигается, а при низком токе — превышается.

В процессе эксплуатации емкость аккумулятора уменьшается. Скорость уменьшения зависит от типа электрохимической системы, технологии обслуживания в процессе работы, используемых зарядных устройств, условий и срока эксплуатации. Используя ту же аналогию со стаканом, можно сказать, что количество наливаемой в стакан воды будет уменьшаться, если будете наливать воду с большим количеством механических примесей, а сливать — отстоявшуюся. Тогда в стакане постепенно будет накапливаться осадок, уменьшающий его полезную емкость. В аккумуляторе подобный «осадок» образуется в процессе циклов заряда / разряда.

Внутреннее сопротивление . Внутреннее сопротивление аккумулятора (сопротивление источника тока) определяет его способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома (вспомните курс школьной физики). При низком значении внутреннего сопротивления, аккумулятор способен отдать в нагрузку больший пиковый ток (без существенного уменьшения напряжения на его выводах), а значит и большую пиковую мощность. В то время как высокое значение сопротивления приводит к резкому уменьшению напряжения на выводах аккумулятора при резком увеличении тока нагрузки. Такой коллапс (уменьшение) напряжения характеризует «слабость» внешне хорошего аккумулятора, потому что запасенная энергия не может быть полностью выдана в нагрузку.

Другими словами, все вышесказанное о внутреннем сопротивлении аккумулятора может быть проиллюстрировано следующим образом. Представим себе, что Вам необходимо за час полить садовый участок из бака (аккумулятор), который Вы ранее заполнили водой. При нормальном положении вещей Вы подключаете к сливному крану шланг, полностью открываете кран и поливаете участок в течение часа до тех пор, пока вода в баке не закончится. А теперь предположим, что сливной кран у вашего бака заклинило, открыть его можно только чуть-чуть и вода сочится из него лишь тоненькой струйкой. Вроде бы и вода в баке есть (аккумулятор заряжен), а нормально поливать невозможно. Кран в данном случае играет роль внутреннего сопротивления для бака. Если струя из крана большая, то внутреннее сопротивление бака мало, если — маленькая — внутреннее сопротивление бака большое.

Что имеем практически? Сотовый телефон в режиме ожидания потребляет от аккумулятора небольшой ток и пропускной способности крана его аккумулятора вполне хватает для питания телефона. Как только поступает входящий звонок или Вы начинаете делать исходящий, телефону требуется в десятки раз больше энергии для нормальной работы в режиме передачи, поэтому требуется увеличить пропускную способность крана. Если кран — нормальный, то он пропустит через себя этот увеличенный поток энергии, если его — заклинило, то — нет, и телефон отключается. Это особенно характерно для сотовых телефонов стандартов NMT, AMPS, транковых и обычных радиостанций, портативных компьютеров.

Внутреннее сопротивление аккумулятора зависит от типа его электрохимической системы, емкости, числа элементов в аккумуляторе, соединенных последовательно, и возрастает к концу срока эксплуатации.

Саморазряд . Явление саморазряда в большей или меньшей степени характерно для всех типов аккумуляторов и заключается в потере ими своей емкости после того, как они были полностью заряжены. Для количественной оценки саморазряда удобно использовать величину потерянной ими за определенное время емкости, выраженную в процентах от значения, полученного сразу после заряда. За промежуток времени, как правило, принимается интервал времени, равный одним суткам и одному месяцу. Так, например, для исправных NiCd аккумуляторов считается допустимым саморазряд до 10% в течение первых 24 часов после окончании заряда, для NiMH — немного больше, а для Li-ion пренебрежимо мал и оценивается за месяц. Следует отметить, что саморазряд аккумуляторов максимален именно в первые 24 часа после заряда, а затем значительно уменьшается.

Саморазряд аккумуляторов зависит от качества использованных материалов, технологического процесса изготовления, типа и конструкции аккумулятора. Он резко возрастает при повышении окружающей температуры, повреждении внутреннего сепаратора аккумулятора из-за неправильного обслуживания и вследствие процесса старения.

Срок службы (срок эксплуатации) аккумулятора . Его принято оценивать по количеству циклов заряда / разряда, которое аккумулятор выдерживает в процессе эксплуатации без значительного ухудшения своих основных параметров: емкости, саморазряда и внутреннего сопротивления. Срок службы зависит от многих факторов: методов заряда, глубины разряда, процедуры обслуживания или его отсутствия, температуры и электрохимической природы аккумулятора. Кроме того, он определяется временем, прошедшим со дня изготовления, особенно для Li-ion аккумуляторов. Аккумулятор, как правило, считается вышедшим из строя после уменьшения его емкости ниже 80% от номинального значения.

Для более подробного и профессионального ознакомления с аккумуляторами можно порекомендовать сайт фирмы Panasonic , где приведены подробнейшие справочные данные и аналитические материалы о NiCd, NiMH, Li-ion аккумуляторах, производимых этой фирмой (на английском языке). К сожалению, фирма не дала разрешения на перевод и публикацию этой информации на русском языке, сославшись на отсутствие ее представительства в России в этой области и невозможности оценки переведенных материалов. Но размещенные там сведения представляют определенный интерес как для разработчиков аппаратуры с питанием от аккумуляторов, так и для пользователей, поэтому ниже приведен краткий перечень освещаемых там вопросов:

  • внешний вид;
  • внутреннее устройство;
  • электрохимические реакции, происходящие внутри аккумулятора;
  • особенности;
  • пять основных характеристик: зарядные, разрядные, число циклов заряда / разряда, хранение (саморазряд), безопасность с графиками и пояснениями;
  • методы заряда;
  • упаковка элементов в аккумуляторы;
  • предосторожности при разработке устройств с аккумуляторами.

При написании статьи использованы материалы, любезно предоставленные г-ном Isidor Buchmann, основателем и главой Канадской компании Cadex Electronics Inc. .

Более подробная информация на русском языке об аккумуляторах для мобильной техники связи, компьютеров и других портативных приборов, советы по эксплуатации и обслуживанию приведены в

ССЫЛКИ

  1. Cadex Electronics Inc. , Vancouver, BC , Canada — разработчик и производитель зарядных устройств, анализаторов и систем обслуживания аккумуляторов (на английском языке).
  2. Аккумуляторы для мобильных устройств и портативных компьютеров . Анализаторы аккумуляторов (на русском языке).
  3. , производимых фирмой Panasonic (на английском языке).

Новая и правильно заряженная аккумуляторная батарея сотового телефона (АКБ) практически не требует дополнительного обслуживания и особого внимания. А если она уже не новая? Если она заряжена неправильно? Что тогда делать?

Устройство АКБ сотового телефона, ее основные электрические характеристики и правила использования

АКБ, изготовленные по разной технологии (и, соответственно, имеющие своеобразные предназначения), применяют не только в сотовых телефонах. А также в радиотелефонах, портативных игрушках (например, «мерцающий фонарь»), калькуляторах, ноутбуках, КПК, фотоаппаратах, электронных тетрадях pi в других популярных электронных устройствах бытового и специального назначения. АКБ, применяемые в сотовых телефонах, разделяют на следующие типы, отличающиеся по технологии изготовления:

Никель-кадмиевые - NiCd (Nickel Cadmium);

Никель-металлгидридные - NiMH (Nickel Metal-Hydride);

Литий-ионные - Li-ion (Lithium Ion);

Литий-полимерные - Li-pol (Lithium Polymer).

На рис. 12 представлены АКБ к различным современным сотовым телефонам.

Никель-кадмиевые батареи самые распространенные и дешевые. Это своеобразный ветеран на рынке мобильных устройств связи. Отлаженная технология и надежная работа обеспечили им широкое применение для питания портативной техники и оборудования. К основным достоинствам никель-кадмиевых АКБ относятся:

Превосходная работоспособность в широком диапазоне температур окружающей среды, в том числе

Рис. 12. АКБ к различным сотовым телефонам с разным номинальным напряжением

возможность заряда при отрицательных температурах;

Способность отдавать в нагрузку большой ток;

Длительный срок службы - свыше 1000 циклов заряда/разряда при правильной эксплуатации и обслуживании;

Низкая чувствительность к неправильной эксплуатации;

Легкое восстановление при понижении емкости и после длительного хранения;

Низкая цена.

В NiCd АКБ рабочее вещество находится в виде мелких кристаллов, что обеспечивает максимальную площадь их соприкосновения с электролитом. При неблагоприятных условиях эксплуатации кристаллы укрупняются до размеров в 150 раз превосходящих первоначальные, что приводит к резкому уменьшению площади активной поверхности. Как следствие, снижается напряжение и уменьшается энергетическая емкость.

В некоторых случаях острые грани кристаллов даже прокалывают сепаратор, вызывая быстрый саморазряд или короткое замыкание.

Среди других недостатков АКБ этого типа можно отметить: необходимость периодической полной разрядки для сохранения эксплуатационных свойств (устранения эффекта памяти), быстрый саморазряд (до 10% в течение первых 24 часов), относительно маленькая плотность энергии (отношение емкости к габаритам и массе) и большие габариты (по сравнению с АКБ других типов). К их минусам относится «недружественность» к окружающей среде, ведь они содержат кадмий и требуют специальной утилизации. Из-за больших габаритов и проблем с утилизацией NiCd они давно покинули рынок сотовых телефонов и встречались только на заре массового развития рынка сотовых телефонов, например, в аппаратах фирмы Моторола модели Т-192.

На смену им первыми пришли никель-металлгидрид- ные батареи, но их разрекламированные преимущества на деле не оправдали ожиданий потребителей из-за небольшого срока службы. Эта ситуация выправляется благодаря технологическому прогрессу в их производстве. Отличительные преимущества NiMH-батарей:

Их емкость примерно на 30% больше емкости NiCd-батарей при тех же габаритах;

Они меньше склонны к эффекту памяти, чем NiCd-батареи (периодические циклы восстановления нужно выполнять реже);

Низкая токсичность (NiMH-технология считается экологически чистой).

NiMH-батареи тоже имеют много недостатков. По сравнению с NiCd-батареями у них меньший срок службы - около 500 циклов «заряда/разряда», более быстрый саморазряд (в 1,5-2 раза) и более высокая себестоимость.

Потеря заряда соответственно вызывает и их старение. У относительно изношенной батареи пластины электродов разбухают и начинают слипаться друг с другом, что приводит к повышению тока саморазряда. Укрупнение кристаллических образований в NiCd-бата- реях на основе никеля происходит в основном из-за слишком долгого нахождения ее в зарядном устройстве и многократного заряда без периодического полного разряда. Разукрупнить кристаллические образования позволяет проведение такой процедуры, как тренировка, которую достаточно проводить один раз в 30-60 дней.

В настоящее время (уже несколько лет) сотовые телефоны различных производителей комплектуются исключительно батареями Li-ion.

Литий-ионные батареи завоевывали позиции на рынке устройств мобильной связи. Это обусловлено их преимуществами по сравнению с предыдущими типами АКБ:

Высокая плотность электрической энергии (вдвое большая, чем у NiCd-батареи того же размера, а значит, и вдвое меньшие габариты при той же емкости);

Медленный саморазряд (примерно 2-5% в месяц, а также примерно 3% на питание встроенной электронной схемы защиты);

Отсутствие каких-либо требований к обслуживанию, за исключением требования длительного хранения в заряженном состоянии.

Недостатки популярных аккумуляторных батарей

Батареи некоторых производителей работают только при положительных температурах, все АКБ, созданные по данной технологии, дороги и подвержены процессу старения, даже если они не используются. Уменьшение емкости наблюдается примерно после 1 года хранения. После 2 лет хранения такая батарея, как правило, становится неисправной. Поэтому не рекомендуется хранить

Li-ion – аккумуляторы в течение длительного времени без дела - нужно использовать их, пока они новые.

Li-ion-батареи повреждаются при заряде в «чужих» зарядных устройствах, а также при хранении в чрезмерно разряженном состоянии. Уменьшение емкости Li-ion- батарей необратимо, так как используемые в них токсичные материалы рассчитаны на работу только в течение определенного времени (к концу срока службы батареи токсичность применяемых в них веществ снижается).

Литий-полимерные батареи появились на рынке сотовых телефонов и портативных компьютеров пару лет назад, они немного дешевле, чем литий ионные батареи при одинаковой плотности энергии. Выдерживают мало (по сравнению с Li-ion АКБ) циклов заряда/разряда, что, конечно же, не удовлетворяет массового производителя телефонов.

Литий-полимерные батареи изготавливаются в пластичных геометрических формах, нетрадиционных для обычных батарей. Они весьма тонкие по толщине и способны заполнять любое свободное место.

Основными параметрами аккумуляторной батареи сотового телефона являются:

Электрическая емкость;

Внутреннее сопротивление;

Напряжение;

Саморазряд;

Срок службы.

Электрическая емкость АКБ состоит из номинальной и реальной. Номинальная электрическая емкость - это то количество энергии, которым батарея теоретически должна обладать в заряженном состоянии. Данный параметр аналогичен емкости, например, стакана. Так же как в стандартный граненый стакан можно налить 200 мл жидкости, так и в батарею можно «закачать» лишь вполне определенное количество энергии. Но определяется это количество энергии не в момент заряда, а при обратном процессе (при разряде батареи постоянным током) в течение измеряемого промежутка времени до момента достижения заданного порогового напряжения. Измеряется емкость в ампер-часах (А/ч) или миллиампер-часах (мА/ч) и обозначается буквой С. Значение номинальной емкости батареи, как правило, зашифровано в ее обозначении (см. рис. И). Современные сотовые телефоны конкурируют между собой по миниатюрным размерам без потери длительности ожидания и разговора. Их АКБ, как правило, имеют емкость 700 мА/ч. Реальное значение емкости новой батареи на момент ввода ее в эксплуатацию колеблется от 80 до 110% номинального значения. Оно зависит от фирмы изготовителя, условий и срока хранения, а также от технологии ввода в эксплуатацию. Нижний предел (80%) обычно рассматривается как минимально допустимое значение для новой батареи. Например, батарея с номинальной емкостью 1000 мА/ч может отдавать ток 1000 мА в течение 1ч, 100 мА - в течение 10 ч, или 10 мА в течение 100 ч.

На практике, при высоком токе разряда, номинальной емкости АКБ достичь трудно, а при низком зарядном токе - она превышает расчетную. В процессе эксплуатации емкость батареи уменьшается. Скорость уменьшения зависит от типа батареи, технологии обслуживания в процессе работы, используемых зарядных устройств, условий и длительности эксплуатации. Внутреннее сопротивление батареи определяет ее способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома. При низком значении внутреннего сопротивления батарея способна отдать в нагрузку больший пиковый ток (без существенного уменьшения напряжения на ее выводах), а значит, и большую пиковую мощность, в то время как высокое значение сопротивления приводит к резкому уменьшению напряжения на выводах батареи при резком увеличении тока нагрузки. Это приводит к тому, что внешне хороший аккумулятор не может полностью отдать запасенную в нем энергию в нагрузку.Регулировка громкости в высококачественной радиоаппаратуре

Особенностью нашего слуха является неодинаковая чувствительность к звуковым колебаниям разных частот: на низших и высших частотах она меньше, чем на средних. Статистическими исследованиями на больших группах слушателей были найдены кривые…….

Простой метод проверки трансформатора или магнетрона. Необходимо снять клемму с магнетрона, отвести ее в сторону, чтобы не пробило высокое напряжение, затем включить печь в рабочий режим на несколько секунд, выключить…….

Если неизвестна внутренняя структура элемента (например микросхемы), то его можно попытаться проверить путем сравнения с таким же, но заведомо исправным. Проводится поочередная про- звонка цепей обоих элементов (при разных полярностях…….

Аккумуляторы для телефонов устройство, классификация, отличия

Аккумуляторы

Приобретая мобильный телефон, человек, как правило, меньше всего задумывается над сроком его безотказной работы. А если и задумывается, то связывает его прежде всего с ненадежностью микросхем, радиоэлементов и механическими повреждениями. Исследования показывают, что первое место по отказам занимают элементы питания. В настоящее время в мобильных телефонах используют никель-кадмиевые (NiCd), никель-металл-гидридные (NiMH), литий-ионные (Li-Ion) и литий-полимерные (Li-Polymer) аккумуляторные батареи. Рассмотрим характеристики аккумуляторов.

Емкость аккумулятора

Емкость аккумулятора – максимальное количество электричества, которое можно получить от одной полной зарядки. Обозначается латинской буквой С и выражается в ампер-часах (А-ч) или миллиампер-часах (мА-ч). Так, например, аккумулятор емкостью 720 мА-ч способен отдавать в нагрузку ток 720 мА в течение оного часа или 360 мА в течение двух часов. При этом, конечно, разрядный ток не должен превышать некоторой максимальной силы для конкретного типа аккумулятора, иначе его пластины быстро выйдут из строя.

Внутреннее сопротивление аккумулятора

Чем оно меньше, тем больший ток способен отдать аккумулятор в нагрузку. Это очень важная характеристика. В режиме приема мобильный телефон потребляет небольшой ток. Однако во время разговора ток резко возрастает. В этом случае аккумуляторы с различным внутренним сопротивлением ведут себя по-разному. Никель-кадмиевые, обладающие наименьшим внутренним сопротивлением, легко отдают требуемый ток. Никель-металл-гидридные обладают самым высоким сопротивлением, поэтому дают просадку напряжения, которая может привести к сбоям либо ваш телефон выдаст сигнал, что аккумулятор разряжен. Так как мобильные телефоны в процессе работы потребляют более или менее стабильный ток, то для их питания применяют литий-ионные либо литий-полимерные аккумуляторы. Никель-металл-гидридные применяют при питании устройств, потребляющих стабильный ток.

Плотность энергии (Energy Density) заряженной батареи

Измеряется в ватт-часах, отнесенных к килограмму массы аккумулятора (встречается и к литру объема). Здесь лидируют литий-ионные и литий-полимерные аккумуляторы (110... 160 Вт/кг), заметно уступают им аккумуляторы 100… 130 Вт/кг. Никель-металл-гидридные аккумуляторы имеют этот показатель 60… 120, никель-кадмиевые - 45… 80 Вт х ч/кг. Из сказанного следует, что наименьшими размерами и весом при одинаковой емкости обладают литий-полимерные и литий-ионные аккумуляторы, несколько большими - никель-металл-гидридные. А литий-полимерным аккумуляторам можно придать практически любую форму.

Время заряда аккумулятора

Это довольно важная характеристика, поскольку при интенсивной эксплуатации аккумуляторы мобильных телефонов приходится заряжать почти ежедневно. Варьируется от 1 часа у никель-кадмиевых (при необходимости их можно зарядить за 15 минут) и 2… 4 часов у никель-металл-гидридных, литий-ионных и литий-полимерных.

Номинальное напряжение одного элемента

У никель-кадмиевых и никель-металл-гидридных аккумуляторов номинальное напряжение составляет 1,25 В, у литий-ионных и литий-полимерных - 3,6 В. Причем у первых двух типов напряжение в процессе разряда практически стабильно, в то время как у литий-ионных аккумуляторов в процессе разряда оно линейно снижается от 4,2 до 2,8 В.

Саморазряд аккумулятора

Саморазряд - уменьшение заряда заряженного, но не подключенного к потребителю энергии аккумулятора в процессе его хранения. Для никель-кадмиевых аккумуляторов это одно из слабых мест. У них потеря заряда достигает 10% в первые сутки после зарядки, а затем по 10% в месяц. Примерно такой же показатель и у никель-металл-гидридных аккумуляторов. Вне конкуренции по этому показателю литий-ионные и литий-полимерные аккумуляторы. У них саморазряд не превышает 2 – 5% в месяц, который происходит в основном из-за наличия схем контроля внутри аккумуляторов. Однако ограниченное время «жизни» этих аккумуляторов не дает полностью использовать это положительное качество.

Срок службы

Это одна из важнейших характеристик аккумуляторов, о которой пользователь задумывается почему-то в последнюю очередь. Для аккумуляторов с различной химией он определяется по-разному. Для одних аккумуляторов критичным является общее число рабочих циклов «заряд - разряд», в то время как для других - общее время их эксплуатации.
Никель-кадмиевые аккумуляторы выдерживают более 1500 циклов «заряд - разряд», и как показывает опыт, после восстановления могут проработать еще столько же. При правильном периодическом обслуживании никель-кадмиевые аккумуляторы служат от 5 до 10 и более лет, вплоть до механического износа их корпуса и внутренних контактов.
Никель-металл-гидридные аккумуляторы выдерживают около 500 циклов «заряд - разряд» и срок их службы редко превышает два года даже при весьма аккуратном их обслуживании.
Литий-ионные аккумуляторы можно заряжать-разряжать от 500 до 1000 раз. Но это число циклов полностью выбрать затруднительно из-за короткого срока службы - не более двух лет (по заявлениям производителей). Практически же литий-ионные аккумуляторы теряют свои эксплуатационные качества уже через год.
У литий-полимерных аккумуляторов число циклов «заряд - разряд» колеблется от 300 до 500, и они также редко служат более года. Кроме того, срок службы зависит и от степени разряда - при частичных разрядах он больше, чем при полных.
Никель-кадмиевые аккумуляторы имеют наименьшее время заряда, допускают наибольший ток нагрузки и обладают наименьшим соотношением цена - срок службы, но в то же время они наиболее критичны к точному соблюдению требований по правильной эксплуатации.

Характеристика/тип

Li-Polymer

Внутреннее сопротивление

Число циклов «заряд - разряд» до снижения емкости на 80%/срок службы

500-1000/1,5 года

300-500/1,5 года

Время быстрого заряда, ч

Токи нагрузки относительно емкости (С) - пиковый

Токи нагрузки относительно емкости (С) - наиболее приемлемый

Плотность энергии, Вт/кг

Саморазряд за месяц при комнатной температуре, /%

Обслуживание через

Напряжение на элементе, В

Диапазон рабочих температур, ° С

Год выхода на рынок

Сравнительная характеристика аккумуляторов

Эффект памяти

Это общеизвестная проблема для никель-кадмиевых и никель-металл-гидридных аккумуляторов. Эффект памяти состоит в частичной (временной) потере емкости аккумулятора, если он будет поставлен на зарядку до полного разряда. Аккумулятор как бы помнит точку начала очередного цикла подзарядки и при разрядке активно отдает только полученную во время последней подзарядки емкость. Иными словами, не полностью разряженный аккумулятор помнит свою предыдущую емкость и, будучи снова полностью заряженным, при разряде отдает только такой заряд, какой он отдал в предыдущем цикле разряда. Проявляется в том, что напряжение в цепи нагруженного и, казалось бы, нормально заряженного аккумулятора внезапно, раньше времени, падает. Эффект памяти реально проявляется в том, что в повседневной жизни пользователи редко дожидаются полной разрядки аккумуляторов перед тем, как поставить их на зарядку.
Физическая суть эффекта памяти заключается в том, что при неполном разряде аккумулятора происходит укрупнение частиц рабочего вещества аккумулятора, соответственно общая площадь соприкосновения рабочего вещества с электролитом уменьшается. Вследствие этого всего за несколько месяцев емкость никель-кадмиевого или никель-металл-гидридного аккумулятора может сократиться в несколько раз.
Поэтому весьма важными для этих типов батарей являются периодические обслуживания, которые состоят в полной разрядке, а затем в полной зарядке аккумулятора. Этот процесс принято называть тренировкой аккумулятора. Никель-кадмиевые аккумуляторы требуют ежемесячной тренировки, никель-металл-гидридные - раз в два-три месяца.
При заметном уменьшении емкости никель-кадмиевых и никель-металл-гидридных аккумуляторов их подвергают процедуре восстановления. Она заключается в очень глубоком разряде аккумулятора, дробящем крупные частицы рабочего вещества на более мелкие. Для этого имеется специальное оборудование, к примеру, анализатор аккумуляторных батарей С7000 канадской фирмы CADEX. Литий-ионные и литий-полимерные аккумуляторы не обладают эффектом памяти.

Устройство

Каждый аккумулятор имеет два электрода - положительный и отрицательный. Между электродами помещается разделительный слой, препятствующий разноименным электродам внутри аккумулятора соприкасаться друг с другом. Пространство между электродами заполнено электролитом (кислотным либо щелочным). Электроды могут быть выполнены как чередующиеся пластины.
Вначале аккумуляторы имели пробки, позволявшие стравливать выделяющиеся при заряде газы и сменять электролит. Позднее разработчики придумали изготавливать разные по размерам электроды, что позволило весь выделяющийся газ поглощать непрореагировавшей частью внутри аккумулятора. А это дало возможность производить аккумуляторы в герметичном корпусе.
В корпусах многих моделей аккумуляторов имеется встроенная электроника, не допускающая глубокого разряда, чрезмерного заряда или высокой температуры.

Заряд аккумуляторов

На сегодняшний день применяют три основных метода заряда аккумуляторов:
- нормальный или медленный заряд;
- быстрый заряд;
- скоростной заряд.

Отключение аккумулятора по окончании заряда производится с использованием:
- контроля температуры;
- контроля напряжения заряда;
- контроля спада напряжения заряда;
- контроля тока в конце заряда;
- таймера.

Нормальный или медленный заряд. Этот метод хотя и редко, но применяют для заряда никель-кадмиевых и никель-металл-гидридных аккумуляторов. Он дешевый, но приводит к кристаллизации элементов аккумулятора, что снижает емкость и срок службы. Для заряда литий-ионных и литий полимерных аккумуляторов данный метод применять нельзя, так как происходят необратимые изменения внутренней структуры аккумуляторов.
Зарядное устройство представляет собой источник постоянного напряжения, в выходную цепь которого последовательно включен задающий ток резистор. Зарядный ток аккумуляторов принято численно выражать в частях емкости аккумулятора С. Ток нормального заряда составляет приблизительно 0,1С. Таким образом при емкости аккумулятора 720 мА/час величина 0,1С будет составлять 72 мА.

Быстрый заряд. Используется только для заряда никель-кадмиевых аккумуляторов током 0,5С. Окончание заряда определяется достижением напряжения на аккумуляторе определенной величины.

Скоростной заряд. Характеризуется зарядным током 1С и включает в себя все способы отключения аккумулятора по окончании заряда.
Для заряда никель-кадмиевых и никель-металл-гидридных аккумуляторов применяют метод контроля окончания заряда по резкому незначительному снижению напряжения на аккумуляторе. Его называют отрицательным дельта V-зарядом. Его величина составляет 10…30 мВ на элемент.
Метод контроля температуры использует то, что в конце заряда проходит более интенсивный нагрев аккумулятора, и окончание заряда можно контролировать по скорости изменения температуры. При заряде никель-кадмиевых и никель-металл-гидридных аккумуляторов окончание заряда определяется в том случае, если изменение температуры достигнет 1°С/мин. Абсолютным порогом перегрева считается 60 °С.
Губительное действие на аккумулятор оказывает перезаряд, особенно если по окончании заряда его принудительно отключают, а затем снова подключают к зарядному устройству. При каждой такой операции инициируется цикл скоростного заряда при его высоком начальном токе. Частые подключения устройств, имеющих никель-кадмиевые и никель-металл-гидридные аккумуляторы, к внешним источникам питания значительно сокращают срок службы аккумуляторов.
Зарядные устройства литий-ионных аккумуляторов умеют определять степень заряда аккумулятора.
Особенностью заряда литий-ионных и литий-полимерных аккумуляторов является ограничение напряжения заряда. В настоящее время эти аккумуляторы можно заряжать до 4,20 В. Допустимое отклонение составляет 0,05 В.
При заряде литий-ионных и литий-полимерных аккумуляторов током 1С время заряда составляет 2-3 часа. В процессе заряда они не нагреваются. Аккумулятор достигает состояния полного заряда, когда напряжение на нем достигает 4,20 В + 0,05 В, а ток при этом значительно снижается и составляет примерно 3% от начального тока заряда.

Иногда приходится заряжать полностью разряженные аккумуляторы. В телефоне такой заряд осуществляется автоматически. А если отсутствует зарядное устройство?

При отсутствии специального зарядного устройства заряд аккумуляторов можно осуществить при помощи источника питания с регулируемым на выходе напряжением и максимальным рабочим током 2А и приборами контроля тока и напряжения следующим образом.

Каждый день мы пользуемся электронными устройствами – телефонами, планшетами, плеерами и многим другим. Вся эта техника, как правило, работает на литий-ионных аккумуляторах – самом популярном виде батарей. И несмотря на то, что любой современный человек имеет при себе как минимум смартфон, далеко не каждый знает о связанных с ним рисках.

Статьи в интернете пугают пользователей историями о взорвавшихся аккумуляторах, о жутких последствиях их неправильного использования или утилизации. Одни смотрят на эти статьи скептически – ведь сотни тысяч людей ежедневно пользуются смартфонами и планшетами на литий-ионных батареях, и не испытывают трудностей. Другие начинают опасливо коситься на собственные гаджеты. Чтобы понять, так ли опасен аккумулятор и как с ним следует обращаться, стоит разобраться в самом его устройстве.

Любые батареи работают за счёт разности напряжения между металлическими пластинами, помещёнными в раствор электролита. Принцип этот существует с 19 века, и со временем менялись только используемые материалы. Так, например, использовать литий для создания батарей задумали ещё в 1912 году, но долгое время идея оставалась нереализуемой из-за нестабильности материала. Только в 1991 году были разработаны литий-ионные батареи, достаточно стабильные, чтобы их использование было безопасным.

На сегодняшний день это – очень простой по конструкции прибор. Два листа – из графита и оксида лития с кобальтом – покрываются электролитом и сворачиваются в цилиндр или прямоугольный рулон (в зависимости от формы будущей батареи). Рулон помещают в герметичный металлический корпус с выведенными наружу контактами. Кстати, некоторые производители оснащают корпус предохранительным клапаном – специальным «окошком», которое открывается, если давление внутри батареи слишком высокое. Это ещё одна мера для обеспечения безопасности.

Готовую батарею укрепляют и дополнительно защищают пластиковым покрытием, выводя контакты и добавляют ещё два очень важных устройства: контроллер заряда и датчиком температуры. Он необходим для контроля нагрева аккумулятора и выглядит, как третий контакт на корпусе батареи.

Но что же происходит внутри аккумулятора?

Ионы лития, из которых состоит электролит, проникают в графическую решётку графита и образуют химические связи с молекулами углерода. Разрываясь, эти связи высвобождают энергию, а та, в свою очередь, концентрируется на полюсах батареи в виде электрического тока. Сам литий представлен в аккумуляторе в виде жидкости, что и было проблемой долгое время – так он менее стабилен, к тому же, при повреждении корпуса может вытекать. Но эффективность лития многократно превышала эффективность твёрдых электролитов за счёт меньшего сопротивления.

Кстати, более современные литий-полимерные аккумуляторы отличаются как раз тем, что совмещают в себе эффективность li-Ion и сухих электролитов. Здесь используются те же самые ионы лития, но для больше безопасности в конструкцию добавлен сухой сепаратор, снижающий риск непредусмотренных химических реакций. Зная обо всех недостатках литий-ионных аккумуляторов, производители хорошенько постарались, чтобы защитить их от повреждений, а покупателей – от возможных последствий. Для этого в литий-ионных батареях используется:

— более стабильный электролит;

— сухой сепаратор из полимерных материалов;

— надёжный корпус, изготовленный с учётом возможного вздутия аккумулятора;

— индикатор температуры и заряда, предотвращающие перегрев.

Но почему тогда, при всех эти мерах, время от времени появляются всё новые истории о взорвавшихся или загоревшихся телефонах? Потому, что, какими бы ни были достоинства современных аккумуляторов, они нуждаются в правильном обращении. Ответственный производитель в инструкции обязательно укажет необходимые меры безопасности, но, чтобы они сработали, нужен ещё и ответственный пользователь. Ведь любые нарушения в процессе эксплуатации могут повредить аккумулятор и привести к печальным последствиям.

Чаще всего, причиной возгорания становится несоблюдение температурного режима – экстремальный нагрев корпуса или резкие перепады высоких и низких температур. От этого внутри аккумулятора начинает вырабатываться газ, батарея раздувается и протекает (особенно, при некачественной сборке). Заметив такие признаки, телефон нужно немедленно выключить, батарею извлечь и утилизировать. Так же опасность несут физические повреждения аккумулятора. Сильный удар или залом могут нарушить внутреннюю конструкцию батареи – и результат будет тот же самый. Химические вещества внутри вступят в неконтролируемую реакцию и произойдёт воспламенение.

Ещё одна причина взрывов – попытка разобрать или отремонтировать аккумулятор самостоятельно. Важно помнить, что эта деталь телефона починке не подлежит – только замене. Старые аккумуляторы представляют собой не меньшую опасность. И не важно, пользовались вы им всё это время или нет. В первом случае изнашиваются детали, ухудшается работа контроллера. Во втором – опасна попытка «оживить» батарею, долгое время пролежавший полностью разряженным. Если сразу подключить его к зарядному устройству, это может привести к замыканию с уже известными последствиями.

Как видите, даже такая простая на вид и привычная всем вещь, как смартфон или планшет, таит в себе опасность. Ведь воспламенение или взрыв аккумулятора могут не только уничтожить ваш гаджет, но и повредить другое ваше имущество и нанести вред здоровью. Чтобы этого избежать, достаточно следовать простым правилам:

— бережно обращаться с техникой;

— приобретать только качественную продукцию и аксессуары к ней;

— за ремонтом обращаться в официальные сервисные центры.

Тогда можно будет пользоваться любимой техникой уверенно и без опаски.

Новости по теме:

Компания Parimatch даст вам возможность погрузиться в мир спорта. Великолепная линия с шикарными коэффициентами пополняется отличными акциями. Вследствие того, что компания Parimatch работает активно над тем, чтобы увеличить количество предложений в своей линии, появляется все больше и больше ее поклонников. Здесь можно найти великолепные коэффициенты на различные события из мира спорта - это в первую очередь. Однако компания не забывает и о других моментах, значимых мероприятиях, которые не проходят мимо пристального внимания людей. Таким образом, Parimatch представляет собой максимально разветвленный сервис, включащий себя не только хорошие коэффициенты, но и постоянно развивающиеся выгодные предложения.

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC . Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки ("банки") на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная - сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе - это по сути "мозг" контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 - ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 - это MOSFET-транзисторы.


Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.


Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge ) микросхемы DW01-P, контролирует разряд аккумулятора - подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge ) - подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты в целом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 - 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 - 4,3V (Overcharge Protection Voltage - V OCP ), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 - 4,1V (Overcharge Release Voltage - V OCR ) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от перезаряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 - 2,5V (Overdischarge Protection Voltage - V ODP ), то контроллер выключает MOSFET-транзистор разряда FET1 - он подключен к выводу DO.

Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысить 2,9 - 3,1V (Overdischarge Release Voltage - V ODR ), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за "смерть" аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер - G2NK (серия S-8261 ), сборка полевых транзисторов - KC3J1 .


Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.


При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.


Чтобы контроллер вновь подключил аккумулятор к "внешнему миру", то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 - 3,1V (V ODR ).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от перезаряда? Как нам снова подзарядить "банку" аккумулятора, чтобы контроллер опять включил транзистор разряда - FET1?

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P ,G2NK ), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда - Charger Detection . То есть при подключении зарядного устройства схема определит, что зарядное устройство подключено и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время - несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6 . О том, как это сделать, можно узнать .

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться "восстановительная" зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых аккумуляторов входит защита от перегрузки по току (Overcurrent Protection ) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

Полевой транзистор с изолированным затвором

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n - переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые). Другое название, которое можно встретить при описании полевых транзисторов - МОП (металл - окисел - полупроводник) обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO 2). Еще одно, довольно распространенное название - МДП (металл - диэлектрик - полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET , мосфет , MOS-транзистор . Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET - это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл - окисел - полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET - это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction - переход). Транзисторы J-FET также являются полевыми транзисторами, но управление таким транзистором осуществляется за счёт применения в нём управляющего p-n перехода. Эти транзисторы в отличие от MOSFET имеют немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку МДП-транзисторы бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Основу МДП-транзистора составляет:

    Подложка из кремния . Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

    Области полупроводника n+ . Данные области сильно обогащены свободными электронами (поэтому "+"), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

    Диэлектрик . Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO 2). К поверхности диэлектрика подключен электрод затвора - управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом (+ ) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал - область проводимости . На рисунке канал показан синим цветом. То, что канал типа n - это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется - перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в устройство полевого транзистора с изолированным затвором.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа - в нём канал «обогащается» электронами. В транзисторе обеднённого типа в области канала уже присутствуют электроны, поэтому транзистор пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET транзисторов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами - диэлектрик из оксида кремния (SiO 2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора .

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET-транзисторы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET ” или похожую. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому - напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологий изготовления полевых транзисторов удалось избавиться от этой проблемы. Современные полевые транзисторы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор - IGBT-транзистор , который представляет собой гибрид полевого и биполярного транзистора.

IGBT транзистор

Биполярный транзистор с изолированным затвором

В современной силовой электронике широкое распространение получили так называемые транзисторы IGBT. Данная аббревиатура заимствована из зарубежной терминологии и расшифровывается как Insulated Gate Bipolar Transistor, а на русский манер звучит как Биполярный Транзистор с Изолированным Затвором. Поэтому IGBT транзисторы ещё называют БТИЗ. БТИЗ представляет собой электронный силовой прибор, который используется в качестве мощного электронного ключа, устанавливаемого в импульсные источники питания, инверторы, а также системы управления электроприводами.

IGBT транзистор - это довольно хитроумный прибор, который представляет собой гибрид полевого и биполярного транзистора. Данное сочетание привело к тому, что этот тип транзистора унаследовал положительные качества, как полевого транзистора, так и биполярного.

Суть работы IGBT транзистора заключается в том, что полевой транзистор управляет мощным биполярным транзистором. В результате переключение мощной нагрузки становиться возможным при малой управляющей мощности, так как управляющий сигнал поступает на затвор полевого транзистора.

Внутренняя структура БТИЗ - это каскадное подключение двух электронных входных ключей, которые управляют оконечным плюсом. Далее на рисунке показана упрощённая эквивалентная схема биполярного транзистора с изолированным затвором.

Весь процесс работы БТИЗ может быть представлен двумя этапами: как только подается положительное напряжение, между затвором и истоком открывается полевой транзистор, то есть образуется n - канал между истоком и стоком. При этом начинает происходить движение зарядов из области n в область p , что влечет за собой открытие биполярного транзистора, в результате чего от эмиттера к коллектору устремляется ток.

История появления БТИЗ.

Впервые мощные полевые транзисторы появились в 1973 году, а уже в 1979 году была предложена схема составного транзистора, оснащенного управляемым биполярным транзистором при помощи полевого транзистора с изолированным затвором. В ходе тестов было установлено, что при использовании биполярного транзистора в качестве ключа на основном транзисторе насыщение отсутствует, а это значительно снижает задержку в случае выключения ключа.

Несколько позже, в 1985 году был представлен биполярный транзистор с изолированным затвором, отличительной особенностью которого была плоская структура, диапазон рабочих напряжений стал больше. Так, при высоких напряжениях и больших токах потери в открытом состоянии очень малы. При этом устройство имеет похожие характеристики переключения и проводимости, как у биполярного транзистора, а управление осуществляется за счет напряжения.

Первое поколение устройств имело некоторые недостатки: переключение происходило медленно, да и надежностью они не отличались. Второе поколение увидело свет в 90-х годах, а третье поколение выпускается по настоящее время: в них устранены подобные недостатки, они имеют высокое сопротивление на входе, управляемая мощность отличается низким уровнем, а во включенном состоянии остаточное напряжение также имеет низкие показатели.

Уже сейчас в магазинах электронных компонентов доступны IGBT транзисторы, которые могут коммутировать токи в диапазоне от нескольких десятков до сотен ампер (I кэ max ), а рабочее напряжение (U кэ max ) может варьироваться от нескольких сотен до тысячи и более вольт.

Условное обозначение БТИЗ (IGBT) на принципиальных схемах.

Поскольку IGBT транзистор имеет комбинированную структуру из полевого и биполярного транзистора, то и его выводы получили названия затвор - З (управляющий электрод), эмиттер (Э ) и коллектор (К ). На зарубежный манер вывод затвора обозначается буквой G , вывод эмиттера - E , а вывод коллектора - C .

На рисунке показано условное графическое обозначение биполярного транзистора с изолированным затвором. Транзистор также может изображаться со встроенным быстродействующим диодом. Также IGBT транзистор может изображаться следующим образом:

Особенности и сферы применения БТИЗ.

Отличительные качества транзисторов IGBT:

    Управляется напряжением (как любой полевой транзистор);

    Имеют низкие потери в открытом состоянии;

    Могут работать при температуре более 100 0 C;

    Способны работать с напряжением более 1000 Вольт и мощностями свыше 5 киловатт.

Перечисленные качества позволили применять IGBT транзисторы в инверторах, частотно-регулируемых приводах и в импульсных регуляторах тока. Кроме того, они часто применяются в источниках сварочного тока, в системах управления мощными электроприводами, которые устанавливаются, например, на электротранспорт: электровозы, трамваи, троллейбусы. Такое решение значительно увеличивает КПД и обеспечивает высокую плавность хода.

Кроме того, устанавливают данные устройства в источниках бесперебойного питания и в сетях с высоким напряжением. IGBT транзисторы можно обнаружить в составе электронных схем стиральных, швейных и посудомоечных машин, инверторных кондиционеров, насосов, системах электронного зажигания автомобилей, системах электропитания серверного и телекоммуникационного оборудования. Как видим, сфера применения БТИЗ довольно велика.

Стоит отметить, что IGBT и MOSFET в некоторых случаях являются взаимозаменяемыми, но для высокочастотных низковольтных каскадов предпочтение отдают транзисторам MOSFET, а для мощных высоковольтных - транзисторам IGBT.

Так, например, IGBT транзисторы прекрасно выполняют свои функции при рабочих частотах до 20-50 килогерц. При более высоких частотах у данного типа транзисторов увеличиваются потери. Также наиболее полно возможности IGBT транзисторов проявляются при рабочем напряжении более 300-400 вольт. Поэтому биполярные транзисторы с изолированным затвором легче всего обнаружить в высоковольтных и мощных электроприборах.