Почему на автомобильных номерах нет флага. Что означают номера на авто без флага? Оперативно сделаем номерные знаки без триколора РФ


Грегор Мендель (Грегор Иоганн Мендель) (1822-84) - австрийский естествоиспытатель, ученый-ботаник и религиозный деятель, монах, основоположник учения о наследственности (менделизм). Применив статистические методы для анализа результатов по гибридизации сортов гороха (1856-63), сформулировал закономерности наследственности (см. законы Менделя).

Грегор Мендель родился 22 июля 1822, Xейнцендорф, Австро-Венгрия, ныне Гинчице. Скончался 6 января 1884, Брюнн, ныне Брно, Чешская Республика.

Трудные годы учения

Иоганн родился вторым ребенком в крестьянской семье смешанного немецко-славянского происхождения и среднего достатка, у Антона и Розины Мендель. В 1840 Мендель окончил шесть классов гимназии в Троппау (ныне г. Опава) и в следующем году поступил в философские классы при университете в г. Ольмюце (ныне г. Оломоуц). Однако, материальное положение семьи в эти годы ухудшилось, и с 16 лет Мендель сам должен был заботиться о своем пропитании. Не будучи в силах постоянно выносить подобное напряжение, Мендель по окончании философских классов, в октябре 1843, поступил послушником в Брюннский монастырь (где он получил новое имя Грегор). Там он нашел покровительство и финансовую поддержку для дальнейшего обучения.

В 1847 Мендель был посвящен в сан священника. Одновременно с 1845 года он в течение 4 лет обучался в Брюннской теологической школе. Августинской монастырь св. Фомы был центром научной и культурной жизни Моравии. Помимо богатой библиотеки, он имел коллекцию минералов, опытный садик и гербарий. Монастырь патронировал школьное образование в крае.

Монах-преподаватель

Будучи монахом, Грегор Мендель с удовольствием вел занятия по физике и математике в школе близлежащего городка Цнайм, однако не прошел государственного экзамена на аттестацию учителя. Видя его страсть к знаниям и высокие интеллектуальные способности, настоятель монастыря послал его для продолжения обучения в Венский университет, где Мендель в качестве вольнослушателя проучился четыре семестра в период 1851-53, посещая семинары и курсы по математике и естественным наукам, в частности, курс известного физика К. Доплера. Хорошая физико-математическая подготовка помогла Менделю впоследствии при формулировании законов наследования. Вернувшись в Брюнн, Мендель продолжил учительство (преподавал физику и природоведение в реальном училище), однако вторая попытка пройти аттестацию учителя вновь оказалась неудачной.

Опыты над гибридами гороха

С 1856 Грегор Мендель начал проводить в монастырском садике (шириной в 7 и длиной в 35 метров) хорошо продуманные обширные опыты по скрещиванию растений (прежде всего среди тщательно отобранных сортов гороха) и выяснению закономерностей наследования признаков в потомстве гибридов. В 1863 он закончил эксперименты и в 1865 на двух заседаниях Брюннского общества естествоиспытателей доложил результаты своей работы. В 1866 в трудах общества вышла его статья «Опыты над растительными гибридами», которая заложила основы генетики как самостоятельной науки. Это редкий в истории знаний случай, когда одна статья знаменует собой рождение новой научной дисциплины. Почему принято так считать?

Работы по гибридизации растений и изучению наследования признаков в потомстве гибридов проводились десятилетия до Менделя в разных странах и селекционерами, и ботаниками. Были замечены и описаны факты доминирования, расщепления и комбинирования признаков, особенно в опытах французского ботаника Ш. Нодена. Даже Дарвин, скрещивая разновидности львиного зева, отличные по структуре цветка, получил во втором поколении соотношение форм, близкое к известному менделевскому расщеплению 3:1, но увидел в этом лишь «капризную игру сил наследственности». Разнообразие взятых в опыты видов и форм растений увеличивало количество высказываний, но уменьшало их обоснованность. Смысл или «душа фактов» (выражение Анри Пуанкаре) оставались до Менделя туманными.

Совсем иные следствия вытекали из семилетней работы Менделя, по праву составляющей фундамент генетики. Во-первых, он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение.

Во-вторых, Грегор Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК - вот логическое следствие и магистральный путь развития генетики 20 века на основе идей Менделя.

Великие открытия часто признаются не сразу

Хотя труды Общества, где была опубликована статья Менделя, поступили в 120 научных библиотек, а Мендель дополнительно разослал 40 оттисков, его работа имела лишь один благосклонный отклик - от К. Негели, профессора ботаники из Мюнхена. Негели сам занимался гибридизацией, ввел термин «модификация» и выдвинул умозрительную теорию наследственности. Однако, он усомнился в том, что выявленные на горохе законы имеет всеобщий характер и посоветовал повторить опыты на других видах. Мендель почтительно согласился с этим. Но его попытка повторить на ястребинке, с которой работал Негели, полученные на горохе результаты оказалась неудачной. Лишь спустя десятилетия стало ясно почему. Семена у ястребинки образуются партеногенетически, без участия полового размножения. Наблюдались и другие исключения из принципов Грегора Менделя, которые нашли истолкование гораздо позднее. В этом частично заключается причина холодного приема его работы. Начиная с 1900, после практически одновременной публикации статей трех ботаников - Х. Де Фриза, К. Корренса и Э. Чермака-Зейзенегга, независимо подтвердивших данные Менделя собственными опытами, произошел мгновенный взрыв признания его работы. 1900 считается годом рождения генетики.

Вокруг парадоксальной судьбы открытия и переоткрытия законов Менделя создан красивый миф о том, что его работа оставалась совсем неизвестной и на нее лишь случайно и независимо, спустя 35 лет, натолкнулись три переоткрывателя. На самом деле, работа Менделя цитировалась около 15 раз в сводке о растительных гибридах 1881, о ней знали ботаники. Более того, как выяснилось при анализе рабочих тетрадей К. Корренса, он еще в 1896 читал статью Менделя и даже сделал ее реферат, но не понял в то время ее глубинного смысла и забыл.

Стиль проведения опытов и изложения результатов в классической статье Менделя делают весьма вероятным предположение, к которому в 1936 пришел английский математический статистик и генетик Р. Э. Фишер: Мендель сначала интуитивно проник в «душу фактов» и затем спланировал серию многолетних опытов так, чтобы озарившая его идея выявилась наилучшим образом. Красота и строгость числовых соотношений форм при расщеплении (3:1 или 9:3:3:1), гармония, в которую удалось уложить хаос фактов в области наследственной изменчивости, возможность делать предсказания - все это внутренне убеждало Менделя во всеобщем характере найденных им на горохе законов. Оставалось убедить научное сообщество. Но эта задача столь же трудна, сколь и само открытие. Ведь знание фактов еще не означает их понимания. Крупное открытие всегда связано с личностным знанием, ощущениями красоты и целостности, основанных на интуитивных и эмоциональных компонентах. Этот внерациональный вид знания передать другим людям трудно, ибо с их стороны нужны усилия и такая же интуиция.

Судьба открытия Менделя - задержка на 35 лет между самим фактом открытия и его признанием в сообществе – не парадокс, а скорее норма в науке. Так, спустя 100 лет после Менделя, уже в период расцвета генетики, подобная же участь непризнания в течение 25 лет постигла открытие Б. Мак-Клинток мобильных генетических элементов. И это несмотря на то, что она, в отличие от Менделя, была ко времени своего открытия высоко авторитетным ученым и членом Национальной Академии наук США.

В 1868 Грегор Мендель был избран настоятелем монастыря и практически отошел от научных занятий. В его архиве сохранились заметки по метеорологии, пчеловодству, лингвистике. На месте монастыря в Брно ныне создан музей Менделя; издается специальный журнал «Folia Mendeliana».

Томас Хант Морган


МОРГАН (Morgan) Томас Хант (1866–1945), американский биолог, один из основоположников генетики. Начиная с 1908 г. совместно со своими учениками («школа Моргана») проводил обширные экспериментальные исследования на новом генетическом объекте – плодовой мушке дрозофиле. Изучая наследование мутаций у дрозофилы, Морган и его сотрудники показали, что гены передаются отдельными группами сцепления и что число таких групп равно числу пар хромосом. Исследовав нарушения сцепления в результате кроссинговера , Морган и сотрудники пришли к выводу о линейном расположении генов вдоль хромосом и разработали методы определения их взаимного положения. В монографии «Механизм менделевской наследственности» (1915) ими были объяснены закономерности наследования (Менделя законы ) на основании хромосомной теории наследственности . Детальная разработка этой теории составляет основной вклад школы Моргана в генетику. Нобелевская премия по физиологии и медицине (1933).

Уильям Бэтсон


Бэтсон, Бейтсон (Bateson) Уильям (8 августа 1861, Уитби, - 8 февраля 1926, Мертон), английский биолог, являвшийся одним из основателей генетики. Предложил её название (в 1907 г.). В 1884-1886 гг. в своих работах описал филогению хордовых животных. Окончив Кембриджский университет, в 1908-1910 гг. стал профессором в этом же университете. В 1910 г. основал генетической журнал «Journal of Genetics» в Англии. С 1910 г. стал директором института садовых культур в Мертоне.

Отстаивал идею о невозможности наследования приобрётенных признаков, прерывистую изменчивость организмов, учение о чистоте гамет . В 1905 г. предложил теорию «присутствия - отсутствия», объясняя возникновение новых признаков у живых организмов выпадением тормозящих факторов.

Закон чистоты гамет . Появление во втором поколении (F 2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: «При образовании половых клеток в каждую гамету попадает только один ген из каждой аллельной пары». Цитологическим обоснованием закона чистоты гамет, а следовательно и всех закономерностей наследования признаков, является поведение хромосом в мейозе, в результате которого в клетках оказывается лишь одна хромосома из каждой гомологичной пары.

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

«Южно-Уральский государственный университет»

Факультет «Экономика и управление»

Кафедра «Экономика, управление и инвестиции»

История развития генетики. Вклад русских ученых

РЕФЕРАТ

по дисциплине «Концепции современного естествознания»

Проверил

О.М. Баева

студент группы ЭиУ-232

А.И. Кулешова

________________________2010г.

Реферат защищен

с оценкой

_____________________________

________________________2010г.

ВВЕДЕНИЕ

Генетика - наука о наследственности и её изменчивости – получила развитие в начале XX в., после того как исследователи обратили внимание на законы Г. Менделя, открытые в 1865 г., но остававшиеся без внимания в течение 35 лет. За короткий срок генетика выросла в разветвленную биологическую науку с широким кругом экспериментальных методов и направлений. Название генетика было предложено английским ученым У. Бэтсоном в 1906 г. Исследователями классического периода развития генетики были выяснены основные закономерности наследования и доказано, что наследственные факторы (гены) сосредоточены в хромосомах. Дальнейший прогресс в изучении закономерностей хранения и реализации генетической информации сдерживался по двум причинам. Во-первых, из-за слишком объемных экспериментов, связанных с более глубоким изучением генов, во-вторых, ввиду невозможности понять работу генов без углубленного исследования превращения молекул, вовлеченных в генетические процессы. Переход к генетическим исследованиям микроорганизмов, позволивший избегать многих трудностей, был вполне закономерен. Такой переход осуществился в 50-х годах. В 1941 г. Дж. Бидл и Э. Тейтум опубликовал короткую статью "Генетический контроль биохимических реакций у Neurospora ", в которой сообщили о первых генетических экспериментах на микроорганизмах.

В последние годы эти исследования получили широкий размах и проводятся на самых различных биологических объектах.

Задачей данного реферата является отражение наиболее важных открытий, сделанных русскими учеными в области генетики, их анализ и определение их значимости для науки.

Для раскрытия темы были взяты как научные труды, так и современные интернет-ресурсы, что должно дать проверенные данные и современную точку зрения на них.

1 РАЗВИТИЕ ГЕНЕТИКИ В РОССИИ

Если не считать опытов по гибридизации растений в XVIII в., первые работы по генетике в России были начаты в начале XX в. как на опытных сельскохозяйственных станциях, так и в среде университетских биологов, преимущественно тех, кто занимался экспериментальной ботаникой и зоологией.

После революции и гражданской войны 1917-1922 гг. началось стремительное организационное развитие науки. К концу 1930-х годов в СССР была создана обширная сеть научно-исследовательских институтов и опытных станций (как в Академии наук СССР, так и во Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ)), а также вузовских кафедр генетики. Признанными лидерами направления были Н. И. Вавилов, Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков и др. В СССР издавали переводы трудов иностранных генетиков, в том числе Т. Х. Моргана, Г. Мёллера, ряд генетиков участвовали в международных программах научного обмена. Американский генетик Г. Мёллер работал в СССР (1934-1937), советские генетики работали за границей. Н. В. Тимофеев-Ресовский - в Германии (с 1925 г.), Ф. Г. Добржанский - в США (с 1927 г.).

В 1930-е гг. в рядах генетиков и селекционеров наметился раскол, связанный с энергичной деятельностью Т. Д. Лысенко и И. И. Презента. По инициативе генетиков был проведён ряд дискуссий (наиболее крупные - в 1936 и 1939 г.), направленных на борьбу с подходом Лысенко.

На рубеже 1930-1940-х гг. в ходе так называемого Большого террора большинство сотрудников аппарата ЦК ВКП (б), курировавших генетику, и ряд видных генетиков были арестованы, многие расстреляны или погибли в тюрьмах (в том числе, Н. И. Вавилов). После войны дебаты возобновились с новой силой. Генетики, опираясь на авторитет международного научного сообщества, снова попытались склонить чашу весов в свою сторону, однако с началом холодной войны ситуация значительно изменилась. В 1948 году на августовской сессии ВАСХНИЛ Т. Д. Лысенко, пользуясь поддержкой И. В. Сталина, объявил генетику лженаукой. Лысенко воспользовался некомпетентностью партийного руководства наукой, «пообещав партии» быстрое создание новых высокопродуктивных сортов зерна («ветвистая пшеница») и др. С этого момента начался период гонений на генетику, который получил название лысенковщины и продолжался вплоть до снятия Н. С. Хрущева с поста генерального секретаря ЦК КПСС в 1964 г.

Лично Т. Д. Лысенко и его сторонники получили контроль над институтами отделения биологии АН СССР, ВАСХНИЛ и вузовскими кафедрами. Были изданы новые учебники для школ и вузов, написанные с позиций «Мичуринской биологии». Генетики вынуждены были оставить научную деятельность или радикально изменить профиль работы. Некоторым удалось продолжить исследования по генетике в рамках программ по изучению радиационной и химической опасности за пределами организаций, подконтрольных Т. Д. Лысенко и его сторонникам.

После открытия и расшифровки структуры ДНК, физической базы генов (1953 г.), с середины 1960-х г. началось восстановление генетики. Министр просвещения РСФСР В. Н. Столетов инициировал широкую дискуссию между лысенковцами и генетиками, в результате было опубликовано много новых работ по генетике. В 1963 г. вышел в свет университетский учебник М. Е. Лобашева «Генетика», выдержавший впоследствии несколько изданий. Вскоре появился и новый школьный учебник Общая биология под редакцией Ю. И. Полянского, используемый, наряду с другими, и по сей день.

Вывод по разделу один

Развитие генетики в России шло сложным путем, претерпевая гонения со стороны властных структур, что значительно тормозило процесс развития данной науки.

2 НИКОЛАЙ ИВАНОВИЧ ВАВИЛОВ И ЕГО ВКЛАД В ГЕНЕТИКУ

Николай Иванович Вавилов (13 (25) ноября 1887, Москва, Российская империя - 26 января 1943, Саратов, РСФСР, СССР) - российский и советский учёный-генетик, ботаник, селекционер, географ, академик АН СССР, АН УССР и ВАСХНИЛ. Президент (1929-1935), вице-президент (1935-1940) ВАСХНИЛ, президент Всесоюзного географического общества (1931-1940), основатель (1920) и бессменный до момента ареста директор Всесоюзного института растениеводства (1930-1940), директор Института генетики АН СССР (1930-1940), член Экспедиционной комиссии АН СССР, член коллегии Наркомзема СССР, член президиума Всесоюзной ассоциации востоковедения. В 1926-1935 годах член Центрального исполнительного комитета СССР, в 1927-1929 - член Всероссийского Центрального Исполнительного Комитета.

Организатор и участник ботанико-агрономических экспедиций, охвативших большинство континентов (кроме Австралии и Антарктиды), в ходе которых выявил древние очаги формообразования культурных растений. Создал учение о мировых центрах происхождения культурных растений. Обосновал учение об иммунитете растений, открыл закон гомологических рядов в наследственной изменчивости организмов. Внёс существенный вклад в разработку учения о биологическом виде. Под руководством Вавилова была создана крупнейшая в мире коллекция семян культурных растений. Он заложил основы системы государственных испытаний сортов полевых культур. Сформулировал принципы деятельности главного научного центра страны по аграрным наукам, создал сеть научных учреждений в этой области.


Каждое из открытий имеет важнейшее значение для науки и человечества.

Ген интеллекта

Американские ученые из Калифорнии обнаружили белок с названием «клото» и ген KL-VS, который отвечает за его выработку. Последний тут же получил имя «ген интеллекта», ведь данный белок способен повысить показатели IQ человека сразу на 6 пунктов. Более того, этот белок можно синтезировать искусственно, и не важно, какого возраста человек. Следовательно, в будущем ученые научатся научными методами делать людей умнее вне зависимости от их природных интеллектуальных данных. Конечно, при помощи «клото» невозможно сделать из обычного человека гения. Но помочь людям с задержками интеллектуального развития, а также тем, кто страдает от болезни Альцгеймера, в будущем, возможно, и получится.

Болезнь Альцгеймера

Кстати, о болезни Альцгеймера. С момента ее описания в 1906 году ученые не могли достоверно выяснить природу данного заболевания, по каким причинам оно развивается у одних людей, а у других – нет. Но недавно появился существенный прорыв в изучении этой проблемы. Японские исследователи из Университета Осака обнаружили ген, который развивает болезнь Альцгеймера у подопытных мышей. В рамках исследований был выявлен ген klc1, способствующий накоплению в тканях мозга бета-амилоидного белка, который и является основным фактором развития болезни Альцгеймера. Механизм этого процесса был известен давно, но раньше никто не мог объяснить его причину. Опыты показали, что при блокировке гена klc1, количество скапливающегося в головном мозге бета-амилоидного белка снижается на 45%. Ученые надеются, что в будущем их исследования помогут в борьбе с болезнью Альцгеймера – опасным заболеванием, которым страдают десятки миллионов пожилых людей по всему миру.

Ген глупости

Оказывается, существует не только ген интеллекта, но и ген глупости. Во всяком случае, так считают ученые из Университета Эмори в Техасе. Они обнаружили генетическое отклонение RGS14, отключение которого позволяет заметно улучшить интеллектуальные способности подопытных мышей. Выяснилось, что блокировка гена RGS14 делает более активной область CA2 в гиппокампе – области мозга, отвечающей за накопление новых знаний и сохранение воспоминаний. Лабораторные мыши без этой генетической мутации стали лучше запоминать объекты и перемещаться по лабиринту, а также лучше адаптироваться к изменяющимся условиям внешней среды. Ученые из Техаса надеются в будущем разработать препарат, который блокировал бы ген RGS14 у уже живущего человека. Это позволило бы дать людям невиданные ранее интеллектуальные возможности и познавательные способности. Но до реализации данной идеи нужно еще не одно десятилетие.

Ген ожирения

Оказывается, у ожирения также есть генетические причины. В разные годы ученые находили разные гены, способствующие появлению лишнего веса и большого количества жира в организме. Но «главным» из них на данный момент считается IRX3. Выяснилось, что этот ген влияет на процент жира относительно общей массы. Во время лабораторных исследований, оказалось, что у мышей с поврежденным IRX3 процент жира в организме в два раза меньше, чем у остальных. И это притом, что их кормили одинаковым количеством высококалорийной пищи.

Дальнейшее изучение генетической мутации IRX3, а также механизмов ее воздействия на организм позволит создавать эффективные лекарства от ожирения и диабета.

Ген счастья

И главное, на наш взгляд, открытие генетиков из всех упомянутых в этом обзоре. Обнаруженный учеными из Лондонской школы здоровья, 5-HTTLPR называют «геном счастья». Ведь, оказывается, он отвечает за распространение гормона серотонин в нервных клетках. Считается, что серотонин является одним из важнейших факторов, отвечающих за настроение человека, он заставляет нас радоваться или грустить, в зависимости от внешних условий. Те, у кого низкий уровень этого гормона, подвержены частым приступам плохого настроения и депрессий, склонны к тревожности и пессимизму. Британские ученые выяснили, что так называемая «длинная» вариация гена 5-HTTLPR способствует лучшей доставке серотонина в головной мозг, что заставляет человека чувствовать себя в два раза счастливее, чем остальные. Эти выводы основаны на опросе и изучении генетических особенностей нескольких тысяч добровольцев. При этом самые лучшие показатели довольства жизнью оказались у тех людей, оба родителя которых также обладают «геном счастья».

Телеграф - последние новости Украины и мира