Принцип чтения записи жесткого диска. Магнитные и оптические накопители

Накопитель на жестком магнитном диске (НЖМД) \ HDD (Hard Disk Drive) \ винчестер (носитель) – материальный объект, способный хранить информацию.

Накопители информации могут быть классифицированы по следующим признакам:

  • способу хранения информации: магнитоэлектрические, оптические, магнитооптические;
  • виду носителя информации: накопители на гибких и жестких магнитных дисках, оптических и магнитооптических дисках, магнитной ленте, твердотельные элементы памяти;
  • способу организации доступа к информации - накопители прямого, последовательного и блочного доступа;
  • типу устройства хранения информации - встраиваемые (внутренние), внешние, автономные, мобильные (носимые) и др.


Значительная часть накопителей информации, используемых в настоящее время, создана на базе магнитных носителей.

Устройство жесткого диска

Винчестер содержит набор пластин, представляющих чаще всего металлические диски, покрытые магнитным материалом – платтером (гамма-феррит-оксид, феррит бария, окись хрома…) и соединенные между собой при помощи шпинделя (вала, оси).
Сами диски (толщина примерно 2мм.) изготавливаются из алюминия, латуни, керамики или стекла. (см. Рис)

Для записи используются обе поверхности дисков. Используется 4-9 пластин . Вал вращается с высокой постоянной скоростью (3600-7200 оборотов/мин.)
Вращение дисков и радикальное перемещение головок осуществляется с помощью 2-х электродвигателей .
Данные записываются или считываются с помощью головок записи/чтения по одной на каждую поверхность диска. Количество головок равно количеству рабочих поверхностей всех дисков.

Запись информации на диск ведется по строго определенным местам — концентрическим дорожкам (трекам) . Дорожки делятся на сектора . В одном секторе 512 байт информации.

Обмен данными между ОЗУ и НМД осуществляется последовательно целым числом (кластером). Кластер — цепочки последовательных секторов (1,2,3,4,…)

Специальный двигатель с помощью кронштейна позиционирует головку чтения/записи над заданной дорожкой (перемещает ее в радиальном направлении).
При повороте диска головка располагается над нужным сектором. Очевидно, что все головки перемещаются одновременно и считывают инфоголовки перемещаются одновременно и считывают информацию с одинаковых дорожек разныхрмацию с одинаковых дорожек разных дисков.

Дорожки винчестера с одинаковым порядковым номером на разных дисках винчестера называется цилиндром .
Головки чтения записи перемещаются в вдоль поверхности платтера. Чем ближе к поверхности диска находится головка при этом не касаясь ее, тем выше допустимая плотность записи.

Устройство винчестера


Магнитный принцип чтения и записи информации

магнитный принцап записи информации

Физические основы процессов записи и воспроизведения информации на магнитных носителях заложены в работах физиков М.Фарадея (1791 - 1867) и Д. К. Максвелла (1831 - 1879).

В магнитных носителях информации цифровая запись производится на магнито чувствительный материал. К таким материалам относятся некоторые разновидности оксидов железа, никель, кобальт и его соединения, сплавы, а также магнитопласты и магнитоэласты со вязкой из пластмасс и резины, микропорошковые магнитные материалы.

Магнитное покрытие имеет толщину в несколько микрометров. Покрытие наносится на немагнитную основу, в качестве которой для магнитных лент и гибких дисков используются различие пластмассы, а для жестких дисков - алюминиевые сплавы и композиционные материалы подложки. Магнитное покрытие диска имеет доменную структуру, т.е. состоит из множества намагниченных мельчайших частиц.

Магнитный домен (от лат. dominium - владение) - это микроскопическая, однородно намагниченная область в ферромагнитных образцах, отделенная от соседних областей тонкими переходными слоями (доменными границами).

Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с направлением магнитных силовых линий. После прекращения воздействия внешнего поля на поверхности домена образуются зоны остаточной намагниченности. Благодаря этому свойству на магнитном носителе сохраняется информация, действовавшем магнитном поле.

При записи информации внешнее магнитное поле создается с помощью магнитной головки. В процессе считывания информации зоны остаточной намагниченности, оказавшись напротив магнитной головки, наводят в ней при считывании электродвижущую силу (ЭДС).

Схема записи и чтения с магнитного диска дана на рис.3.1 Изменение направления ЭДС в течение некоторого промежутка времени отождествляется с двоичной единицей, а отсутствие этого изменения - с нулем. Указанный промежуток времени называется битовым элементом .

Поверхность магнитного носителя рассматривается как последовательность точечных позиций, каждая из которых ассоциируется с битом информации. Поскольку расположение этих позиций определяется неточно, для записи требуются заранее нанесенные метки, которые помогают находить необходимые позиции записи. Для нанесения таких синхронизирующих меток должно быть произведено разбиение диска на дорожки
и секторы - форматирование .

Организация быстрого доступа к информации на диске является важным этапом хранения данных. Оперативный доступ к любой части поверхности диска обеспечивается, во-первых, за счет придания ему быстрого вращения и, во-вторых, путем перемещения магнитной головки чтения/записи по радиусу диска.
Гибкий диск вращается со скоростью 300-360 об/мин, а жесткий диск - 3600- 7200 об/мин.


Логическое устройство винчестера

Магнитный диск первоначально к работе не готов. Для приведения его в рабочее состояние он должен быть отформатирован , т.е. должна быть создана структура диска.

Структура (разметка) диска создается в процессе форматирования.

Форматирование магнитных дисков включает 2 этапа:

  1. физическое форматирование (низкого уровня)
  2. логическое (высокого уровня).

При физическом форматировании рабочая поверхность диска разбивается на отдельные области, называемые секторами , которые расположены вдоль концентрических окружностей – дорожек.

Кроме того, определяются сектора, непригодные для записи данных, они помечаются как плохие для того, чтобы избежать их использования. Каждый сектор является минимальной единицей данных на диске, имеет собственный адрес для обеспечения прямого доступа к нему. Адрес сектора включает номер стороны диска, номер дорожки и номер сектора на дорожке. Задаются физические параметры диска.

Как правило, пользователю не нужно заниматься физическим форматированием, так как в большинстве случаев жесткие диски поступают в отформатированном виде. Вообще говоря, этим должен заниматься специализированный сервисный центр.

Форматирование низкого уровня нужно производить в следующих случаях:

  • если появился сбой в нулевой дорожке, вызывающий проблемы при загрузке с жесткого диска, но сам диск при загрузке с дискеты доступен;
  • если вы возвращаете в рабочее состояние старый диск, например, пе¬реставленный со сломавшегося компьютера.
  • если диск оказался отформатированным для работы с другой операционной системой;
  • если диск перестал нормально работать и все методы восстановления не дали положительных результатов.

Нужно иметь в виду, что физическое форматирование является очень сильнодействующей операцией — при его выполнении данные, хранившиеся на диске будут полностью стерты и восстановить их будет совершенно невозможно! Поэтому не приступайте к форматированию низкого уровня, если вы не уверены в том, что сохранили все важные данные вне жесткого диска!

После того, как вы выполните форматирование низкого уровня, следует очередной этап — создание разбивки жесткого диска на один или несколько логических дисков — наилучший способ справиться с путаницей каталогов и файлов, разбросанных по диску.

Не добавляя никаких аппаратных элементов в вашу систему, Вы получаете возможность работать с несколькими частями одного жесткого диска, как с несколькими накопителями.
При этом емкость диска не увеличивается, однако можно значительно улучшить его организацию. Кроме того, различные логические диски можно использовать для различных операционных систем.

При логическом форматировании происходит окончательная подготовка носителя к хранению данных путем логической организации дискового пространства.
Диск подготавливается для записи файлов в сектора, созданные при низкоуровневом форматировании.
После создания таблицы разбивки диска следует очередной этап — логическое форматирование отдельных частей разбивки, именуемых в дальнейшем логическими дисками.

Логический диск — это некоторая область жесткого диска, работающая так же, как отдельный накопитель.

Логическое форматирование представляет собой значительно более простой процесс, чем форматирование низкого уровня.
Для того, чтобы выполнить его, загрузитесь с дискеты, содержащей утилиту FORMAT.
Если у вас несколько логических дисков, последовательно отформатируйте все.

В процессе логического форматирования на диске выделяется системная область , которая состоит из 3-х частей:

  • загрузочного сектора и таблица разделов (Boot reсord)
  • таблицы размещения файлов (FAT) , в которых записываются номера дорожек и секторов, хранящих файлы
  • корневой каталог (Root Direсtory).

Запись информации осуществляется частями через кластер. В одном и том же кластере не может быть 2-х разных файлов.
Кроме того, на данном этапе диску может быть присвоено имя.

Жесткий диск может быть разбит на несколько логических дисков и наоборот 2 жестких диска может быть объединены в один логический.

Рекомендуется на жеском диске создавать как минимум два раздела(два логических диска): один из них отводится под операционную систему и программное обеспечение, второй диск исключительно выделяется под данные пользователя. Таким образом данные и системные файлы хранятся отдельно друг от друга и в случае сбоя операционной системы гораздо больше вереятность сохранения данных пользователя.


Характеристики винчестеров

Жесткие диски (винчестеры) отличаются между собой следующими характеристиками:

  1. емкостью
  2. быстродействием – временем доступа к данным, скоростью чтения и записи информации.
  3. интерфейсом (способ подключения) — типом контролера, к которому должен присоединяться винчестер (чаще всего IDE/EIDE и различные варианты SСSI).
  4. другие особенности

1. Емкость — количество информации, помещающееся на диске (определяется уровнем технологии изготовления).
На сегодня емкость составляет 500 -2000 и более Гб. Места на жестком диске никогда не бывает много.


2. Скорость работы (быстродействие)
диска характеризуется двумя показателями: временем доступа к данным на диске и скоростью чтения/записи на диске .

Время доступа – время необходимое для перемещения (позиционирования) головок чтения/записи на нужную дорожку и нужный сектор.
Среднее характерное время доступа между двумя случайно выбранными дорожками примерно 8-12мс(миллисекунд), более быстрые диски имеют время 5-7мс.
Время перехода на соседнюю дорожку (соседний цилиндр) меньше 0.5 — 1.5мс. Для поворота в нужный сектор тоже нужно время.
Полное время оборота диска для сегодняшних винчестеров 8 – 16мс, среднее время ожидания сектора составляет 3-8мс.
Чем меньше время доступа, тем быстрее будет работать диск.

Скорость чтения/записи (пропускная способность ввода/вывода) или cкорость передачи данных (трансферт) – время передачи последовательно расположенных данных, зависит не только от диска, но и от его контроллера, типы шины, быстродействие процессора. Скорость медленных дисков 1.5-3 Мб/с, у быстрых 4-5Мб/с, у самых последних 20Мб/с.
Винчестеры со SСSI–интерфейсом поддерживают частоту вращение 10000 об./мин. и среднее время поиска 5мс, скорость передачи данных 40-80 Мб/с.


3. Стандарт интерфейса подключения винчестера
— т.е. тип контроллера, к которому должен подключаться жесткий диск. Он находится на материнской плате.
Различают три основных интерфейса подключения

  1. IDE и его различные варианты


IDE(Integrated Disk Eleсtroniс) или (ATA) Advanсed Teсhnology Attaсhment

Достоинства — простота и невысокая стоимость

Скорость передачи:8.3, 16.7, 33.3, 66.6, 100 Мб/с. По мере развития данных интерфейс поддерживает расширение списка устройств: жесткий диск, супер-флоппи, магнитооптика,
НМЛ, СD-ROM, СD-R, DVD-ROM, LS-120, ZIP.

Вводятся некоторые элементы распараллеливания (gneuing и disсonneсt/reсonneсt), контроля за целостностью данных при передаче. Главный недостаток IDE — небольшое количество подключаемых устройств (не больше 4), что для ПК высокого класса явно мало.
Сегодня IDE-интерфейсы перешли на новые протоколы обмена Ultra ATA. Значительно увеличив свою пропускную способность
Mode 4 и DMA (Direсt Memory Aссess) Mode 2 позволяет передавать данные со скоростью 16,6Мб/с, однако реальная скорость передачи данных была бы намного меньше.
Стандарты Ultra DMA/33 и Ultra DMA/66, разработанные в феврале 98г. компанией Quantum имеют 3 режима работы 0,1,2 и 4,соответствено во втором режиме носитель поддерживает
скорость передачи 33Мб/с. (Ultra DMA/33 Mode 2) Для обеспечения такой высокой скорости можно достичь только при обмене с буфером накопителя. Для того, чтобы воспользоваться
стандартами Ultra DMA необходимо выполнить 2 условия:

1. аппаратная поддержка на материнской плате (чипсета) и со стороны самого накопителя.

2. для поддержания режима Ultra DMA, как и другой DMA (direсt memory Aссess-прямой доступ к памяти).

Требуется специальный драйвер для разных наборов микросхем различных. Как правило, они входят в комплект системной платы, в случаи необходимости ее можно «скачать»
из Internet со страницы фирмы-изготовителя материнской платы.

Стандарт Ultra DMA обладает обратной совместимостью с предыдущими контроллерами, работающих в более медленном варианте.
Сегодняшний вариант: Ultra DMA/100 (конец 2000г.) и Ultra DMA/133 (2001г.).

SATA
Замена IDE (ATA) не другую высокоскоростную последовательную шину Fireware (IEEE-1394). Применение новой технологии позволит довести скорость передачи равной 100Мб/с,
повышается надежность системы, это позволит устанавливать устройства не включая ПК, что категорически нельзя в ATA-интерфейсе.


SСSI (Small Сomputer System Interfaсe)
— устройства дороже обычных в 2 раза, требуют специального контроллера на материнской плате.
Используются для серверов, издательских системах, САПР. Обеспечивают более высокое быстродействие (скорость до 160Мб/с), широкий диапазон подключаемых устройств хранения данных.
SСSI- контроллер необходимо покупать вместе с соответствующим диском.

SСSI преимущество перед IDE- гибкость и производительность.
Гибкость заключается большим количеством подключаемых устройств (7-15), а у IDE (4 максимально), большей длиной кабеля.
Производительность — высокая скорость передачи и возможность одновременной обработки нескольких транзакций.

1. Ultra Sсsi 2/3(Fast-20) до 40Мб/с 16-разрядный вариант Ultra2- стандарт SСSI до 80Мб/с

2. Другая технология SСSI-интерфейса названа Fibre Сhannel Arbitrated Loop (FС-AL) позволяет подключать до 100Мбс, длина кабеля при этом до 30 метров. Технология FС-AL позволяет выполнить «горячие» подключение, т.е. на «ходу», имеет дополнительные линии для контроля и коррекции ошибок (технология дороже обычного SСSI).

4. Другие особенности современных винчестеров

Огромное разнообразие моделей винчестера затрудняет выбор подходящего.
Кроме нужной емкости, очень важно и производительность, которая определяется в основном его физическими характеристиками.
Такими характеристиками и является среднее время поиска, скорость вращения, внутренняя и внешняя скорость передачи, объем Кэш-памяти.

4.1 Среднее время поиска.

Жесткий диск затрачивает какое-то время для того, чтобы переместить магнитную головку текущего положения в новое, требуемое для считывания очередной порции информации.
В каждой конкретной ситуации это время разное, в зависимости от расстояния, на которое должна переместиться головка. Обычно в спецификациях приводится только усредненные значения, причем применяемые разными фирмами алгоритмы усреднения, в общем случае различаются, так что прямое сравнение затруднено.

Так, фирмы Fujitsu, Western Digital проводят по всем возможным парам дорожек, фирмы Maxtor и Quantum применяют метод случайного доступа. Получаемый результат может дополнительно корректироваться.

Значение времени поиска для записи часто несколько выше, чем для чтения. Некоторые производители в своих спецификациях приводят только меньшее значение (для чтения). В любом случае кроме средних значений полезно учитывать и максимальное (через весь диск),
и минимальное (то есть с дорожки на дорожку) время поиска.

4.2 Скорость вращения

С точки зрения быстроты доступа к нужному фрагменту записи скорость вращения оказывает влияние на величину так называемого скрытого времени, которого для того, чтобы диск повернулся к магнитной головке нужным сектором.

Среднее значение этого времени соответствует половине оборота диска и составляет 8.33 мс при 3600 об/мин, 6.67 мс при 4500 об/мин, 5,56 мс при 5400 об/мин, 4,17 мс при 7200 об/мин.

Значение скрытого времени сопоставимо со средним временем поиска, так что в некоторых режимах оно может оказывать такое же, если не больше, влияние на производительность.

4.3 Внутренняя скорость передачи

— скорость, с которой данные записываются на диск или считываются с диска. Из-за зонной записи она имеет переменное значение – выше на внешних дорожках и ниже на внутренних.
При работе с длинными файлами во многих случаях именно этот параметр ограничивает скорость передачи.

4.4 Внешняя скорость передачи

— скорость (пиковая) с которой данные передаются через интерфейс.

Она зависит от типа интерфейса и имеет чаще всего, фиксированные значения: 8.3; 11.1; 16.7Мб/с для Enhanсed IDE (PIO Mode2, 3, 4); 33.3 66.6 100 для Ultra DMA; 5, 10, 20, 40, 80, 160 Мб/с для синхронных SСSI, Fast SСSI-2, FastWide SСSI-2 Ultra SСSI (16 разрядов) соответственно.

4.5 Наличие у винчестера своей Кэш-памяти и ее объем (дисковый буфер).

Объем и организация Кэш-памяти (внутреннего буфера) может заметно вливать на производительность жесткого диска. Так же как и для обычной Кэш-памяти,
прирост производительности по достижении некоторого объема резко замедляется.

Сегментированная Кэш-память большого объема актуальна для производительных SСSI–дисков, используемых в многозадачных средах. Чем больше КЭШ, тем быстрее работает винчестер (128-256Кб).

Влияние каждого из параметров на общую производительность вычленить довольно трудно.


Требования к жестким дискам

Основное требование к дискам — надежность работы гарантируется большим сроком службы компонентов 5-7 лет; хорошими статистическими показателями, а именно:

  • среднее время наработки на отказ не менее 500 тысяч часов (высшего класса 1 миллион часов и более.)
  • встроенная система активного контроля за состоянием узлов диска SMART /Self Monitoring Analysis and Report Teсhnology.

Технология S.M.A.R.T. (Self-Monitoring Analysis and Reporting Teсhnology) является открытым промышленным стандартом, разработанный в свое время Сompaq, IBM и рядом других производителей жестких дисков.

Смысл этой технологии заключается во внутренней самодиагностике жесткого диска, которая позволяет оценить его текущее состояние и информировать о возможных будущих проблемах, могущих привести к потере данных или к выходу диска из строя.

Осуществляется постоянный мониторинг состояния всех жизненно важных элементов диска:
головок, рабочих поверхностей, электромотора со шпинделем, блока электроники. Скажем, если обнаруживается ослабление сигнала, то информация перезаписывается и происходит дальнейшее наблюдение.
Если сигнал опять ослабляется, то данные переносятся в другое место, а данный кластер помещается как дефектный и недоступный, а вместо него предоставляется в распоряжении другой кластер из резерва диска.

При работе с жестким диском следует соблюдать температурный режим, в котором функционирует накопитель. Изготовители гарантируют безотказную работу винчестера при температуре окружающей их среды в диапазоне от 0С до 50С, хотя, в принципе, без серьезных последствий можно изменить границы по крайней мере градусов на 10 в обе стороны.
При больших отклонениях температуры воздушная прослойка необходимой толщиной может не образовываться, что приведет к повреждению магнитного слоя.

Вообще производители HDD уделяют довольно большое внимание надежности своих изделий.

Основная проблема — попадание внутрь диска посторонних частиц.

Для сравнения: частичка табачного дыма в два раза больше расстояния между поверхностью и головкой, толщина человеческого волоса в 5-10 раза больше.
Для головки встреча с такими предметами обернется сильным ударом и, как следствие, частичным повреждением или же полным выходом из строя.
Внешне это заметно, как появление большого количества закономерно расположенных негодных кластеров.

Опасны кратковременные большие по модулю ускорения (перегрузки), возникающие при ударах, падениях и т.д. Например, от удара головка резко ударяет по магнитному
слою и вызывает его разрушение в соответственном месте. Или, наоборот, сначала движется в противоположную сторону, а затем под действием силы упругости словно пружина бьет по поверхности.
В результате в корпусе появляются частицы магнитного покрытия, которые опять-таки могут повредить головку.

Не стоит думать, что под действием центробежной силы они улетят с диска — магнитный слой
прочно притянет их к себе. В принципе, страшны последствия не самого удара (можно как-нибудь смириться с потерей некоторого количества кластеров), а то, что при этом образуются частицы, которые обязательно вызовут дальнейшую порчу диска.

Для предотвращения таких весьма неприятных случаев различные фирмы прибегают ко всякого рода ухищрениям. Помимо простого повышения механической прочности компонентов диска, применяются также интеллектуальная технология S.M.A.R.T., которая следит за надежностью записи и сохранности данных на носителе (см. выше).

Вообще-то диск всегда отформатирован не на полную емкость, имеется некоторый запас. Связано это главным образом еще и с тем, что практически невозможно изготовить носитель,
на котором абсолютно вся поверхность была бы качественной, обязательно будет иметься bad-кластеры (сбойные). При низкоуровневом форматировании диска его электроника настраивается так,
чтобы она обходила эти сбойные участки, и для пользователя было совершенно не заметно, что носитель имеет дефект. Но вот если они видны (например, после форматирования
утилита выводит их количество, отличное от нуля), то это уже очень плохо.

Если гарантия не истекла (а HDD, на мой взгляд, лучше всего покупать с гарантией), то сразу же отнесите диск к продавцу и потребуйте замены носителя или возврат денег.
Продавец, конечно же, сразу начнет говорить, что парочка сбойных участков – еще не повод для беспокойства, но не верьте ему. Как уже говорилось, это парочка, скорее всего, вызовет еще множество других, а впоследствии вообще возможен полный выход винчестера из строя.

Особенно чувствителен к повреждениям диск в рабочем состоянии, поэтому не следует помещать компьютер в место, где он может быть подвержен различным толчкам, вибрациям и так далее.


Подготовка винчестера к работе

Начнем с самого начала. Предположим, что вы купили накопитель на жестком диске и шлейф к нему отдельно от компьютера.
(Дело в том, что, покупая собранный компьютер, вы получите подготовленный к использованию диск).

Несколько слов об обращении с ним. Накопитель на жестком диске — очень сложное изделие, содержащее кроме электроники прецизионную механику.
Поэтому он требует аккуратного обращения — удары, падения и сильная вибрация могут повредить его механическую часть. Как правило, плата накопителя содержит много малогабаритных элементов, и не закрыта прочными крышками. По этой причине следует позаботиться о ее сохранности.
Первое, что следует сделать, получив жесткий диск — прочитать пришедшую с ним документацию — в ней наверняка окажется много полезной и интересной информации. При этом следует обратить внимание на следующие моменты:

  • наличие и варианты установки перемычек, определяющих настройку (установку) диска, например, определяющую такой параметр, как физическое имя диска (они могут быть, но их может и не быть),
  • количество головок, цилиндров, секторов на дисках, уровень прекомпенсации, а также тип диска. Эти данные нужно ввести в ответ на запрос программы установки компьютера (setup).
    Вся эта информация понадобится при форматировании диска и подготовке машины к работе с ним.
  • В случае если ПК сам не определит параметры вашего винчестера, большей проблемой станет установка накопителя, на который нет никакой документации.
    На большинстве жестких дисков можно найти этикетки с названием фирмы-изготовителя, с типом (маркой) устройства, а также с таблицей недопустимых для использования дорожек.
    Кроме того, на накопителе может быть приведена информация о количестве головок, цилиндров и секторов и об уровне прекомпенсации.

Справедливости ради нужно сказать, что нередко на диске написано только его название. Но и в этом случае можно найти требуемую информацию либо в справочнике,
либо позвонив в представительство фирмы. При этом важно получить ответы на три вопроса:

  • как должны быть установлены перемычки для того, чтобы использовать накопитель как master \ slave?
  • сколько на диске цилиндров, головок, сколько секторов на дорожку, чему равняется значение прекомпенсации?
  • какой тип диска из записанных в ROM BIOS лучше всего соответствует данному накопителю?

Владея этой информацией, можно переходить к установке накопителя на жестком диске.


Для установки жесткого диска в компьютер следует сделать следующее:

  1. Отключить полностью системный блок от питания, снять крышку.
  2. Присоединить шлейф винчестера к контроллеру материнской платы. Если Вы устанавливаете второй диск можно воспользоваться шлейфом от первого при наличии на нем дополнительного разъема, при этом нужно помнить, что ск орость работы разных винчестеров будет сравнена в сторону медленно.
  3. Если требуется, переключить перемычки в соответствии со способом использования жесткого диска.
  4. Установить накопитель на свободное место и присоединить шлейф от контроллера на плате к разъему винчестера красной полосой к питанию, кабель источника питания.
  5. Надежно закрепить жесткий диск четырьмя болтами с двух сторон, акку/spanратно расположить кабели внутри компьютера, так, чтобы при закрывании крышки не перерубить их,
  6. Закрыть системный блок.
  7. Если ПК сам не определил винчестер, то изменить конфигурацию компьютера с помощью Setup, чтобы компьютер знал, что к нему добавили новое устройство.


Фирмы-изготовители винчестеров

Винчестеры одинаковой емкости (но от разных производителей) обычно обладают более-менее сходными характеристиками, а отличия выражаются главным образом в конструкции корпуса, форм-факторе (проще говоря, размерах) и сроке гарантийного обслуживания. Причем о последнем следует сказать особо: стоимость информации на современном винчестере часто во много раз превышает его собственную цену.

Если на вашем диске появились сбои, то пытаться его ремонтировать — зачастую означает лишь подвергать свои данные к дополнительному риску.
Гораздо более разумный путь- замена сбойного устройства на новое.
Львиную долю жестких дисков на российском (да и не только) рынке составляет продукции фирм IBM, Maxtor, Fujitsu, Western Digital (WD), Seagate, Quantum.

название фирмы-изготовителя, производящего данный тип накопителя,

Корпорация Quantum (www. quantum. сom.) , основанная в 1980г.,- одна из ветеранов на рынке дисковых накопителей. Компания известна своими новаторскими техническими решениями, направленными на повышение надежности и производительности жестких дисков, временем доступа к данным на диске и скоростью чтения/записи на диске, возможностью информировать о возможных будущих проблемах, могущих привести к потере данных или к выходу диска из строя.

— Одной из фирменных технологий Quantum является SPS (Shoсk Proteсtion System), призванная защитить диск от ударных воздействий.

— встроенная программа DPS (Data Proteсtion System), предназначенной сохранить самое дорогое — хранящиеся на них данные.

Корпорация Western Digital (www.wdс.сom.) также является одной из старейших компаний-производителей дисковых накопителей, она знала в своей истории и взлеты и падения.
Компания за последние время смогла внедрить в свои диски самые последние технологии. Среди них стоит отметить собственную разработку-технологию Data Lifeguard,которая является дальнейшим развитием системы S.M.A.R.T. В ней сделана попытка логического завершения цепочки.

Согласно этой технологии производится регулярное сканирование поверхности диска в период, когда он незадействован системой. При этом производится чтение данных и проверка их целостности. Если в процессе обращения к сектору отмечаются проблемы, то данные переносятся в другой сектор.
Информация о некачественных секторах заносится во внутренний дефект-лист, что позволяет избежать в будущем записи в будущем записи в дефектные сектора.

Фирма Seagate (www.seagate. Сom) очень известна на нашем рынке. К слову сказать, я рекомендую винчестеры именно этой фирмы, как самык надежные и долговечные.

В 1998 г. она заставила вновь обратить на себя внимание, выпустив серию дисков Medallist Pro
со скоростью вращения 7200 об/мин,применив для этого специальные подшипники. Раньше такая скорость использовалась только в дисках интерфейса SСSI, что позволило увеличить производительность. В этой же серии используется технология SeaShield System, призванная улучшить защиту диска и хранящихся на нем данных от влияния электростатики и ударных воздействий. Одновременно уменьшается также и воздействие электромагнитных излучений.

Все производимые диски поддерживают технологию S.M.A.R.T.
В новых дисках Seagate предусматривает применение улучшенной версии своей системы SeaShield с более широкими возможностями.
Показательно, что Seagate заявил о наибольшей в отрасли стойкости обновленной серии к ударам – 300G в нерабочем состоянии.

Фирма IBM (www. storage. ibm. сom) хотя и не являлась до недавнего времени крупным поставщиком на российском рынке жестких дисков, но успела быстро завоевать хорошую репутацию благодаря своим быстрым и надежным дисковым накопителям.

Фирма Fujitsu (www. Fujitsu. сom) является крупным и опытным производителем дисковых накопителей, причем не только магнитных, но и оптических и магнитооптических.
Правда, на рынке винчестеров с интерфейсом IDE компания отнюдь не лидер: она контролирует (по разным различных исследований) примерно 4% этого рынка, а основные ее интересы лежат в области SСSI-устройств.


Терминологический словарь

Так как некоторые элементы накопителя, играющие важную роль в его работе, часто воспринимаются как абстрактные понятия, ниже приводится объяснение наиболее важных терминов.

Время доступа (Aссes time) — период времени, необходимый накопителю на жестком диске для поиска и передачи данных в память или из памяти.
Быстродействие накопителей на жестких магнитных дисках часто определяется временем доступа (выборки).

Кластер (Сluster) — наименьшая единица пространства, с которой работает ОС в таблице расположения файлов. Обычно кластер состоит из 2-4-8 или более секторов.
Количество секторов зависит от типа диска. Поиск кластеров вместо отдельных секторов сокращает издержки ОС по времени. Крупные кластеры обеспечивают более быструю работу
накопителя, поскольку количество кластеров в таком случае меньше, но при этом хуже используется пространство (место) на диске, так как многие файлы могут оказаться меньше кластера и оставшиеся байты кластера не используются.


Контроллер (УУ) (Сontroller)
— схемы, обычно расположенные на плате расширения, обеспечивающие управление работой накопителя на жестком диске, включая перемещение головки и считывание и запись данных.


Цилиндр (Сylinder)
— дорожки, расположенные напротив друг друга на всех сторонах всех дисков.

Головка накопителя (Drive head) — механизм, который перемещается по поверхности жесткого диска и обеспечивает электромагнитную запись или считывание данных.


Таблица размещения файлов (FAT) (File Alloсation Table (FAT))
— запись, формируемая ОС, которая отслеживает размещение каждого файла на диске и то, какие сектора использованы, а какие — свободны для записи в них новых данных.


Зазор магнитной головки (Head gap)
— расстояние между головкой накопителя и поверхностью диска.


Чередование (Interleave)
— отношение между скоростью вращения диска и организацией секторов на диске. Обычно скорость вращения диска превышает способность компьютера получать данные с диска. К тому моменту, когда контроллер производит считывание данных, следующий последовательный сектор уже проходит головку. Поэтому данные записываются на диск через один или два сектора. С помощью специального программного обеспечения при форматировании диска можно изменить порядок чередования.


Логический диск (Logiсal drive)
— определенные части рабочей поверхности жесткого диска, которые рассматривают как отдельные накопители.
Некоторые логические диски могут быть использованы для других операционных систем, таких как, например, UNIX.


Парковка (Park)
— перемещение головок накопителя в определенную точку и фиксация их в неподвижном состоянии над неиспользуемыми частями диска, для того, чтобы свести к минимуму повреждения при сотрясении накопителя, когда головки ударяются о поверхности диска.


Разбивка (Partitioning)
– операция разбивки жесткого диска на логические диски. Разбиваются все диски, хотя небольшие диски могут иметь только один раздел.


Диск (Platter)
— сам металлический диск, покрытый магнитным материалом, на который записываются данные. Накопитель на жестких дисках имеет, как правило, более одного диска.


RLL (Run-length-limited)
— кодирующая схема, используемая некоторыми контроллерами для увеличения количества секторов на дорожку для размещения большего количества данных.


Сектор (Seсtor)
— деление дисковых дорожек, представляющее собой основную единицу размера, используемую накопителем. Секторы ОС обычно содержат по 512 байтов.


Время позиционирования (Seek time)
— время, необходимое головке для пе¬ремещения с дорожки, на которой она установлена, на какую-либо другую нужную дорожку.


Дорожка (Traсk)
— концентрическое деление диска. Дорожки похожи на дорожки на пластинке. В отличие от дорожек пластинки, которые представляют собой непрерывную спираль, дорожки на диске имеют форму окружности. Дорожки в свою очередь делятся на кластеры и сектора.


Время перехода с дорожки на дорожку (Traсk-to-traсk seek time)
— время, необходимое для перехода головки накопителя на соседнюю дорожку.


Скорость передачи данных (Transfer rate)
— объем информации, передаваемый между диском и ЭВМ в единицу времени. В него входит и время поиска дорожки.

Если рассматривать жесткий диск в целом, то он состоит из двух основных частей: это плата электроники, на которой располагается так сказать "мозг" жесткого диска. На нем расположены процессор, так же присутствует управляющая программа, оперативное запоминающее устройство, усилитель записи и чтения. К механической части относятся такие части как блок магнитных головок имеющих аббревиатуру БМГ, двигатель, который придает вращение пластинам, ну и конечно же сами пластины. Давайте рассмотрим каждую часть более детально.

Гермоблок.

Гермоблок он же корпус жесткого диска - предназначен для крепления всех деталей, а так же выполняет функцию защиты от попадания частиц пыли на поверхность пластин. Стоит отметить что вскрытие гермоблока, можно осуществлять только в специально подготовленном для этого помещении, во избежание как раз таки попадания пыли и грязи внутрь корпуса.

Интегральная схема.

Интегральная схема или плата электроники синхронизирует работу жесткого диска с компьютером и управляет всеми процессами, в частности она поддерживает постоянной скорость вращения шпинделя и соответственно пластины, которая осуществляется двигателем.

Электромотор.

Электромотор или двигатель вращает пластины: около 7200 оборотов в секунду (взято среднее значение, есть винчестеры на которых скорость выше и доходит до 15000 оборотов в секунду, а есть и с меньшей скоростью около 5400, от скорости вращения пластин зависит скорость доступа к нужной информации на жестком диске).

Коромысло.

Коромысло предназначено для записи и чтения информации с пластин жесткого диска. Конец коромысла разделен и на нем находится блок магнитных головок, это сделано для того, что бы можно было записывать и считывать информацию с нескольких пластин.

Блок магнитных головок.

В состав коромысла входит блок магнитных головок, который довольно часто выходит из строя, но это "часто" параметр очень условный. Магнитные головки располагаются сверху и снизу пластин и служат для непосредственного считывания информации с платин, расположенных на жестком диске.

Пластины.

На пластинах непосредственно храниться информация, они изготавливаются из таких материалов как, алюминий, стекло и керамика. Самое большое распространение получил алюминий, а вот из двух остальных материалов изготавливают, так называемые "элитные диски". Первые выпускаемые пластины покрывались окисью железа, но этот ферромагнетик имел большой недостаток. Диски покрытые таким веществом имели небольшую износостойкость. На данный момент большинство производителей жестких дисков покрывают пластины кобальтом хрома, у которого запас прочности на порядок выше, чем у окиси железа. Пластисны крепятся на шпиндель на одинаковом друг от друга расстоянии, такая конструкция имеет название "пакет". Под дисками располагается двигатель или электромотор.

Каждая сторона пластины разбита на дорожки, они в свою очередь разделены на сектора или по другому блоки, все дорожки одного диаметра представляют из себя цилиндр.

Все современные винчестеры имеют так называемый "инженерный цилиндр", на нем хранятся служебная информация, такая как модель hdd, серийный номер и др. Эта информация предназначена для считывания компьютером.

Принцип работы жесткого диска

Основные принципы работы жесткого диска мало изменились со дня его создания. Устройство винчестера очень похоже на обыкновенный проигрыватель грампластинок. Только под корпусом может быть несколько пластин, насаженных на общую ось, и головки могут считывать информацию сразу с обеих сторон каждой пластины. Скорость вращения пластин постоянна и является одной из основных характеристик. Головка перемещается вдоль пластины на некотором фиксированном расстоянии от поверхности. Чем меньше это расстояние, тем больше точность считывания информации, и тем больше может быть плотность записи информации.

Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя. Кроме того, корпус экранирует накопитель от электромагнитных помех. Внутри корпуса находятся все механизмы и некоторые электронные узлы. Механизмы - это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение.

Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из керамики или стекла, покрытую тонким ферро магнитным слоем. Во многих накопителях используется слой оксида железа (которым покрывается обычная магнитная лента), но новейшие модели жестких дисков работают со слоем кобальта толщиной порядка десяти микрон. Такое покрытие более прочно и, кроме того, позволяет значительно увеличить плотность записи. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.

Количество дисков может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить".

Магнитное покрытие диска представляет собой множество мельчайших областей самопроизвольной (спонтанной) намагниченности. Для наглядности представьте себе, что диск покрыт слоем очень маленьких стрелок от компаса, направленных в разные стороны. Такие частицы-стрелки называются доменами. Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности.

Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Теперь о работе головок. Они перемещаются с помощью шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. На поверхности дисков в результате записи информации образуются намагниченные участки, в форме концентрических окружностей.

Они называются магнитными дорожками. Перемещаясь, головки останавливаются над каждой следующей дорожкой. Совокупность дорожек, расположенных друг под другом на всех поверхностях, называют цилиндром. Все головки накопителя перемещаются одновременно, осуществляя доступ к одноименным цилиндрам с одинаковыми номерами.

Используют два основных метода записи: метод частотной модуляции (ЧМ) и метод модифицированной ЧМ. В контроллере (адаптере) НГМД данные обрабатываются в двоичном коде и передаются в НГМД в последовательном коде.

Способ частотной модуляции является двухчастотным. При записи в начале тактового интервала производится переключение тока в МГ и направление намагниченности поверхности изменяется. Переключение тока записи отмечает начало тактов записи и используется при считывании для формирования сигналов синхронизации.

Способ обладает свойством самосинхонизации . При записи "1" в середине тактового интервала производится инвертирование тока, а при записи "0" - нет. При считывании в моменты середины тактового интервала определяют наличие сигнала произвольной полярности.

Наличие сигнала в этот момент соответствует "1", а отсутствие - "0".

Формат записи информации на гибком магнитном диске

Каждая дорожка на дискете разделена на секторы. Размер сектора является основной характеристикой формата и определяет наименьший объем данных, который может быть записан одной операцией ввода-вывода. Применяемые в НГМД форматы различаются числом секторов на дорожке и объемом одного сектора. Максимальное количество секторов на дорожке определяется операционной системой. Секторы отделяются друг от друга интервалами, в которых информация не записывается. Произведение числа дорожек на количество секторов и количество сторон дискеты определяет ее информационную емкость.

Каждый сектор включает поле служебной информации и поле данных. Адресный маркер - это специальный код, отличающийся от данных и указывающий на начало сектора или поля данных. Номер головки указывает одну из двух МГ, расположенных на соответствующих сторонах дискеты. Номер сектора - это логический код сектора, который может не совпасть с его физическим номером. Длина сектора указывает размер поля данных. Контрольные байты предназначены

Среднее время доступа к диску в миллисекундах оценивается по следующему выражению: где - число дорожек на рабочей поверхности ГМД; - время перемещения МГ с дорожки на дорожку; - время успокоения системы позиционирования.

Конструкция дискет

Накопитель на жестких магнитных дисках (НЖМД)


Жесткий магнитный диск -это круглая металлическая пластина толщиной 1,5..2мм, покрытая ферромагнитным слоем и специальным защитным слоем. Для записи и чтения используется обе поверхности диска.

Принцип работы

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый).

В большинстве накопителей есть два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр. Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.


Частота вращения НЖМД в первых моделей составляла 3 600 об/мин (т.е. в 10раз больше, чем в накопителе на гибких дисках), в настоящее время частота вращения жестких дисков возросла до 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка "столкнется" с диском. Последствия этого могут быть разными - от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные "взлеты" и "приземления" головок, а также более серьезные потрясения.

В некоторых наиболее современных накопителях вместо конструкции CSS (Contact Start Stop) используется механизм загрузки/разгрузки, который не позволяет головкам входить в контакт с жесткими дисками даже при отключении питания накопителя. В механизме загрузки/разгрузки используется наклонная панель, расположенная прямо над внешней поверхностью жесткого диска. Когда накопитель выключен или находится в режиме экономии потребляемой мощности, головки съезжают на эту панель. При подаче электроэнергии разблокировка головок происходит только тогда, когда скорость вращения жестких дисков достигнет нужной величины. Поток воздуха, создаваемый при вращении дисков (аэростатический подшипник), позволяет избежать возможного контакта между головкой и поверхностью жесткого диска.

Поскольку пакеты магнитных дисков содержатся в плотно закрытых корпусах и их ремонт не предусмотрен, плотность дорожек на них очень высока - до 96 000 и более на дюйм (Hitachi Travelstar 80GH). Блоки HDA (Head Disk Assembly - блок головок и дисков) собирают в специальных цехах, в условиях практически полной стерильности. Обслуживанием HDA занимаются считанные фирмы, поэтому ремонт или замена каких-либо деталей внутри герметичного блока HDA обходится очень дорого.

Метод записи данных на жесткий магнитный диск

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL -метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается "0", а предыдущий бит был "1", то синхросигнал также не записывается, как и бит данных. Если перед "0" стоит бит "0", то синхросигнал записывается.

Дорожки и секторы

Дорожка - это одно "кольцо" данных на одной стороне диска. Дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска - от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля.

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочая служебная информация, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается.

В начале каждого сектора записывается его заголовок (или префикс - prefix portion ), по которому определяется начало и номер сектора, а в конце - заключение (или суффикс - suffix portion ), в котором находится контрольная сумма ( checksum ), необходимая для проверки целостности данных.

Форматирование низкого уровня современных жестких дисков выполняется на заводе, изготовитель указывает только форматную емкость диска. В каждом секторе можно записать 512 байт данных, но область данных - это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт.

Чтобы очистить секторы, в них зачастую записываются специальные последовательности байтов. Префиксы, суффиксы и промежутки - пространство, которое представляет собой разницу между неформатированной и форматированной емкостями диска и "теряется" после его форматирования.

Процесс форматирования низкого уровня приводит к смещению нумерации секторов, в результате чего секторы на соседних дорожках, имеющие одинаковые номера, смещаются друг относительно друга. Например, сектор 9 одной дорожки находится рядом с сектором 8 следующей дорожки, который, в свою очередь, располагается бок о бок с сектором 7 следующей дорожки и т.д. Оптимальная величина смещения определяется соотношением частоты вращения диска и радиальной скорости головки.

Идентификатор (ID) сектора состоит из полей записи номеров цилиндра, головки и сектора, а также контрольного поля CRC для проверки точности считывания информации ID. В большинстве контроллеров седьмой бит поля номера головки используется для маркировки дефектных секторов в процессе форматирования низкого уровня или анализа поверхности.

Интервал включения записи следует сразу за байтами CRC ; он гарантирует, что информация в следующей области данных будет записана правильно. Кроме того, он служит для завершения анализа CRC (контрольной суммы) идентификатора сектора.

В поле данных можно записать 512 байт информации. За ним располагается еще одно поле CRC для проверки правильности записи данных. В большинстве накопителей размер этого поля составляет два байта, но некоторые контроллеры могут работать и с более длинными полями кодов коррекции ошибок ( Error Correction Code - ЕСС ). Записанные в этом поле байты кодов коррекции ошибок позволяют при считывании обнаруживать и исправлять некоторые ошибки. Эффективность этой операции зависит от выбранного метода коррекции и особенностей контроллера. Наличие интервала отключения записи позволяет полностью завершить анализ байтов ECC (CRC) .

Интервал между записями необходим для того, чтобы застраховать данные из следующего сектора от случайного стирания при записи в предыдущий сектор. Это может произойти, если при форматировании диск вращался с частотой, несколько меньшей, чем при последующих операциях записи.

Формат записи информации на жестком магнитном диске

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число (осуществляется правильность считывания идентификатора). Байт флага содержит флаг - указатель состояния дорожки.

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты предназначены для определения и коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды (зависит от схемной реализации адаптера).

Среднее время доступа к информации на НЖМД составляет

где tn - среднее время позиционирования;

F - скорость вращения диска;

tобм - время обмена.

Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

Форматирование дисков

Различают два вида форматирования диска :

  • физическое, или форматирование низкого уровня;
  • логическое, или форматирование высокого уровня.

При форматировании гибких дисков с помощью программы Проводник (Windows Explorer ) или команды DOS FORMAT выполняются обе операции.

Однако для жестких дисков эти операции следует выполнять отдельно. Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, - разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня Тому, или логическому диску, система присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа .

  • Форматирование низкого уровня.
  • Организация разделов на диске.
  • Форматирование высокого уровня.
Форматирование низкого уровня

В процессе форматирования низкого уровня дорожки диска разбиваются на секторы. При этом записываются заголовки и заключения секторов (префиксы и суффиксы), а также формируются интервалы между секторами и дорожками. Область данных каждого сектора заполняется фиктивными значениями или специальными тестовыми наборами данных.

В первых контроллерах ST-506 /412 при записи по методу MFM дорожки разбивались на 17 секторов, а в контроллерах этого же типа, но с RLL -кодированием количество секторов увеличилось до 26. В накопителях ESDI на дорожке содержится 32 и более секторов. В накопителях IDE контроллеры встроенные, и, в зависимости от их типа, количество секторов колеблется в пределах 17-700 и более. Накопители SCSI - это накопители IDE со встроенным адаптером шины SCSI (контроллер тоже встроенный), поэтому количество секторов на дорожке может быть совершенно произвольным и зависит только от типа установленного контроллера.

Практически во всех накопителях IDE и SCSI используется так называемая зонная запись с переменным количеством секторов на дорожке. Дорожки, более удаленные от центра, а значит, и более длинные содержат большее число секторов, чем близкие к центру. Один из способов повышения емкости жесткого диска - разделение внешних цилиндров на большее количество секторов по сравнению с внутренними цилиндрами. Теоретически внешние цилиндры могут содержать больше данных, так как имеют большую длину окружности.


В накопителях, не использующих метод зонной записи, в каждом цилиндре содержится одинаковое количество данных, несмотря на то что длина дорожки внешних цилиндров может быть вдвое больше, чем внутренних. Это приводит к нерациональному использованию емкости запоминающего устройства, так как носитель должен обеспечивать надежное хранение данных, записанных с той же плотностью, что и во внутренних цилиндрах. В том случае, если количество секторов, приходящихся на каждую дорожку, фиксировано, как это бывает при использовании контроллеров ранних версий, емкость накопителя определяется плотностью записи внутренней (наиболее короткой) дорожки.

При зонной записи цилиндры разбиваются на группы, которые называются зонами, причем по мере продвижения к внешнему краю диска дорожки разбиваются на все большее число секторов. Во всех цилиндрах, относящихся к одной зоне, количество секторов на дорожках одинаковое. Возможное количество зон зависит от типа накопителя; в большинстве устройств их бывает 10 и более. Скорость обмена данными с накопителем может изменяться и зависит от зоны, в которой в конкретный момент располагаются головки. Происходит это потому, что секторов во внешних зонах больше, а угловая скорость вращения диска постоянна (т.е. линейная скорость перемещения секторов относительно головки при считывании и записи данных на внешних дорожках оказывается выше, чем на внутренних).

При использовании метода зонной записи каждая поверхность диска уже содержит 545,63 сектора на дорожку. Если не использовать метод зонной записи, то каждая дорожка будет ограничена 360 секторами. Выигрыш при использовании метода зонной записи составляет около 52%.

Обратите внимание на различия в скорости передачи данных для каждой зоны. Поскольку частота вращения шпинделя 7 200 об/мин, один оборот совершается за 1/120 секунды или же 8,33 миллисекунды. Дорожки во внешней зоне (нулевой) имеют скорость передачи данных 44,24 Мбайт/с, а во внутренней зоне (15) - всего 22,12 Мбайт/с. Средняя скорость передачи данных составляет 33,52 Мбайт/с.

Организация разделов на диске

Разделы, создаваемые на жестком диске, обеспечивают поддержку различных файловых систем, каждая из которых располагается на определенном разделе диска.

В каждой файловой системе используется определенный метод, позволяющий распределить пространство, занимаемое файлом, по логическим элементам, которые называются кластерами или единичными блоками памяти. На жестком диске может быть от одного до четырех разделов, каждый из которых поддерживает файловую систему какого-нибудь одного или нескольких типов. В настоящее время PC-совместимые операционные системы используют файловые системы трех типов.

FAT (File Allocation Table - таблица размещения файлов). Это стандартная файловая система для DOS, Windows 9х и Windows NT. В разделах FAT под DOS допустимая длина имен файлов - 11 символов (8 символов собственно имени и 3 символа расширения), а объем тома (логического диска) - до 2 Гбайт. Под Windows 9х/Windows NT 4.0 и выше допустимая длина имен файлов - 255 символов.

С помощью программы FDISK можно создать только два физических раздела FAT на жестком диске - основной и дополнительный, а в дополнительном разделе можно создать до 25 логических томов. Программа Partition Magic может создавать четыре основных раздела или три основных и один дополнительный.

FAT32 (File Allocation Table, 32-bit - 32-разрядная таблица размещения файлов) . Используется с Windows 95 OSR2 (OEM Service Release 2), Windows 98 и Windows 2000. В таблицах FAT 32 ячейкам размещения соответствуют 32-разрядные числа. При такой файловой структуре объем тома (логического диска) может достигать 2 Тбайт (2 048 Гбайт).

NTFS (Windows NT File System - файловая система Windows NT) . Доступна тольков Windows NT/2000/XP/2003. Длина имен файлов может достигать 256 символов, размер раздела (теоретически) - 16 Эбайт (16^1018 байт). NTFS обеспечивает дополнительные возможности, не предоставляемые другими файловыми системами, например средства безопасности.

После создания разделов необходимо выполнить форматирование высокого уровня с помощью средств операционной системы.

Форматирование высокого уровня

При форматировании высокого уровня операционная система создает структуры для работы с файлами и данными. В каждый раздел (логический диск) заносится загрузочный сектор тома (Volume Boot Sector - VBS ), две копии таблицы размещения файлов (FAT ) и корневой каталог ( Root Directory ). С помощью этих структур данных операционная система распределяет дисковое пространство, отслеживает расположение файлов и даже "обходит", во избежание проблем, дефектные участки на диске. В сущности, форматирование высокого уровня - это не столько форматирование, сколько создание оглавления диска и таблицы размещения файлов.

Многих пользователей интересует устройство жесткого диска. И неспроста, ведь на сегодняшний день самым распространенным накопителем информации на компьютере является HDD. Далее будут разобраны принципы его работы и структура.


Винчестер по своей сути напоминает проигрыватель на пластинках. В нем также содержатся пластинки и считывающие головки. Однако устройство HDD сложнее. Если мы разберем жесткий диск, то увидим, что в основном пластины металлические и покрыты магнитным слоем. Именно на него производится запись данных. В зависимости от объема винчестера пластин от 4 до 9. Они крепятся на валу, который называется «шпиндель» и имеет высокую скорость вращения от 3600 до 10000 оборотов/мин для изделий массового потребления.

Рядом с блоком пластин находится блок считывающих головок. Количество головок определяется количеством магнитных дисков, а именно по одной на каждую поверхность диска. В отличие от проигрывателя на жестких дисках головка не касается поверхности пластин, а зависает над ней. Это позволяет исключить механический износ. Поскольку пластины имеют высокую скорость вращения, а головки должны находиться на крайне малом постоянном расстоянии над ними, очень важно, чтобы во внутрь корпуса ничего не смогло попасть. Ведь малейшая пылинка может нанести физические повреждения. Именно поэтому механическую часть герметично закрывают кожухом, а электронную выносят на наружу.

Некоторые пользователи интересуются тем, как разобрать жесткий диск. Нужно понимать, что разбор рабочего накопителя предусматривает нарушение его герметичности. А это, в свою очередь, приведет его в негодность. Поэтому не стоит этого делать, если вы не готовы потерять все данные на носителе информации. Если у вас нет острой необходимости открывать накопитель, а всего лишь мучает любопытство, из чего состоит жесткий диск, вы можете посмотреть фото разобранного HDD.

Именно поэтому жесткие диски на магнитных дисках при ремонте разбирают и собирают в специальном ламинарном боксе. В нем при помощи системы подачи воздуха высокой очистки и герметичности поддерживается необходимая для проведения таких работ окружающая среда. Разобрав свой диск в домашних условиях Вы однозначно его приведете в неработоспособное состояние.

Считывающие головки в нерабочем состоянии находятся рядом с блоком пластин. Еще это называется «парковочное положение». Специальное устройство выносит головки в рабочую зону только тогда, когда диск разогнался до необходимой скорости. Все они перемещаются вместе, а не каждая отдельно. Это позволяет иметь быстрый доступ ко всем данным.

Электронная плата, или контроллер, как правило, крепится снизу винчестера. Ее ничего не защищает, и от этого она достаточно уязвима для механических и термических повреждений. Именно она осуществляет управление механикой. Винчестер от ноутбука отличается от стандартного 3,5-дюймового только размером. Принцип работы жесткого диска точно такой же. Отличаться они могут только количеством магнитных блинов и емкостью накопителя.

Как можно проследить, устройство жесткого диска подвержено ударам, встряскам, царапинам, значительным изменениям температур и скачкам напряжения. А это делает его не совсем надежным носителем информации. Именно из-за этого жесткий диск на ноутбуке выходит из строя чаще, чем на стационарном ПК. Ведь портативные устройства постоянно подвергают встряскам, порой падениям, выносят на холод или ставят на солнце. А это, в свою очередь, негативно сказывается на винчестере.

Чтобы продлить срок работы HDD, не подвергайте его падениям и ударам, следите за тем, чтобы была достаточная вентиляция корпуса, любые манипуляции с диском производите только при отключенном питании. Эти недостатки привели к появлению нового типа винчестеров SSD. Постепенно они теснят HDD, когда-то выглядевших великолепными носителями.

Логическое устройство


Мы узнали, как выглядит жесткий диск внутри. Теперь будем разбирать его логическое структурирование. Данные пишутся на жесткий диск компьютера на дорожки, которые делятся на определенные сектора. Объем каждого сектора составляет 512 байт. Последовательные сектора объединяются в кластер.

При установке нового HDD нужно произвести форматирование, иначе компьютер попросту не увидит свободное место на накопителе. Форматирование бывает физическое и логическое. Первое подразумевает разбивку диска на сектора. Некоторые из них могут определиться как «плохие», то есть непригодные к записи данных. В большинстве случаев накопитель уже имеет такое форматирование перед продажей.

Логическое форматирование подразумевает создание логического раздела жесткого диска. Это позволяет значительно упростить и оптимизировать работу с информацией. Под логический раздел (или, как еще называют, «логический диск») отводится определенная область накопителя. С ней можно работать как с отдельным винчестером. Чтобы понять, как работает жесткий диск со своими разделами, достаточно визуально разделить винчестер на 2-4 части в зависимости от количества логических томов. К каждому тому можно применить свою систему форматирования: FAT32, NTFS или exFAT.

Технические данные


Друг от друга HDD отличаются по таким данным:

  • объемом;
  • скоростью вращения шпинделя;
  • интерфейсом.

На сегодняшний день средний объем винчестера 500-1000 Гб. Он определяет количество информации, которое вы можете записать на носитель. От скорости вращения шпинделя будет зависеть, как быстро вы сможете иметь доступ к данным, то есть чтение и запись информации. Самым распространенным интерфейсом является SATA, который пришел на смену уже морально устаревшему и медленному IDE. Друг от друга они отличаются пропускной способностью и типом разъема подключения к материнской плате. Отметим, что диск современного ноутбука может иметь только интерфейс SATA или SATA2.

В данной статье было рассмотрено, как устроен жесткий диск, его принципы работы, техданные и логическая структура.

Устройство жесткого диска

Артём Рубцов, R.LAB Уточнение связи между русскоязычной и англоязычной терминологией выполнено Леонидом Воржевым.

Цель этой статьи - описать устройство современного жёсткого диска, рассказать о его главных компонентах, показать, как они выглядят и называются. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологиями, описывающими компоненты жестких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.

Зелёный текстолит с медными дорожками, разъемами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она служит для управления работой жесткого диска. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA), специалисты также называют его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату и изучим размещённые на ней компоненты.

Первым в глаза бросается большой чип, расположенный посередине – микроконтроллер, или процессор (Micro Controller Unit, MCU). На современных жёстких дисках микроконтроллер состоит из двух частей – собственно центрального процессора (Central Processor Unit, CPU), который производит все вычисления, и канала чтения/записи (read/write channel) - особого устройства, преобразующего поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объем памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки. Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько нам известно, только Hitachi/IBM указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, об объёме кэша остаётся только гадать.

Следующий чип – контроллер управления двигателем и блоком головок, или «крутилка» (Voice Coil Motor controller, VCM controller). Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Ядро VCM-контроллера может работать даже при температуре в 100° C.

Часть прошивки диска хранится во флэш-памяти. При подаче питания на диск микроконтроллер загружает содержимое флэш-чипа в память и приступает к исполнению кода. Без корректно загруженного кода диск даже не пожелает раскручиваться. Если на плате отстутствует флэш-чип, значит, он встроен в микроконтроллер.

Датчик вибрации (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшую вибрацию. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено как минимум два датчика вибрации.

На плате имеется ещё одно защитное устройство - ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Теперь рассмотрим гермоблок.

Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится ваккум. На самом деле это не так. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.

Сама крышка не представляет собой ничего интересного. Это просто кусок металла с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.

Драгоценная информация хранится на металлических дисках, называемых также блинами или пластинами (platters). На фотографии вы видите верхний блин. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между блинами, а также над верхним из них, мы видим специальные пластины, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны.

Вид блинов и сепараторов сбоку.

Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Парковочная зона - это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, парковочная зона расположена ближе к шпинделю, что видно на фотографии.

На некоторых накопителях парковка производится на специальных пластиковых парковочных площадках, расположенных за пределами пластин.

Жёсткий диск - механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин.

Теперь снимем верхний магнит и посмотрим, что скрывается под ним.

В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом - удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача - ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жестких дисках. На нашем накопителе второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.

Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок образуют позиционер (actuator) - устройство, которое перемещает головки. Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Это защитный механизм, освобождающий БМГ после того, как шпиндельный двигатель наберёт определённое число оборотов. Происходит это за счёт давления воздушного потока. Фиксатор защищает головки от нежелательных движений в парковочном положении.

Теперь снимем блок магнитных головок.

Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.

Подшипник.

На следующей фотографии изображены контакты БМГ.

Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для улучшения проводимости.

Это классическая конструкция коромысла.

Маленькие чёрные детали на концах пружинных подвесов называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки - это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью блинов. На современных жёстких дисках головки двигаются на расстоянии 5–10 нанометров от поверхности блинов. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Сами считывающие и записывающие элементы находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп.

Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.

Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель - это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.

Предусилитель располагают прямо в БМГ по очень простой причине - сигнал, идущий с головок, очень слаб. На современных дисках он имеет частоту около 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск. У этого жёсткого диска к каждой головке ведёт шесть дорожек. Зачем так много? Одна дорожка - земля, ещё две - для элементов чтения и записи. Следующие две дорожки - для управления мини-приводами, особыми пьезоэлектрическими или магнитными устройствами, способными двигать или поворачивать слайдер. Это помогает точнее задать положение головок над треком. Последняя дорожка ведёт к нагревателю. Нагреватель служит для регулирования высоты полёта головок. Нагреватель передаёт тепло подвесу, соединяющему слайдер и коромысло. Подвес изготавливается из двух сплавов, имеющих разные характеристики теплового расширения. При нагреве подвес изгибается к поверхности блина, уменьшая, таким образом, высоту полёта головки. При охлаждении подвес выпрямляется.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.

На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.

Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).

Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).

Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.

Теперь понятно, за счёт чего создается пространство для головок - между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо - высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.

Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.

Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха.