Типы кулеров для компьютера. Правильное охлаждение компьютера

Компьютер представляет из себя сложное устройство со множеством компонентов, которые должны работать беспрерывно. Охлаждение является неотъемлемой частью всей этой сложной системы, поскольку каждая деталь отдает тепло, потребляя электричество. Если бы охлаждения не было, то риск внезапного “сгорания” вырос бы в десятки раз. Но как поступать, если старое охлаждение вышло из строя? Определенно, нужно искать замену и браться за установку. Как правильно установить вентиляторы в корпус компьютера? Ответ на этот вопрос вы сможете найти в данной статье.

Немного о главном

Ни для кого не будет тайной, что все компоненты персонального компьютера имеют свойство нагреваться. Некоторые из этих элементов греются очень сильно. ЦП, ГПУ и материнская плата — самые греющиеся детали внутри системного блока. Именно поэтому каждый пользователь должен позаботиться о правильном охлаждении и качественном отводе тепловых потоков.

Чаще всего в компьютерах применяется воздушное охлаждение, поскольку оно очень практично и дешево. Принцип работы такого механизма очень прост: элементы отдают тепло воздуху вокруг себя, а уже горячий воздух выдувается из корпуса системного блока при помощи вентиляторов. Также довольно-таки часто детали ПК снабжаются элементами теплоотвода (радиаторами).

Важность системы охлаждения просто очевидна, но как правильно установить кулер на процессор и другие компоненты устройства?

Выбираем новые компоненты

Прежде чем браться за поиск дополнительных кулеров, следует внимательно осмотреть свой гаджет:

  • Снимите крышку корпуса системного блока, определитесь с количеством мест для установки дополнительных компонентов.
  • Также стоит взглянуть на материнскую плату, ведь именно на ней расположены все разъемы для деталей.

Вот несколько советов, которые помогут при выборе:

  • Лучше выбирать устройства с самым большим подходящим размером.
  • Отдавайте предпочтение приборам с большим количеством лопастей. Такие устройства тише работают.
  • При покупке стоит уделить внимание наклейкам на девайсах, ведь на них указан уровень шума.
  • Если ваша материнская плата оснащена разъемами с четырьмя контактами, то стоит приобрести четырехпроводной вентилятор.

Если все устройства приобретены, то вам должно быть интересно, как правильно установить кулеры в системном блоке. Сейчас мы ответим на этот вопрос.

Устанавливаем новые компоненты

Для того чтобы установить детали в компьютер, стоит ознакомиться с несколькими главными вариациями расположения. Речь здесь пойдет только о стандартных корпусах, поскольку для каждого все индивидуально.

Когда в корпусе нет дополнительных элементов охлаждения

Данная компоновка является стандартной практически для всех современных персональных компьютеров, что продаются в магазинах электронной техники. Горячий воздух всегда поднимается вверх, а вентилятор в БП (блоке питания) выводит его наружу.

Важно! У такой компоновки есть один ощутимый недостаток — все тепло, что проходит через БП, только сильнее его нагревает. Также теплообмен ухудшается за счет того, что холодный воздух всасывается в корпус хаотично и со всех сторон.

Но даже такой способ лучше, чем неправильное расположение дополнительного оборудования.

Располагаем кулер на задней части корпуса

Данный способ актуален только в том случае, если мы имеем лишь одно место под дополнительный кулер. Устройство должно располагаться прямиком под БП, что поможет обеспечить правильную циркуляцию воздуха без тяжких последствий для вышеупомянутого БП.

Важно! И здесь есть один минус — пыль будет скапливаться быстрее обычного, а виной тому повышенная разреженность.

Как установить дополнительный кулер в системный блок другим способом? Читаем далее!

Расположение на лицевой части системного блока

Этот вариант тоже подходит только для тех корпусов, в которых найдется лишь одно посадочное место. Вентилятор нужно расположить на лицевой части корпуса ПК, но поставить на “Вдув”. Располагать деталь нужно так, чтобы она находилась напротив винчестера(ов), поскольку весь холодный воздух, что поступает в девайс, будет их обдувать.

Важно! Подобная установка является одной из самых эффективных, ведь с помощью нее достигается практически идеальная циркуляция потоков холодного воздуха, да и пыль внутри не будет задерживаться. Уровень общего шума очень низок.

Ставим два кулера в один корпус

Безусловно, этот метод будет самым эффективным из всех. Здесь процесс установки довольно прост:

  1. На фронтальной стенке корпуса ставится один вентилятор, работающий на “вдув”.
  2. На заднюю панель корпуса персонального компьютера устанавливается второй кулер, но уже на “выдув”.

Важно! Сквозь ваш девайс будет циркулировать постоянный направленный воздушный поток, который поможет избежать перегрева в любой части ПК. Пыль вообще не будет оседать внутри корпуса, общий уровень шума снизится, а давление внутри стабилизируется.

Теперь вы знаете, как установить дополнительный кулер в системный блок, но чего стоит бояться при монтаже? Поговорим о неправильной установке.

Важно! Перегрев системы происходит также из-за повышенной нагрузки с точки зрения засорения операционной системы мусорными файлами.

Чтобы снизить риск такого неблагоприятного явления, обязательно поставьте и пользуйтесь .

Как не нужно ставить кулеры?

Для того чтобы разобраться, уделим немного внимания следующим случаям неверной установки.

Кулер сзади работает на “вдув”

Такое охлаждение не принесет никакого эффекта, поскольку все тепло, которое отдает БП окружающей среде, будет тут же всасываться обратно, да и в нижней части системника воздух вообще не будет двигаться. Такой способ никому не подойдет.

Кулер расположен спереди и работает на “выдув”

Таким методом расположение вы превратите свой компьютер в самый настоящих пылесборник, поскольку внутри корпуса будет очень разреженное давление. Вентиляторы будут работать в режиме перегрузки, а все соседние компоненты жутко перегреваться.

Кулер сзади работает на “вдув”, а спереди — на “выдув”

Такая локация создает замкнутое воздушное кольцо, которое препятствует подъему горячего воздуха. Такими темпами можно добиться только повышенных перегрузок низкого давления внутри, что, опять же, повлияет на чистоту.

Оба компонента работают на “вдув”

В этом случае давление будет избыточно большое, что прямо пропорционально влияет на нагрузку на кулерах.

Охлаждение различных компонентов - одна из любимых тем оверклокеров (впрочем, не только их). Большое значение тут имеет хорошая вентиляция корпуса - ведь, снизив в нем температуру хотя бы на пару градусов, мы на столько же снизим и температуру всех находящихся внутри элементов. К сожалению, более-менее точной методики расчета вентиляции корпуса мне пока не встречалось. Зато в избытке из статьи в статью кочуют общие рекомендации, которые от частого употребления забронзовели и критически уже не воспринимаются.

Вот самые распространенные из таких мифов:

  1. Производительность вентиляторов на вдув должна примерно соответствовать производительности вентиляторов на выдув
  2. Впускать холодный воздух надо обязательно снизу, а выпускать сверху
  3. Чем больше в корпусе заполнено слотов расширения и 5-дюймовых отсеков, тем хуже его вентиляция
  4. Замена обычных шлейфов круглыми заметно улучшает вентиляцию корпуса.
  5. Передний вентилятор заметно снижает температуру в корпусе.

В результате борьба за вентиляцию корпуса зачастую сводится к установке вентиляторов максимально возможного размера и производительности во все штатные места, после чего в руки берется дрель (ножовка, электролобзик, зубило, кувалда, "болгарка", автоген - нужное подчеркнуть:-), и вентиляторы засовываются в нештатные места. После этого для пущего эффекта добавляется пара вентиляторов внутрь корпуса - обычно на обдув видеокарты и винчестера.

О затратах времени, сил и средств на все это лучше не говорить. Правда, результат обычно бывает неплохой, но вот шум, испускаемый этой "батареей" на полных оборотах, выходит за все мыслимые рамки, да и пыль он сосет со скоростью пылесоса. Как следствие, скоро корпус начинает обрастать фенбасами и реобасами, становясь похожим на микшерский пульт средней руки. А процесс запуска игры вместо простого кликанья мышкой теперь напоминает подготовку к взлету авиалайнера - надо не забыть прибавить обороты всем этим вентиляторам. В этой статье я постараюсь показать, как можно добиться похожего эффекта "малой кровью".

Бег по диагонали

Все массовые корпуса можно разделить на три вида - десктоп, тауэр с верхним (горизонтальным) БП и тауэр с боковым (вертикальным) БП. Основную долю рынка занимают два последних. У каждого есть свои достоинства и недостатки, но наихудшим с точки зрения вентиляции считается третий вид - тут процессор оказывается в непродуваемом "кармане" рядом с блоком питания, и организовать туда подачу свежего воздуха достаточно трудно.

Общие принципы вентиляции достаточно просты. Во-первых, вентиляторы должны не мешать естественной конвекции (снизу вверх), а помогать ей. Во-вторых, нежелательно иметь непродуваемые застойные зоны, особенно в местах, где естественная конвекция затруднена (в первую очередь это нижние поверхности горизонтальных элементов). В-третьих, чем больше объем воздуха, прокачиваемого через корпус, тем меньше в нем разница температур по сравнению с "забортной". В-четвертых, поток очень не любит различных "выкрутасов"- изменения направления, сужения-расширения и т.п.

Как происходит воздухообмен? Допустим, вентилятор закачивает воздух в корпус, при этом давление в нем растет. Зависимость расхода от давления называется рабочей характеристикой вентилятора. Чем больше давление, тем меньше будет закачивать воздух вентилятор и тем больше его будет выходить через вентиляционные отверстия. В какой-то момент количество закачиваемого воздуха сравняется с количеством выходящего, и давление дальше повышаться не будет. Чем больше площадь вентиляционных отверстий, тем при меньшем давлении это произойдет и тем лучше будет вентиляция. Поэтому простым увеличением площади этих отверстий "без шума и пыли" иногда можно добиться большего, чем установкой дополнительных вентиляторов. А что изменится, если вентилятор не вдувает, а выдувает воздух из корпуса? Поменяется только направление потоков, расход останется тем же самым.

"Классические" варианты организации вентиляции корпуса с верхним БП показаны на рис.1-3. Собственно, это фактически три разновидности одного и того же способа, когда воздух идет по диагонали корпуса (от переднего нижнего угла в задний верхний). Красным цветом показаны непродуваемые зоны. От того, насколько плотно они заполнены, сопротивление потоку никак не зависит - он все равно проходит мимо них. Обратите внимание на нижнюю зону, в которой находится видеокарта - один из самых критических к перегреву компонентов компьютера. Установка переднего вентилятора позволяет подать к ней (а заодно и к южному мосту) немного свежего воздуха, сбив температуру на пару градусов. Правда, при этом "на обочине жизни" оказывается винчестер (если он установлен в штатное место). На рис.4 показано, почему так происходит. Тут схематически представлены потоки воздуха через вентилятор (более темный цвет соответствует большей скорости). Со стороны всасывания воздух входит равномерно со всех сторон, при этом его скорость по мере удаления от вентилятора быстро падает. Со стороны нагнетания "дальнобойность" воздушного потока заметно больше, но только вдоль оси - в стороне от нее образуется непродуваемая зона. Такая же "аэродинамическая тень" получается и за втулкой вентилятора, но она быстро сходит на нет.

Для иллюстрации приведу пример из жизни. В поисках наилучшего способа охлаждения своего десктопа, я перевернул вентилятор в БП на вдув. По идее, это должно улучшить охлаждение БП - ведь теперь он обдувается свежим воздухом, а не б/у из корпуса. Однако термодатчик БП показал прямо противоположное - температура выросла на 2 градуса! Как такое могло произойти? Ответ прост - плата с датчиком установлена в стороне от вентилятора и поэтому оказалась в аэродинамической тени. Поскольку вместе с термодатчиком в этой тени оказались и некоторые другие элементы, во избежание выхода их из строя был восстановлен статус кво.

Критерий истины

Теперь от теории перейдем к практике. Наша главная задача - увеличить площадь вентиляционных отверстий, причем желательно быстро и без применения слесарных инструментов. Их площадь должна быть как минимум равна эффективной площади вентилятора (то есть площади, ометаемой лопастями), а лучше превышать ее раза в полтора. Например, для 80-мм вентилятора эффективная площадь равна примерно 33 кв.см. Если вентиляторов несколько и они все работают на выдув (или, наоборот, все на вдув), их эффективная площадь складывается. Особенно эта мера актуальна для корпусов старых конструкций, которые еще помнят Пентиум-2 и тем не менее продолжают выпускаться (и продаваться) до полного износа штампов.

К подобным "ветеранам" относится и мой десктоп Codegen, переживший уже три материнки. Из "удобств" он имеет место под 90-мм передний вентилятор, который по мысли конструкторов должен засасывать воздух через щель внизу передней панели площадью всего 5 кв. см., да символические дырочки диаметром 1,5 мм напротив него (позже я их рассверлил в шахматном порядке до 4 мм - так даже красивее стало). Разумеется, корпус не подводная лодка, воздух будет подсасываться и через другие мелкие щели и неплотности, точный учет которых невозможен. Но все равно вентиляция в штатном режиме напоминает бег в противогазе.

Конфигурация компьютера при тестировании:

  • CPU Athlon T-red-B 1,6v. 1800+@166Х11, кулер Evercool ND15-715 подключен через 3-поз. переключатель (использовалась вторая скорость, 2700 об/мин)
  • M/b Epox 8RDA3, обдув моста отключен
  • video Asus 8440 Deluxe (GF4ti4400), акт. кулер закрывает чип и память.
  • 512 Mb RAM Hynix
  • HDD Samsung 7200 об/мин
  • CD-ROM, FDD, Rack-контейнер
  • Modem
  • TV/capture card Flyvideo
  • БП Codegen 250w
  • Суммарная мощность (без БП) - порядка 180 Вт

Температура процессора мерялась через Сандру, видеокарты - по встроенным датчикам через SmartDoctor, в корпусе под верхней крышкой над процессором (не забыли - корпус десктоп) был размещен выносной датчик электронного термометра, вторым датчиком этого термометра измерялась температура в комнате. Затем результаты были приведены к внешней температуре 23 градуса.

Система нагружалась запуском в цикле игровых тестов 3DMark2001SE. В исходном состоянии температура в корпусе превышала внешнюю на 15 градусов, температура видеокарты (чип/память) была больше на 55/38 град., процессора на 39 град. Для сравнения были проведены измерения с открытой крышкой. Результаты: температура видеокарты больше внешней на 44/30 градусов, процессора - на 26 градусов.

Сначала попробуем пойти по традиционному пути. Какая первая мысль приходит в голову при взгляде на этот корпус? "Раз есть отверстие под вентилятор, так должно же там хоть что-то стоять" (вполне по "Золотому теленку"). Ну что же, поставим. Каков результат? Датчик температуры в корпусе вообще не отреагировал на наши манипуляции, температура процессора снизилась на 1 градус, а видеокарты на 4-5 градусов (кстати, примерно такой же результат дал и другой традиционный шаг - установка рядом с видеокартой бловера Gembird SB-A). Собственно, на этом "традиционный путь" и заканчивается.

Теперь все вернем в исходное состояние и пойдем другим путем - вытащим две заглушки слотов расширения рядом с видеокартой. Этим убивается сразу два зайца: появляется новая "дыра" для вентиляции корпуса и ликвидируется застойная зона у видеокарты. Вдобавок выломаем защитную "гребенку" у переднего воздухозаборника (благо он снизу и его все равно не видно) - его площадь при этом утроится, а суммарный размер вентиляционных отверстий составит 45 кв. см.

Результат не заставил себя ждать - температура в корпусе упала на два градуса, а видеокарта порадовала еще больше, скинув сразу 9 градусов на чипе и 7 градусов на памяти. Согласитесь, неплохой результат, к тому же совершенно бесплатный. Этот вариант можно рекомендовать для карт с пассивным кулером как альтернативу установке вентилятора. А если этого мало? Добавление переднего вентилятора на вдув приводит к парадоксальному результату - температура и корпуса, и видеокарты... повышается! Немного, всего на один градус, но тем не менее... Объясняется это просто - теперь больше воздуха входит в корпус через переднее отверстие и меньше - через заднее мимо видеокарты.

А если поставить его на выдув? Тут совсем другое дело. Оба вентилятора (в БП и дополнительный) теперь включены параллельно, их расходы складываются, и вот вам результат - видеокарта "похолодала" еще на 3-4 градуса, а общее понижение температуры по сравнению с исходным вариантом составило 12 градусов по видеочипу, 10 градусов по видеопамяти и 5 градусов в корпусе (и, соответственно, у процессора). Обратите внимание, что видеокарта здесь холоднее, чем в открытом корпусе! Расходы же ограничились покупкой одного корпусного вентилятора средней мощности.

Наконец, последний вариант, "экстремальный" - все три вентилятора (БП, передний и бловер) на выдув, дополнительно сзади открываем еще один слот. Бловер был установлен в нижнем (из двух) пятидюймовом отсеке вместо вынутого Rack-контейнера. Результаты - процессор "похолодал" по сравнению с предыдущим вариантом на 4 градуса (и теперь на те же 4 градуса горячее самого себя в открытом корпусе), а видеокарта скинула еще пару градусов. Правда, датчик температуры в корпусе никакого снижения не показал - холодный воздух проходит ниже его, поскольку дополнительные вентиляторы забирают воздух не сверху, а из середины корпуса. Общие результаты сведены в таблицу. На ней показана абсолютная температура компонентов, приведенная к 23 градусам в комнате.

Снизу вверх, наискосок

Теперь, когда мы уяснили и проверили на практике общие принципы эффективной вентиляции, применим их к самому распространенному корпусу - тауэру с верхним БП.

На рис.6 показан самый эффективный способ охлаждения такого корпуса. Дополнительный вентилятор на задней стенке фактически обеспечивает такой же режим продувки, как в моем последнем эксперименте. Поскольку практически половина тепла выделяется процессором, есть смысл подавать часть холодного воздуха непосредственно в зону его работы. Это осуществляется через свободный трехдюймовый или пятидюймовый отсек на передней стенке - обе его заглушки (пластмассовая и металлическая) удаляются, а уж как декорировать образовавшуюся дыру - вопрос умения и фантазии. В простейшем случае можно купить панельку с парой маленьких вентиляторов (которые сразу снять, толку от них ноль), благо таких "прибамбасов" для пятидюймовых отсеков выпускается множество разновидностей - от обычной решетки до панелек со встроенным электронным индикатором, USB-портами или фенбасами (хотя площадь решетки у них меньше).

Неплохую продувку обеспечивает и установка Rack-контейнера. Учтите, что все это хозяйство надо ставить в самый нижний отсек. Выбор конкретного варианта зависит от того, что в первую очередь надо "заморозить". Если перегревается процессор или память, отверстия надо сделать побольше, а если видеокарта - можно вообще обойтись без них, зато внизу открыть побольше слотов. Суммарная площадь отверстий при этом должна быть как минимум 70-80 кв. см. в зависимости от размера вентиляторов. Для справки: площадь одного отверстия слота равна 13 кв. см., открытого трехдюймового отсека - 30 кв. см., пятидюймового - 15-30 кв. см. с вышеописанной декоративной решеткой и 60 кв. см для полностью открытого. Еще 10-15 кв. см. может дать удаление заглушек с отверстий под порты на задней стенке. Ах да, чуть не забыл, есть же еще штатный воздухозаборник в нижней части передней панели площадью 5-30 кв. см., а у некоторых корпусов еще и дырочки в боковых стенках.

Если на верхней панели есть штатное отверстие под вентилятор, грех его не использовать. Поставьте туда что-нибудь не слишком мощное на выдув. Если такого отверстия нет, вырезать его не стоит. Лучше купите специальный бловер и установите его в самый верхний 5-дюймовый отсек (рис. 7). Это будет особенно полезно тем, у кого по какой-либо причине отсутствует отверстие под дополнительный вентилятор под БП или оно задействовано для непосредственного охлаждения процессора. Но в этом варианте стоит сделать воздуховод, направляющий свежий воздух из нижнего пяти- или трехдюймового отсека в зону процессора. Без него значительная часть этого потока может сразу уйти в бловер, не захватив по дороге достаточно тепла.

На рис. 8 показана довольно экзотическая схема с нижним вентилятором, работающим на выдув. Она хуже двух предыдущих и может использоваться лишь в крайнем случае, когда в первую очередь надо охладить видеокарту. Фактически эта схема обеспечивает два независимых потока - первый (нижний, от задней стенки к передней) охлаждает видеокарту, платы расширения и южный мост, а второй (от передней стенки к задней) охлаждает верхнюю половину корпуса. Преимущества такой схемы - увеличивается суммарная производительность вентиляторов на выдув, значительная часть горячего воздуха от видеокарты сразу удаляется наружу, меньше общее сопротивление потоку в корпусе.

Но есть и существенные недостатки. Главный из них в том, что в угоду дизайну нижние отверстия в передней стенке, через которые выдувается воздух, обычно имеют площадь намного меньшую, чем эффективная площадь переднего вентилятора. Вдобавок потоку приходится дважды менять направление, что он очень не любит. В результате получается тот же "бег в противогазе" - например, если отверстие в корпусе вдвое меньше, чем у вентилятора, производительность последнего тоже падает примерно вдвое, и это еще без учета противодавления в корпусе. А вот шум, наоборот, будет больше - просачиваясь через узкие щели, маленькие отверстия, затейливые "загогулины" и прочие дизайнерские изыски в передней панели, поток воздуха может издавать отнюдь не художественный свист. Вдобавок шум переднего вентилятора (в отличие от заднего) не экранируется корпусом.

Повысить эффективность переднего вентилятора можно, если впустить дополнительный воздух в полость между передней панелью и металлической передней стенкой корпуса. Для этого пойдем по проторенному пути - вытащим пластмассовую (на этот раз только пластмассовую!) заглушку нижнего трехдюймового отсека. Но ведь нам надо еще подать холодный воздух в верхнюю половину корпуса, причем тоже спереди. Эти потоки надо разделить с помощью перегородки под нижним пятидюймовым отсеком.

Теперь посмотрим на движение потока в корпусе. В первой и второй схеме основной поток движется снизу вверх. Сопротивление потоку определяется самым узким местом на его пути. В данном случае это сечение на уровне видеокарты: она сама занимает добрую половину корпуса, а с другой стороны стоит винчестер с торчащим шлейфом. Поскольку видеокарту в другое место сдвинуть нельзя, остается переставить винчестер. Его можно опустить вниз или поставить в один из 5-дюймовых отсеков (лучше в тот, который используется в качестве воздухозаборника). В обоих случаях винчестер будет отлично обдуваться, что благотворно скажется на его здоровье. Впрочем, самое узкое место на пути потока на самом деле не здесь, а при входе в корпус - там его скорость больше на порядок, а аэродинамические потери пропорциональны квадрату скорости. Поэтому "прилизывание" и укладка шлейфов с точки зрения воздухообмена практически ничего не дает.

Слышу, слышу ехидные голоса - а как же страшилки про пыль, которую при установке всех вентиляторов на выдув якобы будет засасывать в диких количествах через CD-ROM и FDD? Отвечаю. Воздух идет по пути наименьшего сопротивления и при хорошей вентиляции не пойдет в узкие щели, когда рядом есть большие окна. Да и штатная система вентиляции, напомню, работает на выдув, причем в брендовых корпусах и ноутбуках тоже (а там не дураки сидят, как любят говорить некоторые коллеги, когда другие аргументы заканчиваются:-)

В заключение скажем пару слов про тауэры с боковым БП. Несмотря на большое количество отверстий, расположенных в самых неожиданных местах, вентиляция у этих корпусов отвратительная. Если обдув видеокарты еще можно улучшить традиционным способом (открыванием соседних слотов), то с процессором придется повозиться. Для хорошего продува его "кармана" нужно как-то удалить оттуда горячий воздух. Самое эффективное - врезка в верхнюю панель вентилятора на выдув, но это весьма трудоемко. Поэтому попробуем альтернативные способы. В корпусах InWin вверху на задней стенке есть вентиляционные отверстия непонятного назначения - теплый воздух оттуда выходить не будет, т.к. в корпусе разрежение от вентилятора БП, а подача холодного воздуха под самый потолок малоэффективна. Чтобы они не пропадали, поставьте там бловер на выдув. В корпусах, где нет и этого, бловер можно направить вперед и соединить воздуховодом с пустым пятидюймовым отсеком (разумеется, вытащив из него обе заглушки, рис.9).

Другой вариант - установка БП с мощным вентилятором, в котором забор воздуха осуществляется только со стороны "кармана". В продаже встречаются БП, имеющие на боковой стенке 120-мм вентилятор - по идее, его должно хватить для хорошего проветривания. Можно сделать и наоборот - подать вентилятором или бловером по воздуховоду в эту зону свежий воздух в расчете на то, что струя "добьет" до непродуваемых уголков. В общем, поле для экспериментов эти корпуса дают необъятное.

Еще осталось несколько мифов по поводу выбора вентиляторов... но этому вопросу стоит посвятить отдельную статью.

Владимир Куваев aka kv1

Прежде чем начать разговор о том, каковы тонкости и нюансы системы охлаждения, стоит отметить некоторые наиболее значимые аспекты для дальнейшего понимания механизма охлаждения как целостной (единой) системы, поддерживающей стабильную работу компьютера.

Итак, все корпуса системных блоков компьютеров собираются производителями по единому стандарту (так называемый стандарт АТХ). В более широком смысле этот стандарт отвечает за устройство всего компьютера (включая отдельные компоненты: распиновка разъемов питания, размеры материнских плат и т.д.). Нас же интересуют только принципы и порядок размещения технологических отверстий и вентиляторов внутри системного блока. Как видно на фото 1 воздух в системном блоке всегда движется в строго определенном направлении, т.е. от передней к задней стенке (фото 1).

Вот за обеспечение движения воздуха в системном блоке как раз и отвечают вентиляторы (их еще называют «кулеры»).

Распределение кулеров в системном блоке

Кулер в передней части системного блока служит для нагнетания воздуха вовнутрь. Именно поэтому при установке вентиляторов следует обращать внимание на то, в какую сторону будет двигаться воздух, ведь если повернуть кулер другой стороной, то он будет выдувать, а не нагнетать воздух (некоторые производители специальной стрелкой на боковой поверхности вентилятора указывают направление движения воздуха при его работе). Фото 2.

Кулер в боковой стенке не является обязательным атрибутом, но если он присутствует, то он также отвечает за нагнетание воздуха вовнутрь системного блока.

Что касается движения воздуха через нижнюю и верхнюю части блока, что здесь, как правило, есть специальные технологические отверстия, через которые также проходит воздух. В зависимости от конструкции блока и его начинки (размещение деталей и узлов, нависание жгутов проводов и т.п.) через эти отверстия воздух либо поступает, либо отводится естественным образом.

За отвод воздуха из блока отвечает вентилятор, расположенный на задней стенке корпуса. И это место выбрано не случайно. Еще помните, что теплый воздух всегда поднимается вверх? Так вот именно поэтому данный кулер находится в верхней части системного блока. Кстати, стоит заметить, что в хороших системниках блок питания находится внизу (как на фото 1), а отводящий кулер - вверху (т.е. на том месте, где у большинства стандартных системников устанавливается блок питания).

Примечание: Многие пользователи любят устанавливать дополнительные вентиляторы в верхней крышке корпуса для нагнетания воздуха вовнутрь. В результате они только снижают эффективность всей системы охлаждения.

Как правильно подобрать необходимый кулер

Для системных блоков существует три самых распространенных типоразмера вентиляторов:

  1. 80х80х25 мм
  2. 92х92х25 мм
  3. 120х120х25 мм

Все они различаются типом (по типу используемого подшипника) и видом устанавливаемых электродвигателей: они обеспечивают разную скорость вращения крыльчатки (при этом потребляют различный ток). Кроме того, вентиляторы имеют разную полезную площадь лопастей. А уже от скорости вращения лопастей и размеров самого вентилятора зависит его производительность, а именно величина статического давления (т.е. нагнетание в замкнутую систему под давлением) и максимальный объём этого нагнетенного воздуха за единицу времени. Объём переносимого воздуха обозначается как CFM (cubic feet per minute), а скорость вращения - RPM (rotates per minute).

При выборе вентиляторов следует обращать внимание на размер его крыльчатки (т.е. диаметральная площадь, по которой вращаются лопасти). Ведь при одной и той же скорости вращения кулер с большей площадью крыльчатки, другими словами больше размером, является более эффективным. Кроме того, такой вентилятор меньше шумит, так как может работать при меньших оборотах (а объем прокачивать тот же). Фото 3.

Примечание: если в задней части корпуса вентилятор работает интенсивнее (т.е. имеет более высокую скорость вращения, чем вентилятор спереди и при условии, что он не меньше по типоразмеру), то таким образом через всю систему прокачивается намного больший объем воздуха. Тем самым охлаждение является более эффективным.

Кулер и радиатор для процессора

Что касается требований к радиаторам для процессора, то здесь стоит выбирать радиаторы из меди или с медным сердечником. Если вы готовы приобрести радиатор на тепловых трубках, то такая система охлаждения будет еще эффективней, так как в таких радиаторах отвод тепла происходит по тепловым трубкам до самых дальних ребер.

Вообще стоит отметить, что эффективность охлаждения процессора является проблемой комплексной. Так если радиатор имеет низкую теплопроводность (его основание греется быстрее, чем концы его ребер) или если он обладает высоким гидравлическим сопротивлением (т.е. более густое оребрение радиатора требует большего давления, чтобы прокачать сквозь него воздух), то данные проблемы одним только увеличением скорости вращения вентилятора не решишь. Мнение, чем быстрее вращается кулер, тем лучше – является не верным. В таких случаях решение выглядит таким образом (фото 4): радиатор на тепловых трубках с двумя кулерами от Venom.

Если вы обладатель только лишь боксового варианта радиатора (от англ. Box – коробка, т.е. коробочный вариант, стандартный, заводской), не стоит отчаиваться. Помните, что правильная организация воздушного потока внутри корпуса прекрасно справится с охлаждением всей системы.

Относительно вентилятора для радиатора следует знать, что кулер должен соответствовать габаритам радиатора. Нет смысла на боксовый радиатор от AMD лепить чудо 120х120 мм, так как необходимо не обдувать сам радиатор, а именно продувать воздух сквозь ребра радиатора, что, согласитесь, невозможно при несоответствии размеров кулера (площади его крыльчатки) и радиатора (поперечной площади его ребер).

Немаловажным является выбор типа подшипника вертушки. Так подшипники качения (ball bearing) являются самыми долговечными и тихими, однако подшипники скольжения (slide bearning) менее долговечны, но при этом имеют меньшую стоимость.

Вопрос, с какой скоростью должен вращаться кулер, является довольно тривиальным. Дело в том, что чем выше скорость вращения, тем интенсивнее воздушный поток. И вместе с тем трудно сказать, достаточен ли этот поток процессору в данный момент, пока не узнаешь текущую температуру ядра. Другими словами температуру нужно отслеживать и в зависимости от нагрузки регулировать скорость вращения кулера. Заниматься этим вручную (если вы не фанат оверлокинга) нет никакого смысла. Материнские платы уже давно регулируют скорость вращения кулеров автоматически.

На что стоит обратить внимание, так это на максимальную скорость вращения вентилятора. Современные кулеры поддерживают максимальную скорость вращения от 2000 до 8000 оборотов в минуту. А вот обычное (штанное) значение для боксовых кулеров Intel находится в пределах от 3000 до 4000 оборотов в минуту.

Радиаторы для материнской платы

Кроме всего прочего, охлаждению также подлежат компоненты материнской платы. Так, например, производители устанавливают уже готовый комплект радиаторов на южный и северный мост, а также на группу силовых транзисторов (фото 5).

Такое решение, очевидно, очень повышает эффективность всей системы охлаждения в целом. Ведь рассеянное тепло легче отвести даже слабым воздушным потоком.

Как видеокарта снижает эффективность охлаждения

Как ни странно, но видеокарта, несмотря на наличие собственной системы охлаждения, также может негативно влиять на всю остальную систему охлаждения системного блока.

Это происходит от того, что отводя тело от графического процессора, система охлаждения выбрасывает его внутрь системного блока. А некоторые и вовсе просто перемешивают воздух внутри корпуса компьютера. Кроме того, из-за большой площади самой платы видеокарты внутренний объем системного блока становится как бы разделенным пополам, что препятствует свободному движению воздуха (фото 6). Для решения этой проблемы рекомендуется устанавливать дополнительный вентилятор на боковой стенке кожуха.

Столкнувшись с необходимостью установить дополнительные кулеры (вентиляторы) на корпус компьютера, пользователи часто задаются вопросом, как определить размер кулера для корпуса. Проблема в том, что обычно на компьютерном корпусе нет никаких обозначений о том, какого размера кулер нужно устанавливать. Есть только посадочное место под кулер и определить какой кулер для него подойдет не так просто.

Если вы знаете как называется модель вашего , то вы можете узнать размер кулеров на сайте производителя. Для примера возьмем такой популярный корпус как FRACTAL DESIGN Core 2500 .

Если ввести его название в любую поисковую систему, то можно без труда найти официальный сайт производителя.

А уже на сайте производителя можно найти детальную информацию обо всех посадочных местах для корпусных кулеров, а также их размер и расположение.

Но, к сожалению, в большинстве случае данный способ не работает. Чаще всего, корпус был куплен давно и информации о нем в интернете нет либо определить производителя и модель корпуса невозможно. В таких ситуациях нужно самостоятельно измерить посадочное место под кулер и определить подходящую модель. Измерять посадочное место проще всего между центрами крепежных отверстий.

Ниже приводим расстояния между центрами крепежных отверстий для корпусных кулеров популярных размеров.

Расстояние между крепежными отверстиями Размер кулера
32 мм 40×40 мм
50 мм 60×60 мм
71.5 мм 80×80 мм
82.5 мм 92×92 мм
105 мм 120×120 мм
125 мм 140×140 мм
154 мм 200×200 мм
Информация о размерах кулеров взята с сайтов noctua.at и arctic.ac.

Используя данную таблицу можно без труда определить размер кулера, который нужен для вашего корпуса.

Как выбрать кулер для корпуса

После того, как вы определили, какой размер кулера подходит для вашего корпуса, вам нужно выбрать конкретную модель кулера. На этом этапе нужно обращать внимание в основном на уровень шума, который производит кулер. Уровень шума обычно указывается в децибелах и чем он ниже, тем лучше.

Также немаловажным является тип подшипника, который используется в конструкции кулера. Самый простой вариант – это подшипники скольжения, он отличается тихой работой, но коротким сроком службы. Вариант чуть лучше – это шарикоподшипник или подшипник качения, он работает чуть громче, но зато его срок службы намного больше. Кулер на шарикоподшипнике может проработать до 15 тысяч часов. Самый современный вариант – это гидродинамический подшипник, он отличается тихой работой и продолжительным сроком службы, но кулеры с его использованием заметно дороже.

Еще один важный момент – это способ подключение кулера. Изучите инструкцию к вашей материнской плате, для того чтобы узнать какой разъем для подключения корпусных кулеров на ней используется (3 или 4 pin) и, соответственно, учитывайте это при выборе кулера.

Введение

Для пользователей ПК или для сборщиков систем, которые всё делают сами, вопросы охлаждения и температуры окружающей среды всегда являются актуальными. Именно поэтому мы собираемся начать с самых основ, предложив вашему вниманию введение в теорию охлаждения. Каждый год у нас появляются новые читатели, и каждый год мы замечаем одни и те же вопросы, задаваемые на наших форумах. Самое последнее, чего мы желаем, – это чтобы дорогостоящий проект потерпел неудачу в результате ошибки, присутствующей в большинстве базовых принципов, способствующих работе аппаратного обеспечения при приемлемых температурах.

Поскольку затронутая нами тема достаточно обширная, а мы хотим предложить вам полное руководство, мы разбили весь материал на две части.

Итак, прежде всего, мы поговорим о корпусах, включая вопросы местоположения блока питания. Затем мы сделаем обзор возможных недостатков других решений. Оптимизированный воздушный поток – это самый важный вопрос из всей информации о системе с воздушным охлаждением, поэтому мы планируем рассказать вам об этом более детально. Потом мы рассмотрим стандартные корпусные вентиляторы и покажем вам, почему даже новичку не стoит бояться наносить на детали термопасту. Если вы также запомните, что важно, чтобы между вашими видеокартами в конфигурации multi-GPU оставалось какое-то пространство, и поймёте, почему зачастую недооцененные вентиляторы на боковых панелях могут быть полезными, то вы сможете лучше оснастить свой ПК, чтобы он смог с меньшими потерями пережить летнюю жару.

Теория охлаждения вкратце

Сохранение энергии

Мы не можем не подчеркнуть мысль о том, какой масштабной затеей может оказаться правильно подобранная система охлаждения. Компьютеры относятся к числу наиболее неэффективных устройств всех времён, поскольку бoльшая часть используемой ими электроэнергии превращается в тепло (тепловую энергию). От этого никуда не деться, приходится принять это как реальность.

Даже обычная 40-ваттная лампочка испускает достаточно тепла, чтобы расплавился пластик и начался пожар. Компьютеры потребляют 60 ватт или больше в режиме простоя. Под нагрузкой эта цифра может резко увеличиться в десять или более раз! Запомните этот факт. Он составит основу нашего обсуждения и поможет вам осознать, насколько сложная в действительности эта задача – охлаждение ПК.

Тепло должно рассеиваться таким образом, чтобы компоненты ПК не превысили заданную максимальную температуру. Эту задачу выполняют в несколько этапов:

  • Рассеивание с поверхности компонента, вырабатывающего тепло (независимо от того, является ли этот компонент ЦП, видеокартой или регулятором напряжения материнской платы).
  • Поглощение тепла контактной площадкой и передача его на пластины радиатора охлаждения.
  • Излучение тепла в воздух (который, к сожалению, довольно плохо проводит тепло).
  • Отвод горячего воздуха из корпуса.

На этапах 1-3 мы использовали промышленные теплосъёмники с вентиляторами, разработанные для того, чтобы подходить к как можно большему количеству интерфейсов, и иногда вызывающие вопросы по установке на более сложных или специализированных платформах. К счастью, бoльшая часть этих вопросов решается достаточно легко. Однако последний этап требует более детального планирования, так что мы начнём с обзора информации о воздушном потоке.

Конечно же, здесь наблюдается прямая связь с расположением компонентов внутри вашего корпуса. И потому далее мы вкратце расскажем вам о конструкции блоков питания, направлении вращения вентилятора кулера и корпусных вентиляторах.

Образование тяги:

Горячий воздух поднимается вверх, холодный воздух опускается вниз. Вот почему верхняя часть корпуса обычно самая горячая. Мы должны всё время держать в уме этот основной принцип из области физики при планировании системы охлаждения.

Конфигурация тестовой системы

Основная идея и тестовая конфигурация

Для того, чтобы провести сравнение результатов настолько всесторонне, насколько это возможно, и при равных условиях, мы использовали устаревшую тестовую платформу, с помощью которой мы довольно точно смоделировали три варианта теплоотдачи - 89, 125 и 140 Вт. В первом варианте частота процессор уменьшалась до 2,2 ГГц, во втором варианте он работал со стандартной частотой, в третьем варианте разгонялся до 3,0 ГГц.

Конфигурация тестового стенда
Центральный процессор AMD Athlon 64 FX-62 (Windsor) 2,8 ГГц, Dual-Core, 2 x 1 Мбайт кэш-памяти L2, Socket AM2, 125 Вт TDP
Материнская плата MSI K9A2 Platinum, чипсет 790FX, Socket AM2/AM2+
Оперативная память 2 x 2 Гбайт DDR2-800
Кулер 1 Оригинальный "коробочный" кулер AMD для Athlon 64 FX-62
Кулер 2 Высокопроизводительный башенный кулер Xigmatek Aegir со 120-мм вентилятором

Используя кулер Xigmatek Aegir, мы протестировали оборудование с различными уровнями энерговыделения и результатами охлаждения для каждого варианта сборки. Этот кулер достаточно мощный для того, чтобы равномерно охлаждать 140 Вт старый процессор FX, находящийся под большой нагрузкой. Хотя устройство кажется солиднее, чем более шумный "коробочный" кулер, предоставленный компанией AMD, большинству пользователей такая покупка нужна для того, чтобы раз и навсегда получить стоящую вещь. Свои измерения мы снимали в помещении, где температура поддерживалась на постоянном уровне 22°C.


Кулер Xigmatek Aegir
Размеры (общие), (ДxВxШ) 130 x 95 x 159 мм
Вес 670 г без вентилятора
Материал Медь/Алюминий
Тепловые трубки Всего шесть (2 x 8 мм, 4 x 6 мм)
Технология Структура Dual-Layer Heatpipe-Direct-Touch (D.L.H.D.T.),
Четыре тепловые трубки с прямым контактом с ЦП
Вентилятор 120 x 120 x 25 мм
Подшипник Подшипник скольжения с длительным сроком службы
Диапазон скоростей 1 100-2 200 об/мин.
Воздушный поток Макс. 150 м³/час
Уровень шума Макс. 20 дБ(A)
Цвет Прозрачный чёрный, 4 белых светодиода
Подсоединение Разъём 4-pin PWM
Совместимость разъёмов Socket 764/939/940/AM2/AM3, LGA 775/1156/1366

Бoльшую часть тестов мы провели, воспользовавшись этим высокопроизводительным охлаждающим устройством, потому что башенные кулеры в настоящее время являются наиболее популярными моделями кулеров. Также в нашем обзоре есть дополнительная глава о кулерах с воздушным потоком, направленным вниз (так называемые "боксовые").

Блок питания: местоположение для установки и выбор корпуса

Блок питания расположен внизу корпуса

Во многих современных корпусах для ПК блок питания располагается внизу, под материнской платой. Такой вариант установки имеет массу преимуществ, поэтому мы настоятельно рекомендуем корпус с подобной конфигурацией. На рисунке вы можете видеть, что вентилятор засасывает прохладный воздух с "пола" через собственное впускное отверстие, использует этот воздух для охлаждения активных компонентов внутри блока питания и выводит его в задней части устройства.

Преимущества монтажа БП внизу корпуса:

  • Равномерная подача прохладного воздуха с "пола" внутрь корпуса.
  • Прямое выведение воздуха из корпуса БП.
  • Меньше скорость вентилятора.
  • Охлаждение позволяет добиться большей производительности БП.
  • Меньше температурное напряжение на компоненты, больше срок службы.
  • Центр тяжести корпуса расположен ниже.
  • Силовой кабель не свисает и не мешает подключению других внешних устройств.

Недостатки:

  • Корпус должен иметь достаточно высокие ножки.
  • Также необходимо иметь в наличии пылевой фильтр.
  • Возможно образования посторонних шумов, в зависимости от того, из какого материала сделан пол.

Несмотря на небольшие недостатки, вышеупомянутая конфигурация является предпочтительной, по сравнению с некоторыми другими вариантами сборки, о которых мы также расскажем, а ещё вы всегда должны обращать внимание на корпус, в котором размещается БП. Но здесь также можно допустить ошибку.

Не устанавливайте БП таким образом, чтобы его отверстие для забора воздуха выходило в корпус компьютера. Таким образом вы можете установить блок питания, только если имеете дело с "тихими" БП с пассивным охлаждением, чтобы тёплый воздух поднимался вверх. В противном случае, вы столкнётесь с силами, действующими при конвекции и, возможно, это приведёт к возникновению ситуации, при которой винт или любая другая плохо зафиксированная деталь могут упасть внутрь блока питания.

Блок питания расположен вверху корпуса

В более старых корпусах для ПК, произведённых согласно спецификации ATX, блок питания размещается прямо под верхней крышкой корпуса. Воздух засасывается внутрь БП изнутри компьютера, а затем выбрасывается наружу корпуса. Предположительно, это улучшает рассеивание и предотвращает накопление тепла. Тем не менее, это также приводит к поглощению блоком питания большого объёма отработанной теплоты, выделяемой видеокартой и процессором. Вследствие этого, вы получаете от БП работу на недостаточном уровне, из-за чего почти невозможно достичь максимальных значений энергии и производительности при температурах, превышающих 40°C (поскольку обычно они основаны на условия эксплуатации при температуре около 25°C). Также страдает продолжительность срока службы компонентов внутри блока питания.

Преимущества монтажа вверху корпуса:

  • Способствует лучшему охлаждению в некоторых системах.
  • Для линии 12 В необходим более короткий кабель.

Недостатки:

  • Более высокие температуры БП.
  • Неэффективная и шумная работа.
  • Система быстрее изнашивается.

Идеальный корпус...

Его не существует. Однако большие, отлично сконструированные "башенные" корпусы, такие как у модели Corsair Graphite 600T, приблизились к идеалу. Внутри этого корпуса воздушный поток не встречает на своём пути препятствий. Вместимость, расположение кабелей в задней части, а также многочисленные вентиляторы и воздушные фильтры – вот что присутствует в этой модели, что позволяет нам назвать это решение почти идеальным.

По возможности, вы должны обращать как можно больше внимания на корпусы, в которых воздушный поток беспрепятственно перемещается снизу-вверх. Если вы захотите включить в свою конфигурацию особо длинную видеокарту, вам понадобится корпус с такой глубиной, какая только будет возможна. Иначе карта будет мешать воздушному потоку. Толстые кабели всегда должны располагаться сзади. Также всё, что болтается внутри корпуса, значительно снизит скорость движения воздушного потока.

Воздушный поток: установка башенных кулеров лицевой стороной вверх

Возможные варианты монтажа башенных кулеров

Применение башенных кулеров предпочтительнее, чем комбинирование радиаторов и вентиляторов, которые вдувают воздух в процессоры. Однако очень важно, чтобы вы обратили внимание на правильную ориентацию БП при установке.

Поскольку на этом этапе можно столкнуться с множеством ошибок, мы рассмотрим различные варианты сборки, прежде чем суммировать наиболее важные правила.

Монтаж башенного кулера в вертикальном положении

Чаще всего вертикальное расположение применяется в сборках на основе компонентов от Intel. Машинам с материнскими платами на основе Socket AM2+ или AM3 нужен кулер со специальной системой крепления, позволяющей устанавливать БП под углом 90°.

Конечно же, башенные кулеры можно устанавливать в корпусы, в которых БП крепятся сверху. В таких случаях схематический рисунок будет выглядеть так:

Следует заметить, что задняя стенка корпуса должна быть либо перфорированной, либо на ней должен находиться вентилятор. Будет даже лучше, если в этом месте будет находиться вытяжной вентилятор, который, в большинстве случаев, может заменить второй вентилятор, установленный на радиаторе процессора. Конечно, можно улучшить и этот сценарий.

Даже при наличии смонтированного вверху БП, воздушный поток можно скорректировать в лучшую сторону, вводя в процесс охлаждения дополнительный прохладный воздух из нижней части корпуса.

Воздушный поток: башенный кулер с горизонтальным расположением

Монтаж башенного кулера в горизонтальном положении

Давайте вернёмся к процессорному разъёму Socket AM3 от AMD и рассмотрим вариант монтажа кулера в горизонтальном положении. То, что вначале показалось нам недостатком, может, на самом деле, превратиться в ценное качество. Помните об образовании тяги? Если тёплый воздух поднимается вверх, почему бы не воспользоваться этим как преимуществом? Для монтажа компонента в горизонтальном положении вам понадобится корпус с вентиляцией сверху.

Также мы воспользовались дополнительным вытяжным вентилятором сбоку, поскольку многие башенные кулеры способствуют перемещению какой-то части воздуха на близлежащие компоненты (регуляторы напряжения, например), и эту часть "рассеянного" воздуха также необходимо вывести. Монтаж в горизонтальном положении возможен также при использовании блока питания, крепящегося внутри корпуса вверху.

Однако при таком сценарии недостатки БП, крепящегося в корпусе вверху, становятся действительно заметными, поэтому мы, определённо, не советуем вам перемещать весь нагретый воздух от процессора в БП. В самом деле, есть же много решений и получше.

Если вы всё-таки решите применить такой способ, удостоверьтесь в том, что в вашей сборке есть, по меньшей мере, вытяжной вентилятор в задней части корпуса.

Вентиляция снизу помогает создать дополнительный охлаждающий воздушный поток.

Воздушный поток: общие ошибки при установке

Возможные варианты монтажа и ошибки планирования расположения

Кажется, что составить подобный план расположения компонентов довольно просто, но, учитывая, что существует очень много различных типов процессорных разъёмов и уникальных конфигураций охлаждающих устройств, можно довольно легко, по незнанию, совершить ошибки, которые негативно скажутся на производительности охлаждающего устройства.

В нашем первом примере кулер установлен в горизонтальном положении. Тем не менее, без вентиляции вверху тепло накапливается и попадает обратно на процессор.

В данном сценарии корпус отличает наличие вентиляция сверху, но ему не хватает дополнительной вентиляции сбоку. Воздуху приходится перемещаться в обход и заканчивается всё тем, что он накапливается за кулером.

Недавно мы наблюдали такой пример: прохладный воздух перемещается вопреки воздействию конвекции (а также вытяжным вентиляторам, работающим безрезультатно). К несчастью, это пример полного провала.

Воздушный поток: от уникальных систем до обычных кулеров

Кулеры с воздушным потоком, направленным вниз (лучшие из бюджетных)

Комплекты в виде "коробочного" радиатора и вентилятора, который вы получаете от AMD и Intel, не являются в достаточной степени эффективными, потому что образуемый этими компонентами воздушный поток не совпадает с вентиляционными отверстиеми в корпусе. Именно поэтому они перемещают воздух прямо на материнскую плату. В лучшем случае можно надеяться, что мощные логические схемы материнской платы получат хоть какое-то охлаждения. Но это ещё вопрос, компенсируется ли это ограниченной производительностью и бoльшим уровнем шума. Мы заметили, что это в большей степени относится к коробочным кулерам от AMD, которые едва справляются с подачей достаточного объёма воздуха для бесперебойной работы процессоров с тепловыделением 125 Вт и часто их вентиляторы вращаются со скоростью до 6 000 об/мин., что приводит к раздражающе высокому уровню шума.

Что касается других конфигураций охлаждения, остальные компоненты, корпус и встроенные вентиляторы играют важную роль при эксплуатации кулеров с воздушным потоком, направленным вниз.

Компьютер, приведённый на рисунке выше, получает недостаточный воздушный поток. В этом ПК нет вентиляции в задней части, а видеокарта ещё больше препятствует конвекции.

Так уже лучше! Эта конфигурация позволяет даже обычному коробочному кулеру, купленному в розничной продаже, рассеивать тепло эффективно.

Варианты сборки:

Оптимизация при наличии вентиляции сбоку

Наличие часто недооцениваемого бокового вентилятора, на самом деле, кажется вполне логичным, если вы используете кулер с воздушным потоком, направленным вниз, поскольку прохладный воздух, проходящий через отверстия для вентиляции, поступает прямиком на кулер центрального процессора. Остальные компоненты также могут выиграть от наличия этих отверстий, поэтому последние, в самом деле, могут понадобиться.


Вы можете либо выбрать корпус с большим, медленным и тихим вентилятором, как у модели LC-Power Titus...

Либо предпочесть кулер с парочкой 120-мм вентиляторов, такой как внутри корпуса Enermax Hoplite.

Воздушный поток: охлаждение жёсткого диска

Вентиляция спереди и охлаждение жёсткого диска

Это самый распространённый вариант расположения компонентов. Воздух всасывается внутрь со стороны передней панели корпуса и немедленно используется для охлаждения установленных жёстких дисков. Такой конфигурации достаточно для охлаждения, проблемы могут возникнуть только в том случае, если все отсеки в вашем корпусе заняты.

Поскольку, в интересах защиты данных и продления срока службы накопителя, следует избегать нагрева жёсткого диска выше 30°C , мы решили рассмотреть пару практических примеров.

Перед нами – классическая конфигурация: жёсткий диск в 3,5" отсеке, помещённый за 120-мм передним вентилятором.


Вот накопитель SATA, установленный спереди, с возможностью "горячей" замены. Вентилятор, расположенный сверху, косвенно способствует охлаждению. Данное расположение компонентов распространено меньше, но всё же это надёжное решение с точки зрения функциональности.

Варианты оптимизации

Если вы пришли к выводу, что температура вашего жёсткого диска слишком высокая, то вам следует обдумать возможность применения стандартного кулера для жёстких дисков. Обычно их можно купить в магазинах; в данном случае главный виновник ошибок – не оптимальное расположение.

Воздушный поток: измерения и сравнения результатов

Естественно, нам хотелось подтвердить аргументы, высказанные на предыдущих страницах, использовав целый ряд различных сценариев установки системы охлаждения. Мы использовали корпус Antec Lanboy Air, прикрыв при этом картоном часть вентиляционных отверстий, чтобы воздух сквозь них проходил с трудом. Корпус Lanboy Air предназначен для монтажа блока питания как вверху, так и внизу. Результаты говорят сами за себя.

Глядя на температуру выходящего из блока питания воздуха, мы видим самое главное преимущество того, что БП установлен в нижней части нашего испытательного корпуса.

Здесь мы видим, что сборки, охлаждаемые кулером с воздушным потоком, направленным вниз, действительно выигрывают от применения боковой вентиляции.

Воздушный поток: обеспечьте видеокартам надлежащую вентиляцию

Вентиляция и охлаждение видеокарт

Прежде чем вы поспешите купить по интернету самые скоростные видеокарты, которые сможете себе позволить, убедитесь в том, что выбрали модели (и материнскую плату), которые способствуют созданию надлежащего воздушного потока.

Наилучший выбор для вас – это карта, способная выводить всё тепло через заднюю стенку корпуса, даже если на ней установлен центробежный вентилятор, имеющий склонность производить много шума. Обычно эталонные модели, разработанные компаниями AMD и nVidia, являются хорошими примерами, хотя Radeon HD 6990, GeForce GTX 590 и низкопроизводительные видеокарты GeForce не подпадают под общую массу наших предпочтений, то есть моделей выводящих тепло напрямую.

Вот что происходит, когда накапливается слишком много тепла. Наличие перфорации на заглушках слотовых отверстий могло бы предотвратить отклеивание стикера от видеокарты. Что ж, впредь вы не совершите подобной ошибки. Восемьсот ватт тепла, рассеянного в этом корпусе, обязательно окажут на компоненты неблагоприятное воздействие.

Схематические иллюстрации


Пока для видеокарты имеется возможность выводить тепло из корпуса, значения температуры останутся на приемлемом уровне. Даже массив multi-GPU имеет доступ к достаточному воздушному потоку, чтобы работать в пределах безопасных допустимых значений до тех пор, пока между видеокартами есть достаточно места. Если вы хотите воспользоваться преимуществами конфигурации CrossFire или SLI, купите материнскую плату хотя бы с одним слотом расширения между установленными двухслотовыми картами.

Если видеокарты расположены слишком близко друг к другу, как показано на рисунке выше, то заблокированная плата может легко перегреться даже при умеренной нагрузке. В конце концов, её вентилятор не может захватывать достаточно воздуха, чтобы поддерживать температуру графического процессора в допустимых пределах.

Похожая ситуация происходит и тогда, когда дело связано с видеокартами, оснащёнными осевыми вентиляторами. Несмотря на то, что они малошумные, эти устройства больше способствуют попаданию находящегося поблизости горячего воздуха в ваш корпус, а не выведению воздуха из него, что приводит к нежелательному накоплению тепла.

Во многих случаях проблему может решить боковой вентилятор. Даже несмотря на то, что этот тип вентиляторов постоянно критикуют, эффективность подобного устройства (а в результате ещё и улучшение охлаждения видеокарты) можно измерить и реально ощутить.

Варианты оптимизации

Существуют интересные альтернативы обычным заглушкам слотов – вспомните об этом, если у вас появятся трудности с охлаждением. При помощи слотового кулера можно в какой-то степени минимизировать накопление тепла, даже после того, как вы уже собрали свой компьютер.

В ожидании второй части статьи

Несмотря на то, что опытные пользователи сейчас снисходительно улыбаются, читая о простых ошибках сборки, мы знаем, что рано или поздно все делают ошибки. ПК, конечно же, стoят совсем не дёшево, и даже когда вы экономите деньги, самостоятельно собирая компьютер, машина, ориентированная на энтузиастов легко может преодолеть уровень цен в несколько тысяч долларов.

Вот почему так важно тщательно продумать план сборки, прежде чем вы начнёте покупать компоненты. Во-первых, найдите подходящий корпус, а затем проверьте, можно ли разместить внутри него выбранные вами компоненты. Не отмахивайтесь от старых решений, таких как боковые вентиляторы. Нам удалось показать, что они действительно могут поспособствовать лучшему охлаждению. Иногда нам приходилось всего лишь снять измерения, чтобы доказать свою точку зрения.

Что нас ждёт во второй части этой статьи?

Если вы не планируете превращать свой новый компьютер в "Машину для приготовления хот-догов", то во второй части мы поговорим о том, как правильно выбрать вентилятор, а затем удостоверимся в том, что наш кулер для ЦП установлен должным образом. Это означает, что специально для новичков мы приведём руководство по нанесению термопасты.

Также мы расскажем вам о том, как охладить "не поддающуюся воздействию" разогнанную видеокарту GeForce GTX 480 до 64°C при бюджете всего €12, в то же время поддерживая уровень шума 38 дБ(А). Наконец, мы оборудуем нашу низкопрофильную и почти бесшумную модель Radeon HD 6850 60-мм вентиляторами, что поспособствует её постоянному охлаждению.