Импульсы разложение в ряд фурье. Ряд фурье для периодических сигналов

ЛАБОРАТОРНАЯ РАБОТА № 1

РАЗЛОЖЕНИЯ СИГНАЛОВ В РЯД ФУРЬЕ

Цель задания

Ознакомиться с примерами разложения сигналов в ряд Фурье и практически реализовать разложение различного вида сигналов в системе MatLab.

Постановка задачи

Осуществить разложения сигналов различного вида в ряд Фурье. Разложению подлежат следующие сигналы: последовательность прямоугольных импульсов, меандр, пилообразный сигнал и последовательность треугольных импульсов.

Для каждого варианта и каждого вида сигнала заданы параметры:

для последовательности прямоугольных импульсов – амплитуда, период повторения и длительность импульсов;

для меандра, пилообразного сигнала и последовательности треугольных импульсов – амплитуда и период повторения импульсов.

Для всех видов сигналов задано число ненулевых гармоник.

Cоставить программы в системеMatLabи построить графики.

    Постановка задачи.

    Код программ для разложения последовательности прямоугольных импульсов, меандр, пилообразного сигнала и последовательности треугольных импульсов.

    Результаты выполнения программ – графики промежуточных стадий суммирования.

Методические указания

Ряд Фурье

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций либо комплексных экспонент с частотами, образующими арифметическую прогрессию.

Ряд Фурье может быть применен для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчета коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Синусно-косинусная форма

В этом варианте ряд Фурье имеет следующий вид:

Здесь
– круговая частота, соответствующая периоду повторения сигнала, равному. Входящие в формулу кратные ей частоты
называются гармониками, гармоники нумеруются в соответствии с индексом ; частота
называется –й гармоникой сигнала. Коэффициенты ряда ирассчитываются по формулам:

,

.

Константа рассчитывается по общей формуле для. Само же это слагаемое представляет собой среднее значение сигнала на периоде:

.

Если
является четной функцией, то всебудут равны нулю и в формуле ряда Фурье будут присутствовать только косинусные слагаемые. Если
является нечетной функцией, равны нулю будут, наоборот, косинусные коэффициентыи в формуле останутся лишь синусные слагаемые.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ

Последовательность прямоугольных импульсов с амплитудой , длительностьюи периодом повторения.

Рис. 1 Периодическая последовательность прямоугольных импульсов

Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье – в ней будут присутствовать только косинусные слагаемые , равные

.

Отношение периода к длительности импульсов называют скважностью последовательности импульсов и обозначают буквой :
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье:

.

Амплитуды гармонических слагаемых ряда зависят от номера гармоники.

МЕАНДР

Частным случаем предыдущего сигнала является меандр – последовательность прямоугольных импульсов со скважностью, равной двум, когда длительности импульсов и промежутков между ними становятся равными (рис.2).

Рис. 2 Меандр

При
, получим

Здесь m – произвольное целое число.

При разложении в ряд Фурье четные составляющие будут отсутствовать.

ПИЛООБРАЗНЫЙ СИГНАЛ

В пределах периода он описывается линейной функцией:

Рис. 3. Пилообразный сигнал

Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

.

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

ПОСЛЕДОВАТЕЛЬНОСТЬ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ

Рис.4. Последовательность треугольных импульсов

Сигнал является четной функцией, поэтому будут присутствовать косинусные составляющие.

Вычислим коэффициенты ряда Фурье:

Сам ряд Фурье имеет следующий вид:

Как видите, в отличие от последовательностей прямоугольных и пилообразных импульсов, для треугольного периодического сигнала амплитуды гармоник убывают пропорционально второй степени номеров гармоник .

Код программы для меандра

N= 8; % число ненулевых гармоник

t= -1:0.01:1; % вектор моментов времени

A= 1; % амплитуда

T= 1; % период

nh= (1:N)*2-1; % номера ненулевых гармоник

harmonics = cos(2*pi*nh"*t/T);

Am= 2/pi./nh; % амплитуды гармоник

Am(2:2:end) = -Am(2:2:end); % чередование знаков

s1 = harmonics .* repmat(Am", 1, length(t));

% строки-частичные суммы гармоник

for k=1:N, subplot(4, 2, k), plot(t, s2(k,:)), end

Р
езультат работы программы

Комментарии :repmat – создание блочной матрицы или многомерного блочного массива из одинаковых блоков.repmat(Am", 1,length(t)) – матрица состоит из 1 блока по вертикали иlength(t) блоков по горизонтали, каждый блок является матрицейAm".

Cumsum – расчет частичных сумм элементов.

Subplot (Rows , Cols , N ) команда для вывода нескольких графиков. Графическое окно разбивается на клетки в виде матрицы, имеющейRows строк,Cols – столбцов, иN клетка становится текущей.

Варианты

варианта

Параметры для сигналов

амплитуда сигнала

период повторения сигналов

длительность сигнала

число ненулевых гармоник

Среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисов для представления радиотехнических сигналов, исключительное место занимают гармонические (синусоидальные и косинусоидальные) функции. Значение гармонических сигналов для радиотехники обусловлено рядом причин.

В частности:

1. Гармонические сигналы инвариантны относительно преобразований, осуществляемых стационарными линейными электрическими цепями. Если такая цепь возбуждена источником гармонических колебаний, то сигнал на выходе цепи остается гармоническим с той же частотой, отличаясь от входного сигнала лишь амплитудой и начальной фазой.

2. Техника генерирования гармонических сигналов относительно проста.

Если какой-либо сигнал представлен в виде суммы гармонических колебаний с различными частотами, то говорят, - что осуществлено спектральное разложение этого сигнала. Отдельные гармонические компоненты сигнала образуют его спектр.

2.1. Периодические сигналы и ряды Фурье

Математической моделью процесса, повторяющегося во времени, является периодический сигнал со следующим свойством:

Здесь Т - период сигнала.

Ставится задача найти спектральное разложение такого сигнала.

Ряд Фурье.

Зададим на отрезке времени рассмотренный в гл. I ортонормированцый базис, образованный гармоническими функциями с кратными частотами;

Любая функция из этого базиса удовлетворяет условию периодичности (2.1). Поэтому, - выполнив ортогональное разложение сигнала в этом базисе, т. е. вычислив коэффициенты

получим спектральное разложение

справедливое на всей бесконечности оси времени.

Ряд вида (2.4) называется рядом Фурье даннрго сигнала. Введем основную частоту последовательности, образующей периодический сигнал. Вычисляя коэффициенты разложения по формуле (2.3), запишем ряд Фурье для периодического сигнала

с коэффициентами

(2.6)

Итак, в общем случае периодический сигнал содержит не зависящую от времени постоянную составляющую и бесконечный набор гармонических колебаний, так называемых гармоник с частотами кратными основной частоте последовательности.

Каждую гармонику можно описать ее амплитудой и начальной фазой Для этого коэффициенты ряда Фурье следует записать в виде

Подставив эти выражения в (2.5), получим другую, - эквивалентную форму ряда Фурье:

которая иногда оказывается удобнее.

Спектральная диаграмма периодического сигнала.

Так принято называть графическое изображение коэффициентов ряда Фурье для конкретного сигнала. Различают амплитудные и фазовые спектральные диаграммы (рис. 2.1).

Здесь по горизонтальной оси в некотором масштабе отложены частоты гармоник, а по вертикальной оси представлены их амплитуды и начальные фазы.

Рис. 2.1. Спектральные диаграммы некоторого периодического сигнала: а - амплитудная; б - фазовая

Особо интересуются амплитудной диаграммой, которая позволяет судить о процентном содержании тех или иных гармоник в спектре периодического сигнала.

Изучим несколько конкретных примеров.

Пример 2.1. Ряд Фурье периодической последовательности прямоугольных видеоимпульсов с известными параметрами , четной относительно точки t = 0.

В радиотехнике отношение называют скважностью последовательности. По формулам (2.6) находим

Окончательную формулу ряда Фурье удобно записать в виде

На рис. 2.2 представлены амплитудные диаграммы рассматриваемой последовательности в двух крайних случаях.

Важно отметить, что последовательность коротких импульсов, следующих друг за другом достаточно редко , обладает богатым спектральным составом.

Рис. 2.2. Амплитудный спектр периодической последовательности ррямоугольных видеоимпульсов: а - при большой скважности; б - при малой скважности

Пример 2.2. Ряд Фурье периодической последовательности импульсов, образованной гармоническим сигналом вида ограниченным на уровне (предполагается, что ).

Введем специальный параметр - угол отсечки , определяемый из соотношения откуда

В соотаетствии с этим величина равна длительности одного импульса, выраженной в угловой мере:

Аналитическая запись импульса, порождающего рассматриваемую последовательность, имеет вид

Постоянная составляющая последовательности

Амплитудный коэффициент первой гармоники

Аналогично вычисляют амплитуды - гармонических составляющих при

Полученные результаты обычно записывают так:

где так называемые функции Берга:

Графики некоторых функций Берга приведены на рис. 2.3.

Рис. 2.3. Графики нескольких первых функций Берга

Комплексная форма ряда Фурье.

Спектральное разложение периодического сигнала можно выполнить и несколько ионному, используя систему базисных функций, состоящую из экспонент с мнимыми показателями:

Легко видеть, что функции этой системы периодичны с периодом ортонормированы на отрезке времени так как

Ряд Фурье произвольного периодического сигнала в данном случае принимает вид

с коэффициентами

Обычно используют следующую форму записи:

Выражение (2.11) представляет собой ряд Фурье в комплексной форме.

Спектр сигнала в соответствии с формулой (2.11) содержит компоненты на отрицательной полуоси частот, причем . В ряде (2.11) слагаемые с положительными и отрицательными частотами объединяются в пары, например: и строят суммы векторов - в сторону увеличения фазового угла, в то время как векторы вращаются в противоположном направлении. Конец результирующего вектора в каждый момент времени определяет текущее значение сигнала.

Такая наглядная интерпретация спектрального разложения периодического сигнала будет использована в последующем параграфе.

Разложению в ряды Фурье подвергаются периодические сигналы. Как уже было сказано выше, периодическую функцию любой формы, заданную на интервале одного периода Т = b-a и удовлетворяющую на этом интервале условиям Дирихле (ограниченная, кусочно-непрерывная, с конечным числом разрывов 1-го рода), можно представить в виде ряда Фурье:

s(t) = S n exp(jnDwt), S n = S(nDw), Dw = 2p/T, (1)

где весовые коэффициенты S n ряда определяются по формуле:

S n = (1/T) s(t) exp(-jnDwt) dt. (2)

Ряд Фурье представляет собой ансамбль комплексных экспонент exp(jnDwt) с частотами, образующими арифметическую прогрессию. Функцию весовых коэффициентов S(nDw ) принято называть комплексным спектром периодического сигнала или фурье-образом функции s(t). Спектр периодического сигнала является дискретной функцией, т.к. он определен только для целых значений n с шагом по частоте, обратным периоду: Dw = 2p/Т (или Df = 1/T ). Первую частотную составляющую спектра при n = 1, равную w 1 = 1×Dw = 2p/T (или f 1 = 1/T ), называют основной частотой сигнала (первой гармоникой), остальные частоты дискретного спектра nw 1 при n>1 называют гармониками сигнала. Значения S(nDw) по положительным и отрицательным значениям n являются комплексно сопряженными.

С чисто математических позиций множество функций exp(jnDwt) , -¥ < n < ¥ образует бесконечномерный базис линейного пространства L 2 ортогональных синус-косинусных функций, а коэффициенты S n по (2) представляют собой проекции сигнала s(t) на эти базисные функции. Соответственно, сигнал s(t) в форме ряда Фурье (1) – это бесконечномерный вектор в пространстве L 2 , точка с координатами S n по базисным осям пространства exp(jnDwt). Подынтегральную функцию экспоненты в выражении (2) с использованием тождества Эйлера

exp(±jwt) = cos(wt) ± j×sin(wt)

можно разложить на косинусную и синусную составляющие и выразить комплексный спектр в виде действительной и мнимой части:

S n = (1/T) s(t) dt = А n - jB n . (3)

A n ≡ A(nDw) = (1/T) s(t) cos(nDwt) dt, (4)

B n ≡ B(nDw) = (1/T) s(t) sin(nDwt) dt. (5)

На рис. 4 приведен пример периодического сигнала (прямоугольный импульс на интервале (1-3.3), повторяющийся с периодом Т=40) и форма действительной и мнимой части его спектра. Обратим внимание, что действительная часть спектра является четной относительно нуля функцией A(nDw) = A(-nDw), так как при вычислении значений A(nDw) по формуле (4) используется четная косинусная функция cos(nDwt) = cos(-nDwt). Мнимая часть спектра является нечетной функцией B(nDw) = -B(-nDw), так как для ее вычисления по (5) используется нечетная синусная функция sin(nDwt) = - sin(-nDwt).

Рис. 4. Сигнал и его комплексный спектр.

Комплексные числа дискретной функции (3) могут быть представлены в виде модулей и аргументов комплекс. экспоненты, что дает следующую форму записи комплексного спектра:

S n = R n exp(jj n), (3")

R n 2 ≡ R 2 (nDw) = A 2 (nDw)+B 2 (nDw),j n ≡ j(nDw) = arctg(-B(nDw)/A(nDw)).

Рис. 5. Модуль и аргумент спектра.

Модуль спектра R(nDw) называют двусторонним спектром амплитуд или АЧХ - сигнала, а аргумент спектра (последовательность фазовых углов j(nDw)) - двусторонним спектром фаз или ФЧХ. Спектр амплитуд всегда представляет собой четную функцию: R(nDw) = R(-nDw), а спектр фаз нечетную: j(nDw) = -j(-nDw). Пример спектра в амплитудном и фазовом представлении для сигнала, показанного на рис. 4, приведен на рис. 5. При рассмотрении спектра фаз следует учитывать периодичность 2p угловой частоты (при уменьшении фазового значения до величины менее -p происходит сброс значения -2p).

Если функция s(t) является четной, то все значения B(nDw) по (5) равны нулю, т.к. четные функции ортогональны синусным гармоникам и подынтегральное произведение s(t)·sin(nDwt) дает нулевой интеграл. Следовательно, спектр функции будет представлен только вещественными коэффициентами. Напротив, при нечетности функции s(t) обнуляются все значения коэффициентов А(nDw) (нечетные функции ортогональным косинусным гармоникам) и спектр является чисто мнимым. Этот фактор не зависит от выбора границ задания периода функции на числовой оси. На рис. 6(А) можно наглядно видеть ортогональность первой гармоники синуса и четной функции, а на рис. 6(В) соответственно косинуса и нечетной функции в пределах одного периода. Учитывая кратность частот последующих гармоник первой гармонике спектра, ортогональность сохраняется для всех гармоник ряда Фурье.

Рис. 6. Ортогональность функций.

При n = 0 имеем В о = 0, и получаем постоянную составляющую сигнала:

S 0 ≡ A o ≡ R o ≡ (1/T) s(t) dt.

2.5. Тригонометрическая форма рядов Фурье.

Объединяя комплексно сопряженные составляющие (члены ряда, симметричные относительно центрального члена ряда S 0), можно перейти к ряду Фурье в тригонометрической форме:

s(t) = А о +2 (A n cos(nDwt) + B n sin(nDwt)), (6)
s(t) = А о +2 R n cos(nDwt + j n). (6")

Значения A n , B n вычисляются по формулам (4-5), значения R n и j n - по формулам (3").

Ряд (6) представляют собой разложение периодического сигнала s(t) на сумму вещественных элементарных гармонических функций (косинусных и синусных) с весовыми коэффициентами, удвоенные значения которых (т.е. значения 2×A n , 2×B n) не что иное, как амплитуды соответствующих гармонических колебаний с частотами nDw. Совокупность амплитудных значений этих гармоник образует односторонний физически реальный (только для положительных частот nDw) спектр сигнала. Для сигнала на рис. 4, например, он полностью повторяет правую половину приведенных на рисунке спектров с удвоенными значениями амплитуд (за исключением значения А о на нулевой частоте, которое, как это следует из (6), не удваивается). Но такое графическое отображение спектров используется довольно редко (за исключением чисто технических приложений). Более широкое применение для отображения физически реальных спектров находит формула (6"). Спектр амплитуд косинусных гармоник при таком отображении называется амплитудно-частотным составом сигнала, а спектр фазовых углов гармоник – фазовой характеристикой сигнала. Форма спектров повторяет правую половину соответствующих двусторонних спектров (см. рис. 5) также с удвоенными значениями амплитуд. Для четных сигналов отсчеты фазового спектра могут принимать только значения 0 или p, для нечетных соответственно ±p/2.

Ряды Фурье произвольных аналоговых периодических сигналов могут содержать бесконечно большое количество членов. Однако одним из важных достоинств преобразования Фурье является то, что при ограничении (усечении) ряда Фурье до любого конечного числа его членов обеспечивается наилучшее по средней квадратической погрешности приближение к исходной функции (для данного количества членов).

На верхнем графике рисунка 7 приведен реконструированный сигнал при N = 8 (гармоники первого пика спектра, центр которого соответствует главной гармонике сигнала и члену ряда n = w s /Dw), N = 16 (гармоники двух первых пиков) и N=40 (пять первых пиков спектра). Естественно, что чем больше членов ряда включено в реконструкцию, тем ближе реконструированный сигнал к форме исходного сигнала. Принцип последовательного приближения к исходной форме наглядно виден на нижнем графике рисунка. На нем же можно видеть и причины появления пульсаций на реконструкции скачков функций, которые носят название эффекта Гиббса . При изменении количества суммируемых членов ряда эффект Гиббса не исчезает. Не изменяется также относительная амплитуда пульсаций (по отношению к амплитуде скачка) и относительное затухание (по коэффициенту последовательного уменьшения амплитуды пульсаций по отношению к максимальному выбросу), изменяется только частота пульсаций, которая определяется частотой последних суммируемых гармоник.

Эффект Гиббса имеет место всегда при резких нарушениях монотонности функций. На скачках эффект максимален, во всех других случаях амплитуда пульсаций зависит от характера нарушения монотонности функции.

В ряд Фурье может разлагаться и произвольная непериодическая функция, заданная (ограниченная, вырезанная из другого сигнала, и т.п.) на интервале (a,b), если нас не интересует ее поведение за пределами данного интервала. Однако следует помнить, что применение формул (1-6) автоматически означает периодическое продолжение данной функции за пределами заданного интервала (в обе стороны от него) с периодом Т = b-a. Однако при этом на краях интервала может возникнуть явление Гиббса, если уровень сигнала на краях не совпадает и образуются скачки сигнала при его периодическом повторении, как это видно на рис. 8. При разложении исходной функции в ограниченный ряд Фурье и его обработке в частотной области на самом деле при этом обрабатывается не исходная функция, а реконструированная из ограниченного ряда Фурье. При усечении рядов Фурье определенное искажение функций существует всегда. Но при малой доле энергии отсекаемой части сигнала (при быстром затухании спектров функций) этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.

Рис. 7. Реконструкция (восстановление) сигнала

Рис. 8. Проявление эффекта Гиббса


Похожая информация.


Формы записи ряда Фурье. Сигнал называется пери­одическим, если его форма циклически повторяется во времени Периодический сигнал u(t) в общем виде записывается так:

u(t)=u(t+mT), m=0, ±1,±2,…

Здесь Т-период сигнала. Периодические сигналы могут быть как простыми, так и сложными.

Для математического представления периодических сигналоа с периодом Т часто пользуются рядом (2.2), в котором как ба­зисные функции выбираются гармонические (синусоидальные и косинусоидальные) колебания кратных частот

y 0 (t)=1; y 1 (t)=sinw 1 t; y 2 (t)=cosw 1 t;

y 3 (t)=sin2w 1 t; y 4 (t)=cos2w 1 t; …,(2.3)

где w 1 =2p/T- основная угловая частота последовательности

функций. При гармонических базисных функциях из ряда (2.2) получаем ряд Фурье (Жан Фурье - французский математик и фи­зик XIX века).

Гармонические функции вида (2.3) в ряде Фурье имеют сле­дующие преимущества: 1) простое математическое описание; 2) инвариантность к линейным преобразованиям, т. е. если на входе линейной цепи действует гармоническое колебание, то и на выходе ее также будет гармоническое колебание, отличающееся от входного только амплитудой и начальной фазой; 3) как и сиг­нал, гармонические функции периодические и имеют бесконечную длительность; 4) техника генерирования гармонических функций достаточно проста.

Из курса математики известно, что для разложения периоди­ческого сигнала в ряд по гармоническим функциям (2.3) необхо­димо выполнение условий Дирихле. Но все реальные периодичес­кие сигналы этим условиям удовлетворяют и их можно предста­вить в виде ряда Фурье, который может быть записан в одной из следующих форм:

u(t)=A 0 /2+ (A’ mn cosnw 1 t+A” mn nw 1 t), (2.4)

где коэффициенты

А 0 =

A mn ”= (2.5)

u(t)=A 0 /2+ (2.6)

A mn = (2.7)

или в комплексной форме

u(t)= (2.8)

C n = (2.9)

Из (2.4) - (2.9) следует, что в общем случае периодический сигнал u(t) содержит постоянную составляющую A 0 /2и набор гармонических колебаний основной частоты w 1 =2pf 1 и ее гармоник с частотами w n =nw 1 , n=2,3,4,… Каждое из гармонических

колебаний ряда Фурье характеризуется амплитудойи начальной фазой y n .nn

Спектральная диаграмма и спектр периодиче­ского сигнала. Если какой-либо сигнал представлен в виде суммы гармонических колебаний с разными частотами, то гово­рят, что осуществлено спектральное разложение сигнала.

Спектральной диаграммой сигнала принято называть графиче­ское изображение коэффициентов ряда Фурье этого сигнала. Раз­личают амплитудные и фазовые диаграммы. На рис. 2.6 в неко­тором масштабе по горизонтальной оси отложены значения час­тот гармоник, по зертикальной оси - их амплитуды A mn и фазы y n . Причем амплитуды гармоник могут принимать только поло­жительные значения, фазы - как положительные, так и отрица­тельные значения в интервале -p£y n £p


Спектр сигнала - это совокупность гармонических составляю­щих с конкретными значениями частот, амплитуд и начальных фаз, образующих в сумме сигнал. В технических приложениях на практике спектральные диаграммы называют более кратко - ам­плитудный спектр, фазовый спектр. Чаще всего интересуются ам­плитудной спектральной диаграммой. По ней можно оценить про­центное содержание гармоник в спектре.

Пример 2.3. Разложить в ряд Фурье периодическую последовательность прямоугольных видеоимпульсов с известными параметрами (U m , T, t z), четную "Относительно точки t=0. Построить спектральную диаграмму амплитуд и фаз при U m =2B, T=20мс, S=T/t и =2 и 8.

Заданный периодический сигнал на интервале одного периода можно запи­сать как

u(t) =

Воспользуемся для представления этого сигнала формой записи ряда Фурье в виде (2.4). Так как сигнал четный, то в разложении останутся только косинусоидальные составляющие.

Рис. 2.6. Спектральные диаграммы периодического сигнала:

а - амплитудная; б - фазoвая

Интеграл от нечетной функции за период равеy нулю. По формулам (2.5) находим коэффициенты

позволяющие записать ряд Фурье:

Для построения спектральных диаграмм при конкретных числовых данных задаемся я=0, 1, 2, 3, ... и вычисляем коэффициенты гармоник. Результаты расчета первых восьми составляющих спектра сведены в табл. 2.1. В ряде (2.4) А" mn =0 и согласно (2.7) A mn =|A’ mn |, основная частота f 1 =1/T= 1/20-10 -3 =50 Гц, w 1 =2pf 1 =2p*50=314рад/с. Амплитудный спектр на рис.

2.7 построен для таких n, при которых А mn больше 5% максимального зна­чения.

Из приведенного примера 2.3 следует, что с увеличением скваж­ности увеличивается число спектральных составляющих и умень­шаются их амплитуды. Говорят, что такой сигнал обладает бога­тым спектром. Необходимо отметить, что для многих практиче­ски применяемых сигналов нет необходимости проводить вычисление амплитуд и фаз гармоник по приведенным ранее форму­лам.

Таблица 2.1. Амплитуды составляющих ряда Фурье периодической последова­тельности прямоугольных импульсов

Рис. 2.7. Спектральные диаграммы периодической последовательности импуль­сов: а -при скважности S-2; - б-при скважности S=8

В математических справочниках имеются таблицы разложе­ний сигналов в ряд Фурье. Одна из таких таблиц приведена в приложении (табл. П.2).

Часто возникает вопрос: сколько же взять спектральных со-ставляющих (гармоник), чтобы представить реальный сигнал ря­дом Фурье? Ведь ряд-то, строго говоря, бесконечный. Однознач­ного ответа здесь нельзя дать. Все зависит от формы сигнала и точности его представления рядом Фурье. Более плавное измене­ние сигнала - меньше требуется гармоник. Если сигнал имеет скачки (разрывы), то необходимо суммировать большее число гармоник для достижения такой же погрешности. Однако во мно­гих случаях, например в телеграфии, считают, что и для пере­дачи прямоугольных импульсов с крутыми фронтами достаточно трех гармоник.

Цель работы: ознакомление со спектральным описанием периодических функций с помощью рядов Фурье.

Необходимые теоретические сведения. Разложение в ряд Фурье

Первым рассматриваемым сигналом будет последовательность прямоугольных импульсов с амплитудой А , длительностью и периодом повторенияТ . Начало отсчета времени примем расположенным в середине импульса (рис.1).

Рис 1. - Периодическая последовательность прямоугольных импульсов

Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье- в ней будут присутствовать только косинусные слагаемые , равные

Введем скважность
в полученную формулу для коэффициентов ряда Фурье, а затем приведем формулу к виду
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье имеет вид:

Амплитуды гармонических слагаемых ряда зависят от номера гармоники по закону
(см. рис. 2).График функции
имеет лепестковый характер. Итак, ширина лепестков, измеренная в количестве гармоник, равна скважности последовательности (при
имеем
, если
). Отсюда следует важное свойство спектра последовательности прямоугольных импульсов - в нем отсутствуют (имеют нулевые амплитуды) гармоники с номерами, кратными скважности.

Рис. 2 - Коэффициенты ряда Фурье для последовательности прямоугольных импульсов.

Расстояние по частоте между соседними гармониками равно частоте следования импульсов -
. Ширина лепестков спектра, измеренная в единицах частоты, равна
, то есть обратно пропорциональна длительности импульсов, т.е. чем короче сигнал, тем шире его спектр.

Важным частным случаем предыдущего сигнала является меандр (рис. 3) - последова­тельность прямоугольных импульсов со скважностью, равной
, когда дли­тельности импульсов и промежутков между ними становятся равными.

Рис. 3 - Меандр

,

где m – произвольное целое число.

Таким образом, в спектре меандра присутствуют только нечетные гармоники. Представление меандра в виде ряда Фурье с учетом этого может быть записано следующим образом:

Гармонические составляющие, из которых складывается меандр, имеют ампли­туды, обратно пропорциональные номерам гармоник, и чередующиеся знаки. На примыкающих к разрыву участках сумма ряда Фурье дает заметные пульса­ции. Это явление, присущее ря­дам Фурье для любых сигналов с разрывами первого рода (скачками), называет­ся эффектом Гиббса. Можно показать, что амплитуда первого (самого большого) выброса составляет примерно 9 % от величины скачка.

Рисунок 4. Эффект Гиббса.

Пилообразный сигнал (рис. 5). в пре­делах периода описывается линейной функцией:

,
.

Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

Рис. 5 - Пилообразный сигнал.

Периодическая последовательность треугольных импульсов имеет симметричную форму (рис. 6):

,
.

Рис. 6 - Последовательность треугольных импульсов.

Ряд Фурье имеет следующий вид:

Рассмотрим программу, реализующую разложение в ряд Фурье прямоугольной последовательности импульсов.

ЗАДАНИЕ1.