Передача электроэнергии по одному проводу тесла. Воробей не сядет

В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу.

Как он это делал — остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг — один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что у нас в стране работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.


Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рисунке показана одна из схем Авраменко.

Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р.

Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с , в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Подключим входные (на рис.— нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно.

Однако в разряднике возникает искра — происходит пробой воздуха электрическими за рядами!

Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л.

Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10 - 20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.


На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2—5 МОм и R2=2—100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности.

Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину.

Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром — 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины.

По идее, здесь должны происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,— вольфрам оставался холодным.

Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть).

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года.

В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники.

Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства.

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла — “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего — насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника.

Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла — то есть проводник не оказывает ему сопротивления.

Время придет — строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м...

Николай ЗАЕВ

Рассказать в:

“Сверхпроводник” инженера Авраменко.

В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу. Как он это делал - остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг - один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что в авторитетном для своей отрасли Всесоюзном электротехническом институте работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.

Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рис. 1 показана одна из схем Авраменко. Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р. Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с резонансным трансформатором Тесла, в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Подключим входные (на рис.- нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно. Однако в разряднике возникает искра - происходит пробой воздуха электрическими за рядами! Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л. Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10-20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.

На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2-5 МОм и R2=2-100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности. Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину. Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром - 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины. По идее, здесь должны происходить большие потери электроэнергии, а провод - раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,- вольфрам оставался холодным. Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть).

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года. В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники. Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства.

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла - “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего - насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями - совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника. Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла - то есть проводник не оказывает ему сопротивления.

Время придет - строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м...

Николай ЗАЕВ
Техника - молодежи N1, 1991г.

Раздел.

довольно интересный вопрос. поробуем расмотреть его подробно, попутно отделяя мух от котлет.

первое что нам надо понить это определние тока: "ток - направленное движение заряженных частиц "

нам понадобится и еще один очевидный факт: "ток в разомкнутой цепи не течет "

ну и до кучи несколько определений из словаря электрика:

активная мощьность - мощность затраченная на совершение работы не обязательно полезной.

пример:т.е. у нас есть трансформатор который питает потребителя. cтоит и гудит. вот гудит это работа на которую затрачивается активная мощность, хоть эта работа абсолютно бесполезная с точки зрения потребителя.

реактивная мощность - мощность которая на совершение работы потрачена не была и вернулась обратно.

пример: пусть подали ток на индуктивность, потом сняли. ток перешел в магнитное поле, потом часть этого поля после снятия тока снова перешела в ток. конечно этот ток это активная мощность, но вот сам переход. нечто похожее наблюдается в обычном асинхронном двигателе на холостом ходу - энергия возвращается в линию хотя и не в тот же момент времени. добавляя нагрузку на вал (торомозной момент) мы увеличиваем активную мощность (умные дятки говорят изменяем скольжение вала относително магнитного поля) и уменьшаем реактивную - т.е. изменяется коэфициэнт активной мощности т.е. косинус фи.

косинус фи или коэфициэнт мощности (активной мощности) безразмерная физическая величина , характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей . Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения. численно коэффициент мощности равен косинусу этого фазового сдвига .

в принципе все. твердо стоя на этих принципах можно многое объяснить.

в начеле зададимся простым вопросом: "а может ли по одному проводу протекать ток? " ну и как мы договаривались мы твердо стоим на принципах изложенных выше. один провод - цепь не замкнутая - значит ток по ней течь не может. т.е. уверненнно можно сказать тока там нет . а что же есть? лампочски горят, моторы крутятся...

да и легко можно найти кучу роликов с демонситрацией подобного эффекта:

ну и что это? розыгрыш или еще что-то?

вначале вспомним как работает радиоэфирный телевизор. ведь наша любимая картинка как-то в этот телевизор запрыгивает.

механизм довольно простой: есть передатчик, который излучает радиоволны, а телевизор это приемник. не будем разбирать методы кодирования картинки - нас интересует сам факт получения сигнала.

можно сказать, что эта мощность очень мала, но надо заметить, это большей частью связано с направленостью передающей и принимающей антены.

т.е. предача электричества по одному проводу это не активная мощность (не закон Ома), а передача электромагнитной волны, а не тока. на радиоволны условия замкнутости цепи не распростроняются, в чем легко можно убедится на примере телевизора.

в случае однопроводной передачи электроэнергии мы имеем дело с вырожденым радиоприемником и передатчиком, а провод в этом случае является волноводом . т.е. провод имет свою ёмкость и индуктивность т.е. это цепь с распределенными параметрами. раз есть емкость и индуктивность есть и резонансная частота. и на этой частоте можно передовать энергию в виде электромагнитного поля .

остановимся на этой мысле более подробно.

в обычной классической цепи скрость электрона в проводе это сантиметры в секунду. но позволте а каже телеграф? там все быстро, а в цепи обычный ток... дело в том что с околосветовой скоростью в доль провода распространяется электроманитная волна сами же носители заряда - электроны перемещаются медленно. т.е. "первый" и "последний" электрон начинают свое движение практически одновременно, хотя их скорость небольшая.

но вернемся к электромагнитной волне. что там активная и реактивная? дело в том что если энергия вся переходит в магнитное поле и вся в электрическое, что справедливо для электромагнитной волны, это означает что нет активной мощности. (в реальности конечно немного теряется, но будем говорить об идиальном случае) т.е. можно сказать что вся энергия реактивная и активная мощность нулевая. т.е. косинус фи равен нулю. сдвиг фазы при этом 90 градусов. т.к. активная мощность нулевая (нам не надо физически двигать заряженные частицы) абсолютно неважно сечение проводника. т.е. мы имем дело не с оммической цепью, а с волноводом.

т.е. в однопроводной лини мы имеем случай разделенных мух и котлет - электромагнитная волна есть, а движения электронов нет. тут умесно вспомнить ток - направленное дижение заряженных частиц т.е. энернгия передается только в виде электромагнитного поля.

для стоячей электромагнитной волны меня в школе учили рисовать такой рисунок:

максимуму напряженнности одного поля соотвествует 0 другого т.е. смещены именно на 90 градусов. т.е. електрополе начинает переходить в магнитное, в какой-то моент времени все перешло, что соотвествует 0 электрического поля и максимуму магнитного. магнитное поле начинает переходить в электрическое и в какой-то момент времени полностью перейдет, что соотвествует 0 магнитного поля и максимуму электрического и т.д. из того что поле переходит одно в другое полностью, а угол смещения фазы электрического и магнитного поля равен 90 градусам, можно сделать вывод о том, что мы имем дело со стоячей электромагнитной волной.

т.е. можно сказать ничего нового в этих роликах не демонстрируется, если мне не изменяет память, с 1864 года - это электромагнитная волна. можно придумать разнообразные способы как "раскачивать" электромагнитную волну в проводе, принципиальной сути это не меняет.

ограничения использования этой технологии совпадает с ограничением использования радиочастотных линий, при этом надо заметить, что частота там относительно небольшая - это примерно десятки КГц.

В интернете достаточно много обсуждений на тему передачи энергии по одному проводу. Обычно для такой передачи энергии подразумевается наличие заземления, хотя на самом деле это не лучший вариант передачи энергии. Лучше всего передавать энергию по оному проводу с помощью схемы, представленной ниже.

Соединяющий провод можно использовать очень тонкий, в моих опытах провод был диаметром 0.08мм. При хорошо подобранных параметрах катушек транзистор можно использовать без дополнительных резисторов, как нарисовано на схеме. Для кт315 подобное включение работает примерно при 9 вольтах, для кт805 подобное включение может быть работоспособно при 12 вольтах. Важно соблюдать правильное подключение катушек в передающей части схемы, иначе она не заработает. Катушка L2 обычно мотается с большим количеством витков проводом диаметром 0.2 - 0.5 мм. Катушки L2 - L4 должны быть одинаковые! Проверить работоспособность схемы легко, достаточно взять в руки светодиод за одну из его ножек и поднести его к контакту катушки L2. Он должен начать светиться. Диоды выпрямителя на приемной части схемы должны быть высокочастотными. Также лучше поставить на выходе выпрямителя сглаживающий конденсатор.

Видео с работой данной схемы

Можно заметить, что схема включения на видео отличается от схемы в статье. В видео база транзистора подключена к резистивному делителю, состоящему из 27 и 240 ом. Остальное работает так же. Аккумулятор на 12 вольт не обязательно ставить мощный, потребление от схемы небольшое и для опытов хватит кроновой батарейки, если устройство будет сделано небольших габаритов по схеме из данной статьи. Конические катушки мотать не нужно, в видео они были использованы, так как других под рукой просто не было.

Отличие от других схем

Две схемы, представленные выше, без заземления будут работать тем хуже, чем длиннее соединяющий провод. Причем, это весьма заметно в пределах 3-х метров. При подключении к приемной части массивного проводящего предмета, прием энергии улучшается, однако все равно остается хуже, чем в самой первой схеме данной статьи. Для первой схемы эффективность приема энергии не так сильно зависит от длины соединяющего провода и не требует наличия массивного проводящего предмета в качестве заземления.

Некоторые опыты

Опыт с лампочкой
Если вывод катушки L2 подключить к лампочке с нитью накала, а второй провод лампочки сделать достаточно длинным, нить накала будет гореть. Однако она будет гореть не равномерно, а с постепенным затуханием.

Опыт с катушкой вокруг провода
Если сделать катушку, и продеть через нее передающий приемнику энергию провод, то на катушке появится ЭДС, как будто переменное магнитное поле направлено вдоль проводника, а не вокруг него.