Построить линии уровня функции. Функции нескольких переменных

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

1.ОСНОВНЫЕ ПОНЯТИЯ

Пусть: z - переменная величина с областью изменения R; R- числовая прямая; D - область на координатной плоскости R2.

Любое отображение D->R называют функцией двух переменных с областью определения D и пишут z = f(x;y).

Другими словами:

Если каждой паре (х; у) двух независимых перемен­ных из области D по некоторому правилу ста­вится в соответствие одно определенное значение z из R, то переменную величину z называют функцией двух не­зависимых переменных х и у с областью определения D и пишут

http://pandia.ru/text/78/481/images/image002_44.jpg" width="215" height="32 src=">

П р и м е р 1.

http://pandia.ru/text/78/481/images/image005_28.jpg" width="157" height="29 src=">

http://pandia.ru/text/78/481/images/image007_16.jpg" align="left" width="110" height="89">

Область определения – есть часть плоско­сти, лежащая внутри круга радиуса г = 3 , с центром в начале координат, см. рисунок.

П р и м е р 3. Найти и изобразить область определения функции

http://pandia.ru/text/78/481/images/image009_11.jpg" width="86" height="32 src=">

http://pandia.ru/text/78/481/images/image011_10.jpg" width="147" height="30 src=">

2.ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ФУНКЦИИ ДВУХ

ПЕРЕМЕННЫХ

2.1.График функции двух переменных

Рассмотрим в пространстве прямоугольную систему координат и область D на плоскости хОу. В каждой точке М(х;у) из этой области восстановим перпендикуляр к плос­кости хОу и отложим на нем значение z = f(x; у). Геомет­рическое место полученных точек

http://pandia.ru/text/78/481/images/image013_10.jpg" width="106" height="23 src=">

http://pandia.ru/text/78/481/images/image015_6.jpg" width="159" height="23 src=">

Это окружности с центром в начале координат, радиусом R = C1/2 и уравнением

x2 + y2 = R2, см. рисунок.

Линии уровня позволяют представить рассматриваемую поверхность, дающую в сечении плоскостями z = C концентрические окружности.

http://pandia.ru/text/78/481/images/image017_16.gif" width="88" height="29"> и найти .

Решение. Воспользуемся методом сечений.

http://pandia.ru/text/78/481/images/image020_11.gif" width="184 height=60" height="60">– в плоскости – парабола.

– в плоскости –парабола.

http://pandia.ru/text/78/481/images/image025_5.gif" width="43" height="24 src=">– окружность.

Искомая поверхность – параболоид вращения.

Расстоянием между двумя произвольными точками и (евклидова) пространства называется число

http://pandia.ru/text/78/481/images/image030_5.gif" width="153 height=24" height="24"> называется открытым кругом радиуса с центром в точке r.

Открытый круг радиуса ε с центром в точке A называется - ε - окрестностью точки А.

3адание

Найти и изобразить графически область определения функции:

Построить линии уровня функций:

3. ПРЕДЕЛ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

Основные понятия математического анализа, введен­ные для функции одной переменной, распространяются и на функции нескольких переменных.

О п р е д е л е н и е:

Постоянное число А называется пределом функции двух переменных z = f(x;у) при х -> х0, у -> у0, если для лю­бого

ε >0 существует δ >0 такое, что |f(х; у) - А| < ε , как только

|x - x0| < δ и |у – у0| < δ.

Этот факт обозначается так:

http://pandia.ru/text/78/481/images/image042_2.jpg" width="160" height="39 src=">

http://pandia.ru/text/78/481/images/image044_2.gif" width="20" height="25 src=">. Для функции двух переменных стремление к предельной точке на плоскости может происходить по бесконечному числу направлений (и необязательно по прямой), и потому требование существования предела у функции двух (или нескольких) переменных «жестче» по сравнению с функцией одной переменной.

П р и м е р 1. Найти .

Решение. Пусть стремление к предельной точке http://pandia.ru/text/78/481/images/image048_2.gif" width="55 height=24" height="24">. Тогда

http://pandia.ru/text/78/481/images/image050_2.gif" width="72 height=48" height="48"> зависит от .

П р и м е р 2. Найти .

Решение. По любой прямой предел один и тот же:

http://pandia.ru/text/78/481/images/image054_2.gif" width="57" height="29">. Тогда

http://pandia.ru/text/78/481/images/image056_1.gif" width="64" height="21">, (остальное – по аналогии).

О п р е д е л е н и е. Число называют пределом функции при и , если для такое, что из неравенств и следует неравенство . Этот факт коротко записывают так:

http://pandia.ru/text/78/481/images/image065_1.gif" width="124" height="48">.gif" width="236" height="48 src=">;

http://pandia.ru/text/78/481/images/image069_1.gif" width="247" height="60 src=">,

где предельная точка http://pandia.ru/text/78/481/images/image070_1.gif" width="85" height="24 src="> с областью определения и пусть – предельная точка множества , т. е точка, к которой стремятся аргументы х и у .

О п р е д е л е н и е 1. Говорят, что функция непрерывна в точке, если:

1) ;

2) , т. е. .

Сформулируем определение непрерывности в эквивалентной форме..gif" width="89" height="25 src=">.gif" width="85 height=24" height="24">непрерывна в точке, если выполняется равенство

http://pandia.ru/text/78/481/images/image079_0.gif" width="16" height="20 src=">.gif" width="15 height=16" height="16"> придадим произвольное приращение . Функция получит частное приращение по х

http://pandia.ru/text/78/481/images/image084_0.gif" width="35" height="25 src="> является функцией одной переменной . Аналогично,

http://pandia.ru/text/78/481/images/image058_1.gif" width="85" height="24"> называется непрерывной в точке по переменной (по переменной ), если

http://pandia.ru/text/78/481/images/image087.gif" width="101" height="36">).

Теорема. Если функция определена в некоторой окрестности точки и непрерывна в этой точке, то она непрерывна в этой точке по каждой из переменных.

Обратное утверждение неверно.

П р и м е р. Докажем, что функция

непрерывна в точке http://pandia.ru/text/78/481/images/image081_0.gif" width="15 height=16" height="16">.gif" width="57" height="24"> в точке , соответствующее приращению http://pandia.ru/text/78/481/images/image081_0.gif" width="15" height="16 src=">:

http://pandia.ru/text/78/481/images/image092_0.gif" width="99" height="36 src=">, а это означает, что непрерывна в точке по переменной .

Аналогично можно доказать непрерывность в точке по переменной .

Покажем, что предел не существует. Пусть точка стремиться к точке по прямой , проходящей через точку . Тогда получим

.

Таким образом, приближаясь к точке http://pandia.ru/text/78/481/images/image051_1.gif" width="15" height="20">, получаем разные предельные значения. Отсюда следует, что предел данной функции в точке не существует, а значит, функция http://pandia.ru/text/78/481/images/image097.jpg" width="351" height="48 src=">

Другие обозначения

http://pandia.ru/text/78/481/images/image099.jpg" width="389" height="55 src=">

Другие обозначения

http://pandia.ru/text/78/481/images/image101_0.gif" width="60" height="28 src=">.

Решение . Имеем:

,

П р и м е р 2.

http://pandia.ru/text/78/481/images/image105.jpg" width="411" height="51 src=">

П р и м е р 3. Найти частные производные функции

http://pandia.ru/text/78/481/images/image107.jpg" width="477" height="58 src=">

Пример 4. Найти частные производные функции

http://pandia.ru/text/78/481/images/image109.jpg" width="321" height="54 src=">

5.2. Дифференциалы первого порядка функции двух переменных

Частные дифференциалы функции z = f(x, у) по переменным х и у определяются, соответственно по формулам х(x;y) и f"у{x;y) сущест­вуют в точке (х0;у0) и в некоторой ее окрестности и не­прерывны в этой точке, то по аналогии с функцией одной переменной устанавливается формула для полного при­ращения функции двух переменных

http://pandia.ru/text/78/481/images/image112_0.gif" width="364" height="57 src=">

где http://pandia.ru/text/78/481/images/image114_0.gif" width="154" height="39 src=">

Другими словами, функция z = f(x, y) дифференцируема в точке, (х, у), если ее приращение Δz эквивалентно функции:

Выражение

http://pandia.ru/text/78/481/images/image116.jpg" width="192" height="57 src=">

С учетом того, что Δх = dx, Δy=dy:

http://pandia.ru/text/78/481/images/image090_0.gif" width="57" height="24 src="> дифференцируема в точке , то она непрерывна в этой точке.

Обратное утверждение неверно, т. е. непрерывность является только необходимым, но не достаточным условием дифференцируемости функции. Покажем это.

П р и м е р. Найдем частные производные функции http://pandia.ru/text/78/481/images/image120.gif" width="253" height="57 src=">.

Полученные формулы теряют смысл в точке http://pandia.ru/text/78/481/images/image121.gif" width="147" height="33 src="> не имеет частных производных в точке . В самом деле, . Эта функция одной переменной , как известно, не имеет производной в точке http://pandia.ru/text/78/481/images/image124.gif" width="25" height="48"> в точке не существует. Аналогично, не существует частная производная . При этом функция , очевидно, непрерывна в точке .

Итак, мы показали, что непрерывная функция может не иметь частных производных. Осталось установить связь между дифференцируемостью и существованием частных производных.

5.4. Связь между дифференцируемостью и существованием частных производных.

Теорема 1. Необходимое условие дифференцируемости.

Если функция z = f(x, y) дифференцируема в точке M(x, y), то она имеет в точке M частные производные по каждой переменной и .

Обратная теорема не верна, т. е. существование частных производных является необходимым, но не является достаточным условием дифференцируемости функции.

Теорема 2. Достаточное условие дифференцируемости. Если функция z = f(x, y) имеет непрерывные частные производные и в точке , то она дифференцируема в точке (и ее полный дифференциал в этой точке выражается формулой http://pandia.ru/text/78/481/images/image130.gif" width="101 height=29" height="29">

Пример 2. Вычислить 3,021,97

3адание

Вычислить приближенно при помощи дифференциа­ла:

5.6. Правила дифференцирования сложных и неявных функций. Полная производная.

Случай 1.

z=f(u, v); u=φ(x, y), v=ψ(x, y)

Функции u и v непрерывные функции от аргументов х, у.

Таким образом, функция z есть сложная функция от аргументов х и у: z=f(φ(x, y),ψ(x, y))

Предположим, что функции f(u, v), φ(x, y), ψ(x, y) имеют непрерывные частные производные по всем своим аргументам.

Поставим задачу вычислить http://pandia.ru/text/78/481/images/image140.gif" width="23" height="44 src=">.

Дадим аргументу x приращение Δx, фиксируя значение аргумента y. Тогда функции двух переменных u= φ(x, y) и

v= φ(x, y) получат частные приращения Δxu и Δxv. Следовательно, z=f(u, v) получит полное приращение, определяемое в п.5.2 (дифференциалы первого порядка функции двух переменных):

http://pandia.ru/text/78/481/images/image142.gif" width="293" height="43 src=">

Если xu→ 0, то Δxu → 0 и Δxv → 0 (в силу непрерывности функций u и v). Переходя к пределу при Δx→ 0, получим:

http://pandia.ru/text/78/481/images/image144.gif" width="147" height="44 src="> (*)

П р и м е р.

Z=ln(u2+v), u=ex+y ² , v=x2 + y;

http://pandia.ru/text/78/481/images/image146.gif" width="81" height="41 src=">.

http://pandia.ru/text/78/481/images/image148.gif" width="97" height="44 src=">.gif" width="45" height="44 src=">.

Тогда по формуле (*) получим:

http://pandia.ru/text/78/481/images/image152.gif" width="219" height="44 src=">.

Для получения окончательного результата в две последние формулы вместо u и v необходимо подставить еx+y² и x2+y, соответственно.

Случай 2.

Функции х и у непрерывные функции.

Таким образом, функция z=f(x, у) зависит через посредство х и у от одной независимой переменной t, т. е. допустим, что х и у суть не незави­симые переменные, но функции независимой переменной t, и определим производную http://pandia.ru/text/78/481/images/image155.gif" width="235" height="44 src=">

Разделим обе части этого равенства на Δt:

http://pandia.ru/text/78/481/images/image157.gif" width="145" height="44 src="> (**)

Случай 3.

Предположим, теперь, что роль независимой переменной t играет переменная х, т. е. что функция z=f(x, у) зависит от неза­висимой переменной х как непосредственно, так и через посредство переменной у, которая является непрерывной функцией от х.

Принимая во внима­ние, что http://pandia.ru/text/78/481/images/image160.gif" width="120" height="44 src="> (***)

Производная x(x, у)=http://pandia.ru/text/78/481/images/image162.gif" width="27" height="27 src=">, y=sin x.

Находим частные производные

http://pandia.ru/text/78/481/images/image164.gif" width="72" height="48 src=">.gif" width="383" height="48 src=">

Доказанное правило дифференцирования сложных функций при­меняется для нахождения производной, неявной функции.

Производная от функции, заданной неявно.

Положим, что уравнение

определяет у как неявную функцию от х, имеющую производную

у’ = φ’(x)_

Подставляя у = φ (х) в уравнение F(x, y) = 0, мы должны были бы получить тождество 0 = 0, так как у = φ(х) есть решение этого уравнения. Мы видим, таким образом, что постоянную нуль можно рассматривать как сложную функцию от х, которая зависит от х как непосредственно, так и через посредство у =φ(х).

Производная по х от этой постоянной должна равняться нулю; применяя правило (***), получим

F’x(x, y) + F’y(x, y)·y’ = 0,

http://pandia.ru/text/78/481/images/image168.gif" width="64" height="41 src=">

Следовательно,

http://pandia.ru/text/78/481/images/image171.gif" width="20" height="24"> справедливо как для одной, так и для другой функции.

5.7. Полный дифференциал первого порядка. Инвариантность формы дифференциала первого порядка

Подставим выражения для http://pandia.ru/text/78/481/images/image173.gif" width="23" height="41 src="> определенные равенствами (*) (см. случай 1 в п.5.6 «Правила дифференцирования сложных и неявных функций. Полная производная») в формулу полного дифференциала

Gif" width="33" height="19 src=">.gif" width="33" height="19 src=">.gif" width="140" height="44 src=">

Тогда формула полного дифференциала первого порядка функции двух переменных имеет вид

http://pandia.ru/text/78/481/images/image180.gif" width="139" height="41 src=">

Сравнивая последнее равенство с формулой для первого дифференциала функции двух независимых переменных, можем сказать, что выражение полного дифференциала первого порядка функции нескольких переменных имеет тот же вид, которое он имел бы, если бы u и v были бы независимыми переменными.

Иначе говоря, форма первого дифференциала инвариантна, то есть не зависит от того, являются ли переменные u и v независимыми переменными, или зависят от других переменных.

П р и м е р.

Найти полный дифференциал первого порядка сложной функции

z=u2v3, u=x2·sin y , v=x3·ey.

Р е ш е н и е. По формуле для полного дифференциала первого порядка имеем

dz = 2uv3·du+3u2v2·dv =

2uv3·(2x·siny ·dx+x2·cosy ·dy)+3u2v2·(3x2·ey·dx+x3·ey·dy).

Это выражение можно переписать так

dz=(2uv3·2x·siny+3u2v2·3x2·ey)·dx+(2uv3x2·cosy+3u2v2x3·ey)·dy=

Свойство инвариантности дифференциала позволяет распространить правило нахождения дифференциала суммы, произведения и частного на случай функции от нескольких переменных:

http://pandia.ru/text/78/481/images/image183.jpg" width="409" height="46 src=">

http://pandia.ru/text/78/481/images/image185.gif" width="60" height="41 src=">. Эта

функция будет однородной третьей степени при всех вещественных х, у и t. Такой же функцией будет и любой однородный многочлен от х и у третьей степени, т. е. такой многочлен, в каждом члене которого сумма показателей хну равна трем:

http://pandia.ru/text/78/481/images/image187.jpg" width="229" height="47 src=">

суть однородные функции степеней соответственно 1, 0 и (- 1)..jpg" width="36" height="15">. Действительно,

http://pandia.ru/text/78/481/images/image191.jpg" width="363" height="29 src=">

Полагая t=1, находим

http://pandia.ru/text/78/481/images/image193.jpg" width="95" height="22 src=">

Частные производные http://pandia.ru/text/78/481/images/image195.jpg" width="77" height="30 src=">), вообще го-

воря, являются функциями переменных х и у. Поэтому от них можно снова находить частные производные. Следовательно, частных про­изводных второго порядка от функции двух переменных четыре, так как каждую из функций и можно дифференцировать как по х, так и по у.

Вторые частные производные обозначают так:

есть производная n - го порядка; здесь функция z сначала р раз дифференцировалась по х, а потом n - р раз по у.

Для функции любого числа переменных частные производите высших порядков определяются аналогично.

П р и м е р 1. Вычислить частные производные второго порядка от функции

http://pandia.ru/text/78/481/images/image209.jpg" width="600" height="87 src=">

П р и м е р 2. Вычислить и http://pandia.ru/text/78/481/images/image212.jpg" width="520" height="97 src=">

П р и м е р 3. Вычислить , если

http://pandia.ru/text/78/481/images/image215.jpg" width="129" height="36 src=">

x, f"y, f"xy и f"yx определены и непрерывны в точке М(х, у) и в некоторой ее окрестности, то в этой точке

http://pandia.ru/text/78/481/images/image218.jpg" width="50 height=28" height="28">.jpg" width="523" height="128 src=">

Следовательно,

http://pandia.ru/text/78/481/images/image222.jpg" width="130" height="30 src=">

Решение.

Смешанные производные равны.

5.10. Дифференциалы высших порядков функции n переменных .

Полный дифференциал du функции от нескольких переменных есть в свою очередь функ­ция тех же переменных, и мы можем определить полный дифферен­циал этой последней функции. Таким образом, мы получим дифферен­циал второго порядка d2u первоначальной функции и, который также будет функцией тех же переменных, а его полный дифференциал приведет нас к дифференциалу третьего порядка d3u первоначальной функции и т. д.

Рассмотрим подробнее случай функции u=f(x, у) двух пере­менных х и у и будем предполагать, что переменные х и у суть независимые переменные. По определению

http://pandia.ru/text/78/481/images/image230.jpg" width="463" height="186 src=">

Вычисляя точно так же d3u, мы получим

http://pandia.ru/text/78/481/images/image232.jpg" width="347" height="61 src="> (*)-

причем формулу эту надо понимать так: сумму, стоящую в круглых скобках, надо возвести в степень n, применяя Формулу бинома Ньютона, после чего показатели степеней у и http://pandia.ru/text/78/481/images/image235.jpg" width="22" height="21 src=">.gif" width="22" height="27"> с направляющими косинусами cos α, cos β (α + β = 90°). На векторе рассмотрим точку М1(х + Δх; у + Δу). При перехо­де от точки М к точке М1 функция z = f(x; у) получит пол­ное приращение

http://pandia.ru/text/78/481/images/image239.jpg" width="133 height=27" height="27"> стремящемся к нулю (см. рис.).

http://pandia.ru/text/78/481/images/image241.jpg" width="324" height="54 src=">

где http://pandia.ru/text/78/481/images/image243.gif" width="76" height="41 src=">, а потому получаем:

http://pandia.ru/text/78/481/images/image245.gif" width="24" height="41 src="> при Δs->0 называется произ-

водной функции z = f(х; у) в точке (х; у) по направлению вектора и обозначается

http://pandia.ru/text/78/481/images/image247.jpg" width="227" height="51 src="> (*)

Таким образом, зная част­ные производные функции

z = f(x; у) можно найти произ­водную этой функции по любому направлению, а каждая частная производная является частным случаем произ­водной по направлению.

П р и м е р. Найти производную функции

http://pandia.ru/text/78/481/images/image249.jpg" width="287" height="56 src=">

http://pandia.ru/text/78/481/images/image251.jpg" width="227" height="59 src=">

http://pandia.ru/text/78/481/images/image253.gif" width="253 height=62" height="62">

Следовательно, функция z = f(x;y) в данном направлении возрастает.

5. 12 . Градиент

Градиентом функции z = f(x; у) называется вектор , координатами которого являются соответствующие частные производные данной функции

http://pandia.ru/text/78/481/images/image256.jpg" width="205" height="56 src=">

т. е..jpg" width="89" height="33 src=">

в точке М(3;4).

Р е ш е н и е.

http://pandia.ru/text/78/481/images/image259.jpg" width="213" height="56 src=">

Функция нескольких переменных. Общие свойства. Непрерывность функции. Линии уровня, поверхности уровня.Семинар 21

Определение 1
Если каждой паре (x,y) значений двух независимых друг от друга переменных
величин x,y из некоторой области их изменения D соответствует
определенное значение величины z, то z есть функция двух независимых
переменных x,y, определенных в области D.
Обозначение: z=f(x,y), z=F(x,y), и так далее.
Способы задания функции: аналитический, табличный, графический.
Определение 2
Совокупность пар (x,y) значений x,y, при которых определена функция
z=f(x,y), называется областью определения или областью существования этой
функции.
Пусть дана функция z=f(x,y), определенная в некоторой области G плоскости
OXY. Рассмотрим некоторую определенную точку
, лежащую в
области G или на ее границе.
Определение 3
Число А называется пределом функции f(x,y) при стремлении точки M(x,y) к
точке
, если для каждого числа
найдется такое число r>0, что
для всех точек M(x,y), для которых выполняется неравенство
имеет
место неравенство

Определение 4
Пусть точка
принадлежит области определения функции f(x,y).
Функция z=f(x,y) называется непрерывной в точке
, если имеет место
равенство
(1)
Причем точка M(x,y) стремится к точке
произвольным образом,
оставаясь в области определения функции.
Функция, непрерывная в каждой точке некоторой области, называется
непрерывной в этой области.
Если в некоторой точке
не выполняется условие (1), то точка
называется точкой разрыва функции z=f(x,y). Условие (1) может не
выполняться, например, в следующих случаях:
1) z=f(x,y) определена во всех точках некоторой окрестности точки
,
за исключением самой точки
.
2) z=f(x,y) определена во всех точках окрестности точки
, но не
существует
3) z=f(x,y) определена во всех точках окрестности точки
и
существует
, но
Определение 5
Линией уровня функции z=f(x,y) называется линия z=f(x,y)=с на плоскости
OXY, в точках которой функция сохраняет постоянное значение z=c.

Определение 6
Поверхностью уровня функции u=f(x,y,z) называется поверхность u=f(x,y,z)=с
плоскости, в точках которой функция сохраняет постоянное значение u=c.
Примеры с решениями
1. Найти область определения функции
.
Решение.
Функция принимает действительные значения при условии
или
, т. е. областью определения данной функции является круг радиуса
а с центром в начале координат, включая граничную окружность.
2. Найти область определения функции
.
Решение.
Функция определена, если
Областью определения
функции является плоскости, заключенная между двумя параболами
, за исключением точки О(0,0).
3. Найти область определения функции
.
Решение.
Данная функция зависит от трех переменных и принимает действительные
значения при
, т. е. область определения –
часть пространства, заключенная внутри полостей двуполостного
гиперболоида.

4. Найти линии уровня функции
Решение.
Уравнение семейства линий уровня имеет вид
.
Придавая С различные действительные значения, получим концентрические
окружности с центром в начале координат.
5. Найти поверхности уровня функции
Решение.
Уравнение семейства поверхностей имеет вид
.
Если С=0, то получаем
- конус.
Если С>0, то получаем
- семейство однополостных
гиперболоидов;
Если С<0, то получаем
- семейство двуполостных гиперболоидов;
Примеры для самостоятельного решения
1. Найти области определения функции
2. Найти линии уровня функций:

До сих пор нами рассматривалась простейшая функциональная модель, в которой функция зависит от единственного аргумента . Но при изучении различных явлений окружающего мира мы часто сталкиваемся с одновременным изменением более чем двух величин, и многие процессы можно эффективно формализовать функцией нескольких переменных , где – аргументы или независимые переменные . Начнём разработку темы с наиболее распространенной на практике функции двух переменных .

Функцией двух переменных называется закон , по которому каждой паре значений независимых переменных (аргументов) из области определения соответствует значение зависимой переменной (функции).

Данную функцию обозначают следующим образом:

Либо , или же другой стандартной буквой:

Поскольку упорядоченная пара значений «икс» и «игрек» определяет точку на плоскости , то функцию также записывают через , где – точка плоскости с координатами . Такое обозначение широко используется в некоторых практических заданиях.

Геометрический смысл функции двух переменных очень прост. Если функции одной переменной соответствует определённая линия на плоскости (например, – всем знакомая школьная парабола), то график функции двух переменных располагается в трёхмерном пространстве. На практике чаще всего приходится иметь дело с поверхностью , но иногда график функции может представлять собой, например, пространственную прямую (ые) либо даже единственную точку.

С элементарным примером поверхности мы хорошо знакомы ещё из курса аналитической геометрии – это плоскость . Предполагая что , уравнение легко переписать в функциональном виде:

Важнейший атрибут функции 2 переменных – это уже озвученная область определения .

Областью определения функции двух переменных называется множество всех пар , для которых существует значение .

Графически область определения представляет собой всю плоскость либо её часть . Так, областью определения функции является вся координатная плоскость – по той причине, что для любой точки существует значение .

Но такой праздный расклад бывает, конечно же, не всегда:

Как двух переменных?

Рассматривая различные понятия функции нескольких переменных, полезно проводить аналогии с соответствующими понятиями функции одной переменной. В частности, при выяснении области определения мы обращали особое внимание на те функции, в которых есть дроби, корни чётной степени, логарифмы и т. д. Здесь всё точно так же!

Задача на нахождение области определения функции двух переменных практически со 100%-ной вероятностью встретится вам в тематической работе, поэтому я разберу приличное количество примеров:

Пример 1

Найти область определения функции

Решение : так как знаменатель не может обращаться в ноль, то:

Ответ : вся координатная плоскость кроме точек, принадлежащих прямой

Да-да, ответ лучше записать именно в таком стиле. Область определения функции двух переменных редко обозначают каким-либо символом, гораздо чаще используют словесное описание и/или чертёж .

Если бы по условию требовалось выполнить чертёж, то следовало бы изобразить координатную плоскость и пунктиром провести прямую . Пунктир сигнализирует о том, что линия не входит в область определения.

Как мы увидим чуть позже, в более трудных примерах без чертежа и вовсе не обойтись.

Пример 2

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным:

Ответ : полуплоскость

Графическое изображение здесь тоже примитивно: чертим декартову систему координат, сплошной линией проводим прямую и штрихуем верхнюю полуплоскость . Сплошная линия указывает на тот факт, что она входит в область определения.

Внимание! Если вам ХОТЬ ЧТО-ТО не понятно по второму примеру, пожалуйста, подробно изучите/повторите урок Линейные неравенства – без него придётся очень туго!

Миниатюра для самостоятельного решения:

Пример 3

Найти область определения функции

Двухстрочное решение и ответ в конце урока.

Продолжаем разминаться:

Пример 4

И изобразить её на чертеже

Решение : легко понять, что такая формулировка задачи требует выполнения чертёжа (даже если область определения очень проста). Но сначала аналитика: подкоренное выражением должно быть неотрицательным: и, учитывая, что знаменатель не может обращаться в ноль, неравенство становится строгим:

Как определить область, которую задаёт неравенство ? Рекомендую тот же алгоритм действий, что и при решении линейных неравенств .

Сначала чертим линию , которую задаёт соответствующее равенство . Уравнение определяет окружность с центром в начале координат радиуса , которая делит координатную плоскость на две части – «внутренность» и «внешность» круга. Так как неравенство у нас строгое , то сама окружность заведомо не войдёт в область определения и поэтому её нужно провести пунктиром .

Теперь берём произвольную точку плоскости, не принадлежащую окружности , и подставляем её координаты в неравенство . Проще всего, конечно же, выбрать начало координат :

Получено неверное неравенство , таким образом, точка не удовлетворяет неравенству . Более того, данному неравенству не удовлетворяет и любая точка, лежащая внутри круга, и, стало быть, искомая область определения – внешняя его часть. Область определения традиционно штрихуется:

Желающие могут взять любую точку, принадлежащую заштрихованной области и убедиться, что её координаты удовлетворяют неравенству . Кстати, противоположное неравенство задаёт круг с центром в начале координат, радиуса .

Ответ : внешняя часть круга

Вернёмся к геометрическому смыслу задачи: вот мы нашли область определения и заштриховали её, что это значит? Это значит, что в каждой точке заштрихованной области существует значение «зет» и графически функция представляет собой следующую поверхность :

На схематическом чертеже хорошо видно, что данная поверхность местами расположена над плоскостью (ближний и дальний от нас октанты) , местами – под плоскостью (левый и правый относительно нас октанты) . Также поверхность проходит через оси . Но поведение функции как таковое нам сейчас не очень интересно – важно, что всё это происходит исключительно в области определения . Если мы возьмём любую точку , принадлежащую кругу – то никакой поверхности там не будет (т.к. не существует «зет») , о чём и говорит круглый пробел в середине рисунка.

Пожалуйста, хорошо осмыслите разобранный пример, поскольку в нём я подробнейшим образом разъяснил саму суть задачи.

Следующее задание для самостоятельного решения:

Пример 5


Краткое решение и чертёж в конце урока. Вообще, в рассматриваемой теме среди линий 2-го порядка наиболее популярна именно окружность, но, как вариант, в задачу могут «затолкать» эллипс , гиперболу или параболу .

Идём на повышение:

Пример 6

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным: и знаменатель не может равняться нулю: . Таким образом, область определения задаётся системой .

С первым условием разбираемся по стандартной схеме рассмотренной на уроке Линейные неравенства : чертим прямую и определяем полуплоскость, которая соответствует неравенству . Поскольку неравенство нестрогое , то сама прямая также будет являться решением.

Со вторым условием системы тоже всё просто: уравнение задаёт ось ординат, и коль скоро , то её следует исключить из области определения.

Выполним чертёж, не забывая, что сплошная линия обозначает её вхождение в область определения, а пунктир – исключение из этой области:

Следует отметить, что здесь мы уже фактически вынуждены сделать чертёж. И такая ситуация типична – во многих задачах словесное описание области затруднено, а даже если и опишите, то, скорее всего, вас плохо поймут и заставят изобразить область.

Ответ : область определения:

К слову, такой ответ без чертежа действительно смотрится сыровато.

Ещё раз повторим геометрический смысл полученного результата: в заштрихованной области существует график функции , который представляет собой поверхность трёхмерного пространства . Эта поверхность может располагаться выше/ниже плоскости , может пересекать плоскость – в данном случае нам всё это параллельно. Важен сам факт существования поверхности, и важно правильно отыскать область, в которой она существует.

Пример 7

Найти область определения функции

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи в конце урока.

Не редкость, когда вроде бы простые на вид функции вызывают далеко не скороспелое решение:

Пример 8

Найти область определения функции

Решение : используя формулу разности квадратов , разложим подкоренное выражение на множители: .

Произведение двух множителей неотрицательно , когда оба множителя неотрицательны: ИЛИ когда оба неположительны: . Это типовая фишка. Таким образом, нужно решить две системы линейных неравенств и ОБЪЕДИНИТЬ полученные области. В похожей ситуации вместо стандартного алгоритма гораздо быстрее работает метод научного, а точнее, практического тыка =)

Чертим прямые , которые разбивают координатную плоскость на 4 «уголка». Берём какую-нибудь точку, принадлежащую верхнему «уголку», например, точку и подставляем её координаты в уравнения 1-й системы: . Получены верные неравенства, а значит, решением системы является весь верхний «уголок». Штрихуем.

Теперь берём точку , принадлежащую правому «уголку». Осталась 2-я система, в которую мы и подставляем координаты этой точки: . Второе неравенство неверно, следовательно, и весь правый «уголок» не является решением системы .

Аналогичная история с левым «уголком», который тоже не войдёт в область определения.

И, наконец, подставляем во 2-ю систему координаты подопытной точки нижнего «уголка»: . Оба неравенства верны, а значит, решением системы является и весь нижний «уголок», который тоже следует заштриховать.

В реальности так подробно расписывать, естественно, не надо – все закомментированные действия легко выполняются устно!

Ответ : область определения представляет собой объединение решений систем .

Как вы догадываетесь, без чертежа такой ответ вряд ли пройдёт, и это обстоятельство вынуждает взять в руки линейку с карандашом, хоть того и не требовало условие.

А это ваш орешек:

Пример 9

Найти область определения функции

Хороший студент всегда скучает по логарифмам:

Пример 10

Найти область определения функции

Решение : аргумент логарифма строго положителен, поэтому область определения задаётся системой .

Неравенство указывает на правую полуплоскость и исключает ось .

Со вторым условием ситуация более затейлива, но тоже прозрачна. Вспоминаем синусоиду . В качестве аргумента выступает «игрек», но это не должно смущать – игрек, так игрек, зю, так зю. Где синус больше нуля? Синус больше нуля, например, на интервале . Поскольку функция периодична, то таких интервалов бесконечно много и в свёрнутом виде решение неравенства запишется следующим образом:
, где – произвольное целое число.

Бесконечное количество промежутков, понятно, не изобразить, поэтому ограничимся интервалом и его соседями:

Выполним чертёж, не забывая, что согласно первому условию, наше поле деятельности ограничивается строго правой полуплоскостью:

мда …какой-то чертёж-призрак получился… доброе приведение высшей математики…

Ответ :

Следующий логарифм ваш:

Пример 11

Найти область определения функции

В ходе решения придётся построить параболу , которая поделит плоскость на 2 части – «внутренность», находящуюся между ветвями, и внешнюю часть. Методика нахождения нужной части неоднократно фигурировала в статье Линейные неравенства и предыдущих примерах этого урока.

Решение, чертёж и ответ в конце урока.

Заключительные орешки параграфа посвящены «аркам»:

Пример 12

Найти область определения функции

Решение : аргумент арксинуса должен находиться в следующих пределах:

Дальше есть две технические возможности: более подготовленные читатели по аналогии с последними примерами урока Область определения функции одной переменной могут «ворочать» двойное неравенство и оставить в середине «игрек». Чайникам же рекомендую преобразовать «паровозик» в равносильную систему неравенств :

Система решается как обычно – строим прямые и находим нужные полуплоскости. В результате:

Обратите внимание, что здесь границы входят в область определения и прямые проводятся сплошными линиями. За этим всегда нужно тщательно следить, чтобы не допустить грубой ошибки.

Ответ : область определения представляет собой решение системы

Пример 13

Найти область определения функции

В образце решения используется продвинутая техника – преобразуется двойное неравенство.

На практике также иногда встречаются задачи на нахождение области определения функции трёх переменных . Областью определения функции трёх переменных может являться всё трёхмерное пространство, либо его часть. В первом случае функция определена для любой точки пространства, во втором – только для тех точек , которые принадлежат некоторому пространственному объекту, чаще всего – телу . Это может быть прямоугольный параллелепипед, эллипсоид , «внутренность» параболического цилиндра и т.д. Задача отыскания области определения функции трёх переменных обычно состоит в нахождении этого тела и выполнении трёхмерного чертежа. Однако такие примеры довольно редкИ (нашёл у себя всего пару штук) , и поэтому я ограничусь лишь этим обзорным абзацем.

Линии уровня

Для лучшего понимания этого термина будем сравнивать ось с высотой : чем больше значение «зет» – тем больше высота, чем меньше значение «зет» – тем высота меньше. Также высота может быть и отрицательной.

Функция в своей области определения представляет собой пространственный график, для определённости и бОльшей наглядности будем считать, что это тривиальная поверхность. Что такое линии уровня ? Образно говоря, линии уровня – это горизонтальные «срезы» поверхности на различных высотах. Данные «срезы» или правильнее сказать, сечения проводятся плоскостями , после чего проецируются на плоскость .

Определение : линией уровня функции называется линия на плоскости , в каждой точке которой функция сохраняет постоянное значение: .

Таким образом, линии уровня помогают выяснить, как выглядит та или иная поверхность – причём помогают без построения трёхмерного чертежа! Рассмотрим конкретную задачу:

Пример 14

Найти и построить несколько линий уровня графика функции

Решение : исследуем форму данной поверхности с помощью линий уровня. Для удобства развернём запись «задом наперёд»:

Очевидно, что в данном случае «зет» (высота) заведомо не может принимать отрицательные значения (так как сумма квадратов неотрицательна) . Таким образом, поверхность располагается в верхнем полупространстве (над плоскостью ).

Поскольку в условии не сказано, на каких конкретно высотах нужно «срезать» линии уровня, то мы вольнЫ выбрать несколько значений «зет» на своё усмотрение.

Исследуем поверхность на нулевой высоте, для этого поставим значение в равенство :

Решением данного уравнения является точка . То есть, при линия уровня представляет собой точку .

Поднимаемся на единичную высоту и «рассекаем» нашу поверхность плоскостью (подставляем в уравнение поверхности) :

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке единичного радиуса .

Напоминаю, что все «срезы» проецируются на плоскость , и поэтому у точек я записываю две, а не три координаты!

Теперь берём, например, плоскость и «разрезаем ей» исследуемую поверхность (подставляем в уравнение поверхности) :

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке радиуса .

И, давайте построим ещё одну линию уровня, скажем, для :

окружность с центром в точке радиуса 3 .

Линии уровня, как я уже акцентировал внимание, располагаются на плоскости , но каждая линия подписывается – какой высоте она соответствует:

Нетрудно понять, что другие линии уровня рассматриваемой поверхности тоже представляют собой окружности, при этом, чем выше мы поднимаемся вверх (увеличиваем значение «зет») – тем больше становится радиус. Таким образом, сама поверхность представляет собой бесконечную чашу с яйцевидным дном, вершина которой расположена на плоскости . Эта «чаша» вместе с осью «выходит прямо на вас» из экрана монитора, то есть вы смотрите в её дно =) И это неспроста! Только я так убойно наливаю на посошок =) =)

Ответ : линии уровня данной поверхности представляют собой концентрические окружности вида

Примечание : при получается вырожденная окружность нулевого радиуса (точка)

Само понятие линии уровня пришло из картографии. Перефразируя устоявшийся математический оборот, можно сказать, что линия уровня – это географическое место точек одинаковой высоты . Рассмотрим некую гору с линиями уровня 1000, 3000 и 5000 метров:

На рисунке хорошо видно, что левый верхний склон горы гораздо круче правого нижнего склона. Таким образом, линии уровня позволяют отразить рельеф местности на «плоской» карте. Кстати, здесь приобретают вполне конкретный смысл и отрицательные значения высоты – ведь некоторые участки поверхности Земли располагаются ниже нулевой отметки уровня мирового океана.

Определение . Пусть имеется п переменных величин, и каждому набору их значений (х х , х 2 ,..., х п ) из некоторого множества X соответствует одно вполне определенное значение переменной вели­чины z . Тогда говорят, что задана функция нескольких переменных z = f х , х 2 ,..., х п ) .

Переменные х х , х 2 ,..., х п называются независимыми переменными или аргументами, z - зависимой переменной, а символ f означа­ет закон соответствия. Множество X называется областью оп­ределения функции. Очевидно, это подмножество n-мерного пространства.

Функцию двух переменных обозначают z=f(x, у) . Тогда ее область определения X есть подмножество ко­ординатной плоскости Оху .

Окрестностью точки
называется круг, содержа­щий точку
(см. рис. 1).

Очевидно, круг на плоскости есть двумерный аналог интерва­ла на прямой.

При изучении функций нескольких переменных используется математи­ческий аппарат: любой функции z = f (x , у) можно по­ставить в соответствие пару функций одной переменной: при фиксированном значении х=х 0 функцию z =
и при фиксированном значении у=у 0 функцию z = f (x , у 0 ).

Графиком функции двух переменных z =
называется множе­ство точек трехмерного пространства (х, у, z), аппликата z кото­рых связана с абсциссой х и ординатой у функциональным соот­ношением z =
.

Для построения графика функции z=f(x, у) полезно рассмат­ривать функции одной переменной z = f (x , у 0 ) и z =
, пред­ставляющие сечения графика z = f (x , у) плоскостями, парал­лельными координатным плоскостям Oxz и Oyz , т.е. плоскостями у= у 0 и х=х 0 .

Пример 1. Построить график функции
.

Решение. Сечения поверхности
=
плоскостями, параллельными координатным плос­костямOyz и Oxz , пред­ставляют параболы (на­пример, при х = 0
, при у = 1
и т.д.). В се­чении поверхности кординатной плоско­стьюОху , т.е. плоско­стью z=0 , получается окружность
График функции представляет поверх­ность, называемую па­раболоидом (см. рис. 2)

Определение . Линией уровня функции двух переменных z=f{x, у) называется множество точек на плоскости, таких, что во всех этих точках значение функции одно и то же и равно С. Число С в этом случае называется уровнем.

На рис.3 изображены линии уровня, соответствую­щие значениям С=1 и С=2. Как видно, линия уровня состо­ит из двух непересекающихся кривых. Линия– самопере­секающаяся кривая.

Многие примеры линий уровня хорошо известны и привычны. Например, паралле­ли и меридианы на глобусе - это линии уровня функций широты и долготы. Синоптики публикуют карты с изображе­нием изотерм - линий уровня температуры.

Пример 2. Построить линии уровня функции
.

Решение. Линия уровня z = C это кривая на плоскости Оху, задаваемая уравнением х 2 + у 2 - 2у = С или х 2 + (у - I) 2 = С+1. Это уравнение окружности с центром в точке (0; 1) и радиусом
(рис. 4).

Точка (0; 1) - это вырожденная линия уровня, соответст­вующая минимальному значению функции z =-1 и достигаю­щемуся в точке (0; 1). Линии уровня - концентрические ок­ружности, радиус которых увеличивается с ростом z = C , при­чем расстояния между линиями с одинаковым шагом уровня уменьшаются по мере удаления от центра. Линии уровня по­зволяют представить график данной функции, который был ранее построен на рис. 2.

Частные производные

Дадим аргументу х приращение ∆х, аргументу у - приращение ∆у. Тогда функция z получит наращенное значение f(х+∆х, у+∆у). Величина z = f (x +∆ x , y +∆ y )- f { x , у) называется полным приращени­ем функции в точке (х; у). Если задать только приращение аргу­мента x или только приращение аргумента у, то полученные при­ращения функции соответственно иназываютсячастными.

Полное приращение функции, вообще говоря, не равно сумме частных, т.е.

Пример 15.6. Найти частные и полное приращения функции z = xy .

Решение. ;;.

Получили, что

Определение. Частной производной функции несколь­ких переменных по одной из этих переменных называется предел отношения соответст­вующего частного приращения функции к приращению рас­сматриваемой независимой переменной при стремлении последнего к нулю (если этот предел существует).

Обозначается частная производная так:
или
, или
.

Для нахождения производной
надо считать постоянной переменную у, а для нахождения
-переменную х. При этом сохраняются известные правила дифференцирова­ния.

Пример. Найти частные производные функции:

a) z = x ln y + .

Решение: Чтобы найти частную производную по х, считаем у постоянной величиной. Таким образом,
. Аналогично, дифференцируя по у, считаем х постоянной величиной, т.е
.

Дифференциал функции

Определение. Дифференциалом функции называется сумма про­изведений частных производных этой функции на приращения соот­ветствующих независимых переменных, т.е.

dz =
.
(1)

Учитывая, что для функций f(х, у)=х, g (x , у)=у согласно (1) df = dx =∆ x ; dg = dy =∆ y формулу дифференциала (1) можно запи­сать в виде dz = z " x dx + z " y dy (2) или

Определение. Функция z = f (x , у) называется дифференцируемой в точке (х, у), если ее полное приращение может быть представлено в виде (3), где dz - дифференциал функции, – ,бесконечно малые при
.

Достаточное условие дифферен­цируемости функции двух переменных.

Теорема. Если частные производные функции z " v (x , у) существу­ют в окрестности точки (х, у) и непрерывны в самой точке (х, у), то функция z = f { x , у) дифференцируема в этой точке.

КОНСПЕКТ ЛЕКЦИЙ ПО МАТАНАЛИЗУ

Функции нескольких переменных. Геометрическое изображение функции двух переменных. Линии и поверхности уровня. Предел и непрерывность функции нескольких переменных, их свойства. Частные производные, их свойства и геометрический смысл.

Определение 1.1. Переменная z (с областью изменения Z ) называется функцией двух независимых переменных х,у в множестве М , если каждой паре (х,у ) из множества М z из Z .

Определение 1.2. Множество М , в котором заданы переменные х,у, называется областью определения функции , а сами х,у – ее аргументами .

Обозначения: z = f (x , y ), z = z (x , y ).

Примеры.

Замечание. Так как пару чисел (х,у ) можно считать координатами некоторой точки на плоскости, будем впоследствии использовать термин «точка» для пары аргументов функции двух переменных, а также для упорядоченного набора чисел
, являющихся аргументами функции нескольких переменных.

Определение 1.3. . Переменная z (с областью изменения Z ) называется функцией нескольких независимых переменных
в множествеМ , если каждому набору чисел
из множестваМ по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z . Понятия аргументов и области определения вводятся так же, как для функции двух переменных.

Обозначения: z = f
,z = z
.

Геометрическое изображение функции двух переменных.

Рассмотрим функцию

z = f (x , y ) , (1.1)

определенную в некоторой области М на плоскости Оху . Тогда множество точек трехмерного пространства с координатами (x , y , z ) , где , является графиком функции двух переменных. Поскольку уравнение (1.1) определяет некоторую поверхность в трехмерном пространстве, она и будет геометрическим изображением рассматриваемой функции.

z = f(x,y)

M y

Замечание . Для функции трех и более переменных будем пользоваться термином «поверхность в n -мерном пространстве», хотя изобразить подобную поверхность невозможно.

Линии и поверхности уровня.

Для функции двух переменных, заданной уравнением (1.1), можно рассмотреть множество точек (х,у) плоскости Оху , для которых z принимает одно и то же постоянное значение, то есть z = const. Эти точки образуют на плоскости линию, называемую линией уровня .

Пример.

Найдем линии уровня для поверхности z = 4 – x ² - y ². Их уравнения имеют вид x ² + y ² = 4 – c (c =const) – уравнения концентрических окружностей с центром в начале координат и с радиусами
. Например, прис =0 получаем окружность x ² + y ² = 4 .

Для функции трех переменных u = u (x , y , z ) уравнение u (x , y , z ) = c определяет поверхность в трехмерном пространстве, которую называют поверхностью уровня .

Пример.

Для функции u = 3x + 5y – 7z –12 поверхностями уровня будет семейство параллельных плоскостей, задаваемых уравнениями

3x + 5y – 7z –12 + с = 0.

Предел и непрерывность функции нескольких переменных.

Введем понятие δ-окрестности точки М 0 (х 0 , у 0 ) на плоскости Оху как круга радиуса δ с центром в данной точке. Аналогично можно определить δ-окрестность в трехмерном пространстве как шар радиуса δ с центром в точке М 0 (х 0 , у 0 , z 0 ) . Для n -мерного пространства будем называть δ-окрестностью точки М 0 множество точек М с координатами
, удовлетворяющими условию

где
- координаты точкиМ 0 . Иногда это множество называют «шаром» в n -мерном пространстве.

Определение 1.4. Число А называется пределом функции нескольких переменных f
в точкеМ 0 , если

такое, что | f (M ) – A | < ε для любой точки М из δ-окрестности М 0 .

Обозначения:
.

Необходимо учитывать, что при этом точка М может приближаться к М 0 , условно говоря, по любой траектории внутри δ-окрестности точки М 0 . Поэтому следует отличать предел функции нескольких переменных в общем смысле от так называемых повторных пределов , получаемых последовательными предельными переходами по каждому аргументу в отдельности.

Примеры.

Замечание . Можно доказать, что из существования предела в данной точке в обычном смысле и существования в этой точке пределов по отдельным аргументам следует существование и равенство повторных пределов. Обратное утверждение неверно.

Определение 1.5. Функция f
называетсянепрерывной в точке М 0
, если
(1.2)

Если ввести обозначения

То условие (1.2) можно переписать в форме

(1.3)

Определение 1.6. Внутренняя точка М 0 области определения функции z = f (M ) называется точкой разрыва функции, если в этой точке не выполняются условия (1.2), (1.3).

Замечание. Множество точек разрыва может образовывать на плоскости или в пространстве линии или поверхности разрыва .