Фотодиоды: устройство, характеристики и принципы работы. Основные характеристики и параметры фотодиодов

Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.

В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной p-n-структуре.

При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями .

При диффузии фотоносителей в глубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Здесь фотоносители разделяются электрическим полем p–n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть поле перехода и скапливаются у границы p–n-перехода и n-области.

Таким образом, ток через p–n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком .

Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область отрицательно по отношению к p-области. Возникающая разность потенциалов называется фотоЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.

Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).

Фотодиоды, работающие в режиме фотогенератора, часто применяют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Они называются солнечными элементами и входят в состав солнечных батарей, используемых на космических кораблях.

КПД кремниевых солнечных элементов составляет около 20 %, а у пленочных солнечных элементов он может иметь значительно большее значение. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2, соответственно.

При работе фотодиода в фотопреобразовательном режиме источник питания Е включается в цепь в запирающем направлении (рис. 1, а). Используются обратные ветви ВАХ фотодиода при различных освещенностях (рис. 1,б).

Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а - схема включения, б - ВАХ фотодиода

Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам пересечения ВАХ фотодиода и линии нагрузки, соответствующей сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 - 30 мкА, у кремниевых 1 - 3 мкА.

Если в фотодиодах использовать обратимый электрический пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а следовательно, и чувствительность значительно возрастут.

Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).

Лавинные фотодиоды являются быстродействующими фотоэлектрическими приборами, их частотный диапазон может достигать 10 ГГц. Недостатком лавинных фотодиодов является более высокий уровень шумов по сравнению с обычными фотодиодами.

Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) характеристики фоторезистора

Кроме фотодиодов, применяются фоторезисторы (рис 2), фототранзисторы и фототиристоры , в которых используется внутренний фотоэффект. Характерным недостатком их является высокая инерционность (граничная рабочая частота fгр

Конструкция фототранзистора подобна обычному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с двумя стрелками, направленными к нему.

Светодиоды и фотодиоды часто используются в паре. При этом они помещаются в один корпус таким образом, чтобы светочувствительная площадка фотодиода располагалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», называются (рис. 3).

Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод

Входные и выходные цепи в таких приборах оказываются электрически никак не связанными, поскольку передача сигнала осуществляется через оптическое излучение.

Потапов Л. А.


При поглощении световых квантов в p-n переходе или в примыкающих к нему областях генерируются новые носители заряда (электроны и дырки), которые проходя через него и вызывают появление напряжение на выводах фотодиода или протекание тока в замкнутой цепи. Величина, на которую возрастает обратный ток протекающий через переход, называют фототоком.

Фотодиод, в зависимости от материала из которого он изготовлен, используется для регистрации светового потока в оптическом инфракрасном, и ультрафиолетовом диапазоне. Эти радиокомпоненты обычно изготавливают из германия, кремния, арсенида галлия, индия и т.п.

В фотодиодном режиме применяется внешний источник питания, который смещает полупроводниковый прибор в обратном направлении. В этом случае через протекает обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

В фотогальваническом режиме фотодиод работает в роли датчики или в роли слаботочного элемента питания, так как под воздействием светового потока на выводах фотоэлемента генерируется напряжение, зависящее от потока излучения и нагрузки.

Чтобы лучше разобраться с режимами работы этого компонента, рассмотрим его вольтамперную характеристику.


При отсутствии светового излучения график представляет собой обратную ветвь ВАХ типичного диода. Присутствует небольшой ток обратки, называемый темновым током обратно смещенного.

При наличии излучения, сопротивление фотодиода снижается и обратный ток увеличивается. Чем больший световой поток падает на фотоэлемент, тем больший обратный ток протекает через фотодиод. Зависимость в этом режиме линейная. Как видим из ВАХ обратный ток фотодиода практически не зависит от обратного напряжения.

Фотогальваническому режиму соответствует работа в четвертой четверти графика. И здесь можно выделить два предельных варианта: режим холостого хода и короткого замыкания.

Режим приближенный к холостому ходу применяется для получения энергии от фотодиода, хотя КПД у него невысокий. Но если соединить последовательно и параллельно много таких компонентов, то такой получившейся батареей можно запитать мало-потребляющую схему.

В режиме короткого замыкания, напряжение на фотоэлементе стремится к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим применяется для построения фотодатчиков.

Характеристики фотодиода

Помимо ВАХ, рассмотренной выше существкует еще ряд основных параметров фотоэлемента.

Световая характеристика фотодиода , зависимость фототока от освещенности, которая прямопропорционально генерируемому фототоку от освещенности. Это объясняется тем, что толщина базы фотодиода гораздо меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, появившиеся в базе, учувствуют в образовании фототока.

Спектральная характеристика фотодиода - это зависимость фототока от длины волны светового потока воздействующего на фотоэлемент.

постоянная времени - в течение этого времени фототок фотоэлемента изменяется после освещения или после затемнения фотодиода по отношению к установившемуся значению.

темновое сопротивление - сопротивление радиокомпонента при отсутствии освещения.

Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.

Устройство и принцип действия

Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.

1 – полупроводниковый переход.
2 – положительный полюс.
3 – светочувствительный слой.
4 – отрицательный полюс.

При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.

При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».

Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.

Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Е ф ». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.

Режимы работы

Фотодиоды способны функционировать в следующих режимах:

  • Режим фотогенератора . Без подключения источника электричества.
  • Режим фотопреобразователя . С подключением внешнего источника питания.

В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.

КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт / м 2 .

При функционировании фотодиода в качестве фотопреобразователя , источник напряжения Е подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.

Напряжение и ток на нагрузке R н определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору R н. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

Виды фотодиодов

Существует несколько различных видов фотодиодов, которые имеют свои достоинства.

p i n фотодиод

В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.

Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 10 10 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.


Лавинные фотодиоды

Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.

1 — омические контакты 2 — антиотражающее покрытие

Лавинные фотодиоды более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.

В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.

Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.

Принцип действия

При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.

Характеристики

Свойства таких световых диодов можно описать некоторыми зависимостями.

Вольт-амперная

Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.

I — ток M — коэффициент умножения U — напряжение

Световая

Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.

Спектральная

Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.

Постоянная времени

Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.

Темновое сопротивление

Это значение сопротивления диода в темноте.

Инерционность

Факторы, влияющие на эту характеристику:

  • Время диффузии неравновесных носителей заряда.
  • Время прохождения по р-n переходу.
  • Период перезарядки емкости барьера р-n перехода.

Сфера применения

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

Интегральные микросхемы (оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

Наиболее влияющими оказались такие факторы:

  • Суммарный ток утечек, образующийся путем сложения шумов и тока при отсутствии света.
  • Квантовая эффективность, определяющая долю падающих квантов, приводящих к возникновению тока и носителей заряда.

В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.

Принцип действия фотодиода

Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.

Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.

Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля. В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок. Данный вид тока с участием фотоносителей получил название фототока.

Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС. Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии. В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.

Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве . Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.

В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.

Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами. Они размещаются в общем корпусе, при этом, расположение светочувствительной площадки фотодиода наиболее оптимально к излучающей светодиодной площадке. Данные приборы получили название оптронов. Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.

Характеристики фотодиодов

Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.

Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.

Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость. Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением. Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.

При воспроизведении фотографической фонограммы ис­точником сигнала является фотодиод. Он может работать в фотогальваническом или в фотодиодном режиме. Схема включения фотодиода, работающего в фотогальва­ническом режиме, на вход транзисторного усилителя пока­зана на рис. 45, а. В этом режиме фотодиод работает без источника питания. Под действием света в области n-типа разрушаются ковалентные связи, и освободившиеся элект­роны накапливаются в этой области, заряжая ее отрица­тельно, а дырки втягиваются в область р-типа, заряжая ее положительно. Таким образом, между анодом и катодом соз­дается разность потенциалов - фото-ЭДС Е ф. При постоян­ном световом потоке в режиме покоя под действием этой ЭДС в цепи фотодиода протекает постоянный ток от области р к области п через резистор нагрузки R нф. При воспроизве­дении фонограммы световой поток пульсирует, поэтому пуль­сируют фото-ЭДС и ток в цепи фотодиода. Переменная сос­тавляющая напряжения на нагрузке R нф является напря­жением входного сигнала, которое через конденсатор С с передается на базу транзистора. Переменная составляющая тока фотодиода разветвляется: часть проходит через резис­тор R нф а другая часть - через конденсатор С с и эмиттер­ный переход транзистора.

Работа фотодиода в фотогальваническом режиме исполь­зуется в передвижной звуковоспроизводящей аппаратуре типа К3ВП-I0 и К3ВП-14.

При работе фотодиода в фотодиодном режиме (рис. 45, б) на него от источника питания подается постоянное напряже­ние, которое является обратным напряжением электронно-дырочного перехода. При отсутствии светового потока через фотодиод протекает очень малый ток – это темновой ток. Под действием света резко уменьшается обратное сопротивление р - n - переходаи возрастает ток через фото­диод.

При отсутствии сигнала световой поток остается посто­янным и через фотодиод протекает постоянный ток. Он идет от плюса источника питания через сопротивление нагрузки, фотодиода R нф и фотодиод к минусу источника питания. В режиме воспроизведения записанного на фонограмме сигнала световой поток и ток фотодиода, как и в первом ре­жиме, пульсируют, и переменная составляющая тока создает на нагрузке и на входе усилителя входной сигнал.

Рис. 45 Схемы включения фотодиода: а - в фотогальваническом режиме;

б – в фотодиодном режиме

В фотодиодном режиме чувствительность фотодиода повы­шается по сравнению с фотогальваническим режимом, и вход­ ной сигнал увеличивается; внутреннее сопротивление фото­диода для переменного тока также увеличивается.

Работа фотодиода в фотодиодном режиме используется в стационарной транзисторной аппаратуре типа «Звук Т».

Фотодиоды, установленные в фотоячейках на кинопроек­торах разных постов, могут иметь разброс параметров, и частности неодинаковую чувствительность, что приводит к неодинаковой отдаче постов. Чтобы при демонстрации кинофильма не изменялась громкость звука при переходе с поста на пост, в фото­-ячейке предусматрива­ется регулирование от­дачи фотодиода. Схема регулирования (рис. 46) позволяет переменным ре­зистором R уменьшить сигнал, поступающий отданного фотодиода на вход усилителя. В верх­нем положении движка резистора R3 сопротивле­ние цепочки R1, R3, С1, включенной параллельно фотодиоду, максималь­ное, поэтому входной сиг­нал наибольший. По мере перемещения движка вниз сопротивление R3 все больше закорачивается, общее сопротивление цепочки R1, R3, Сl уменьшается, возрастает ее шунтирующее действие, и сиг­нал на входеусилителя уменьшается. Такая схема включения фотодиода типа ФДК155 применена в звуковоспроизводя­щей аппаратуре типа «Звук T2-25,50».

Линия включения фотодиода на вход усилителя должна быть экранирована, как и для других источников сигнала.

Фотодиоды, используемые в аппаратуре киноустановок, имеют чувствительность порядка 4-6 мА/лм и дают ток входного сигнала 1-2 мкА.

Рис.46 Схема регулирования от­дачи фотодиода

Вопросы для самопроверки:

1. Что называется входной цепью, и какие бывают виды схем входа?

2. Нарисовать и объяснить схемы включения звукоснимателя.

3. Нарисовать и объяснить схемы включения микрофона.

4.Почему надо экранировать входные цепи и применять симметричную схему трансформатора входа? ­

5.Почему звукосниматель включают на вход усилителя чаще всего через делитель напряжения, а для включения микрофона и магнитной головки в высококачественной аппаратуре применяют входной трансформатор?

6. Нарисовать и объяснить схемы включение фотодиода.