Не работает отпечаток пальца на Андроид? Есть решение! Все что вы хотели знать о сканерах отпечатков, но боялись спросить.

Жизнь в современном быстротекущем мире предъявляет все большие требования к системам безопасности. Одним из главных направлений в этой сфере является создание эффективных устройств идентификации личности. Необходимость в этом появляется в самых различных случаях:

  • Защита автомобилей и других разнообразных дорогостоящих вещей от несанкционированного доступа или использования
  • Защита компьютерных систем, программного обеспечения, мобильных телефонов
  • Предотвращение краж и мошенничества при совершении финансовых сделок, при проведении электронных транзакций, включая выполнение платежей кредитными картами и оплату товаров и услуг через Интернет
  • Разрешение доступа к складам и секретным зонам только для авторизованного персонала
  • Подтверждение соответствия сведениям об индивидууме, указанным в паспорте, водительском удостоверении и пр.

Системы идентификации личности должны работать быстро, надежно и иметь малую стоимость. Обычные методы идентификации основаны на использовании документов (паспорт, значок и пр.), паролей, подписей и других подобных способов. Эти традиционные подходы не удовлетворяют современным требованиям обеспечения безопасности. Перспективное направление будущего – биометрия (biometric) . Биометрия предлагает удобные, надежные и дешевые средства идентификации или подтверждения личности и может использоваться без дополнительного контролирующего участия человека, в т.ч. при дистанционной идентификации.

Биометрия позволяет осуществлять идентификацию личности уникально, измеряя некоторые физические и поведенческие характеристики и извлекая т.н. sample из этих измерений, приводя их затем к стандартному формату данных. Этот sample сравнивается с template (некий зарегистрированный шаблон или сигнатура), основанным на тех характеристиках, которые были установлены как уникальный признак индивидуума и сохранены в системе безопасности. Близкое соответствие между sample и template подтверждает тождество индивидуума.

Внимание исследователей сосредоточено на нескольких физических характеристиках, способных идентифицировать личность уникально: голос, походка, лицо, радужная оболочка и сетчатка глаза, отпечатки ладони или пальца (ДНК не входит в этот список, поскольку взятие её образца происходит медленно и неудобно для человека). К настоящему моменту наиболее продвинутой, зрелой и хорошо разработанной является технология идентификации личности по отпечатку пальца.

Физиологически отпечаток пальца представляет собой конфигурацию выступов (гребней), содержащих индивидуальные поры, разделенные впадинами. Под кожей пальца расположена сеть кровеносных сосудов. Морфология отпечатка пальца связана с определенными электрическими и тепловыми характеристиками кожи. Это означает, что для получения изображения отпечатка пальца могут использоваться такие параметры, как свет, тепло или электрическая емкость (а также их комбинация). Отпечаток пальца формируется во время развития плода и не изменяется на протяжении всей жизни человека, кроме того, при повреждении через некоторое время он восстанавливает свою первоначальную структуру. Даже однояйцовые близнецы не имеют идентичных отпечатков пальцев.

Электронная технология отображения и алгоритмы распознавания структур сейчас достаточно продвинуты для автоматического извлечения template отпечатка пальца. Некоторые алгоритмы получения template стандартизованы институтом стандартов NIST в США .

В настоящее время развивается множество технологий электронного распознавания отпечатка пальца. Наиболее широко известны оптическая, емкостная, радио, микроэлектромеханическая (MEMS), тепловая технологии, а также технология анализа давления. В таблице 1 приведены особенности, достоинства и недостатки каждой их них.

Таблица 1. Электронные технологии получения отпечатков пальцев

Разновидность
технологии
Сущность Достоинства Недостатки
Оптическая (на отражение) Для захвата оптического изображения отпечатка пальца используется CMOS или CCD матрица. - трудность различения живого пальца и его имитации;
- чувствительность к загрязнениям.
Оптическая (на просвет) Кончик пальца освещается со стороны ногтя. Прошедший через палец свет попадает на линзу датчика и далее на оптический сенсор, анализирующий характеристики поглощения света живыми тканями. Этот способ разработан компанией Mitsubishi Electric Corp. - высокая надежность считывания и устойчивость к обману;
- не требуется контакт пальца с поверхностью датчика
- сложность
Емкостная Кончик пальца помещается напротив массива элементов, чувствительных к емкости. Различия в диэлектрике между гребнем (в основном вода) и впадиной (воздух) позволяют их идентифицировать и построить образ отпечатка. Один из наиболее популярных методов вследствие его надежности и низкой стоимости - уязвимость от электростатического разряда (ESD);
- возможность обмана искусственным кончиком пальца.
Радио Кончик пальца возбуждается радиоволной низкой интенсивности. В этом случае он действует как передатчик, а различие расстояний между гребнями и впадинами может быть обнаружено массивом соответственно настроенных антенн. Необходимо, чтобы кончик пальца контактировал с областью излучения датчика (по его периферии). Поскольку анализируются физиологические свойства кожи, очень сложно обмануть такой датчик искусственным пальцем. - неустойчивая работа при плохом контакте пальца с передающим кольцом, которое может стать некомфортно горячим
Давление Массив чувствительных к давлению пикселей на основе пьезоэлектрических элементов преобразует давление гребней пальца в электрические импульсы. - низкая чувствительность, срабатывание от имитации пальца, повреждение при чрезмерном давлении
MEMS Кончик пальца анализируется множеством микроэлектромеханических элементов. - высокая вероятность ошибки;

Возможность обмана имитацией;

Тепловая Использование пироэлектрического материала для преобразования различия температуры в напряжение. Тепловой датчик на основе массива элементов из такого материала измеряет разницу температур между элементом под гребнем и элементом под впадиной кончика пальца. - устойчивость к электростатическому разряду;
- отсутствие какого-либо воздействия на палец;
- работа в широком диапазоне температур;
- невозможность обмана с помощью имитации пальца.
- тепловой образ на датчике сохраняется короткое время (~0,1 сек.), поскольку при касании датчика быстро наступает тепловое равновесие

Большинство описанных технологий для получения изображения отпечатка пальцев могут использовать два различных пути. Первый заключается в использовании окна статического захвата изображения такого же размера, как у требуемого изображения отпечатка пальца (рис.1). Преимущество этого способа состоит в получении полного изображения одним действием. Серьезные недостатки заключаются в необходимости использования матрицы захвата большого размера, что повышает стоимость системы, а также в загрязнении поверхности датчика из-за остающихся на ней отпечатков.

Второй подход основан на использовании прямоугольного окна с шириной требуемого изображения и высотой несколько пикселей. При идентификации человек быстро проводит пальцем поперек окна датчика (рис.2). Изображение сканируется секциями и восстанавливается программным обеспечением. В результате значительно уменьшается стоимость датчика (из-за малых размеров чувствительного элемента) и он становится самоочищающимся. Датчики такого типа называются sweep-сенсорами1. Этот метод обязателен при тепловом захвате изображения.


В настоящей статье будут рассмотрены датчики отпечатков пальцев фирм ATMEL и FUJITSU, сводный перечень характеристик которых приведен в таблице 2.

Датчики ATMEL

Корпорация ATMEL после всестороннего изучения особенностей существующих технологий получения изображения отпечатков пальцев представила потребителям тепловой сенсор sweep-типа AT77C101B (рис.3). Он представляет собой комбинацию термочувствительной матрицы FingerChip™ и электронной схемы преобразования информации. Захват изображения происходит при перемещении пальца перпендикулярно окну датчика. Не требуется использования дополнительных нагревателей, источников света и радиоизлучения.

Сенсор FingerChip содержит массив из 8 строк и 280 столбцов, насчитывающий в совокупности 2240 теплочувствительных пикселей. Каждый пиксель имеет размер 50x50 мкМ, обеспечивая разрешение 500 dpi при размерах чувствительной области 0,4x14 мм. Величина этого разрешения соответствует спецификации IQS2, определяющей качество изображения IAFIS3 . Частота тактирования пикселей программируется и может достигать 2 МГц, обеспечивая 1780 кадров в секунду на выходе устройства. Изображение полноценного отпечатка пальца реконструируется из успешно получившихся кадров с помощью программного обеспечения фирмы ATMEL.

Сенсор FingerChip и схема преобразования информации изготавливаются на одном кристалле размером 1,7x17,3 мм. Функциональная схема микросхемы показана на рис.4. Цикл получения каждого кадра состоит из следующих шагов:

  1. Выбирается один из 280+1 столбцов матрицы датчика. Столбцы выбираются по кругу слева направо. После сброса выбирается крайний слева столбец.
  2. Аналоговый сигнал от каждого пикселя столбца поступает в банк из 8 усилителей.
  3. Усиленные сигналы с двух линий (четной и нечетной) одновременно поступают на два 4-разрядных АЦП. Эти сигналы также присутствуют на аналоговых выходах микросхемы (на рисунке не показаны).
  4. Полученные на выходе АЦП цифровые сигналы, разделенные на две группы по 4 разряда, фиксируются в защелках и выдаются на параллельные выходы De0-3 (четные линии) и Do (нечетные линии).

Цифровой поток с выхода датчика поступает в процессор реконструкции и идентификации отпечатка пальца.

С точки зрения надежности FigerChip сенсор отличается выдающимися характеристиками среди подобных устройств. Его интегральная КМОП - схема естественным образом защищена от электростатических разрядов величиной до 16 кВ. Рамочное окно датчика устойчиво к трению и допускает, по меньшей мере, миллион прикосновений пальцев. Он также весьма устойчив к значительному приложенному к рабочей поверхности давлению. Рабочее напряжение лежит в диапазоне от 3,3 В до 5 В, потребляемая мощность составляет 20 мВт при напряжении 3,3 В на частоте 1 МГц. Это эквивалентно потребляемому току около 7 мА. Имеется режим пониженного энергопотребления со сбросом при включении, возможность остановки тактирования, отключение системы температурной стабилизации и отключение выходов с переводом их в высокоимпедансное состояние.

При нормальной работе датчик полностью пассивен и использует для проведения измерений только тепловую энергию кончика пальца. Однако, если разница температур между пальцем и осью датчика мала (менее одного градуса), для создания необходимого температурного контраста активизируется система температурной стабилизации, несколько повышающая температуру датчика.

Таким образом, использование теплового сенсора AT77C101B от ATMEL имеет следующие преимущества:

  • Применение теплочувствительных элементов не требует какой-либо передачи сигнала к кончику пальца, используются только физиологические свойства живого пальца. Это уменьшает энергопотребление и устраняет любой возможный дискомфорт человека, вызванный энергетическим воздействием тока или радиоволн.
  • Использование sweep-метода получения изображения позволяет уменьшить чувствительную кремниевую область датчика примерно в 5 раз, во столько же снижается его стоимость. Однако восстановленное изображение имеет необходимое высокое разрешение. Кроме того, такой датчик является самоочищающимся и его очень сложно обмануть. Независимые тесты подтверждают, что чрезвычайно трудно переместить искусственный кончик пальца достаточно гладко для осуществления обмана датчика.
  • Интеграция датчика изображения и схемы преобразования на одном КМОП - кристалле снижает стоимость и потребляемую мощность, увеличивает скорость работы. Это также делает возможным встраивание модулей аппаратного шифрования или других особых схем для расширения возможностей по обеспечению безопасности.

Полученный от датчика поток данных подвергается программной обработке для восстановления изображения отпечатка пальца и извлечения из него необходимой для последующего сравнения с шаблоном информации. Восстановленное изображение обычно имеет размер 25x14 мм, что эквивалентно количеству пикселей 500x280. При разрешении 8 разрядов на пиксель для хранения изображения необходимо около 140 кБ. В целях обеспечения секретности и из-за ограниченности объема доступной памяти нежелательно сохранять полные изображения отпечатков пальцев в системе распознавания отпечатков. Конечно, они могут быть сохранены в безопасном месте как резервная копия для обращения к ним в особых случаях, но для нормальной работы рассматриваемой системы полноформатные изображения отпечатков пальцев не нужны.

При нормальной работе системы из изображения извлекается уникальный набор данных об отпечатке. Извлечение производится с помощью процедуры распознавания образов или с использованием принципа деталей (minutiae). В результате обычно получается набор из 36 деталей образа, для хранения которых необходимо 144 байта (по 4 байта на каждую деталь). Это позволяет получить высокую степень сжатия исходного изображения. Таким образом, создается либо шаблон (template) отпечатка пальца, либо его образец (sample), сравнивающийся при идентификации личности с шаблонами, хранящимися в системе.

Использование шаблонов, помимо экономии объема памяти и увеличения скорости идентификации, имеет некоторые другие преимущества:

Изображение отпечатка пальца не может быть восстановлено из шаблона. Это снижает риск преступного использования данных электронными взломщиками или недобросовестными служащими.

  • Шаблон можно сжать с помощью любого стандартного алгоритма сжатия данных и при необходимости зашифровать. Это особенно важно в приложениях, использующих отпечатки пальцев, к примеру, в Smart Card, которые имеют ограниченный объем памяти и повышенные требования к защите информации.
  • После извлечения шаблона с помощью стороннего программного обеспечения выполняется стандартная процедура идентификации и описания деталей изображения.

Завершающей стадией процесса установления соответствия является сравнение sample с зарегистрированными шаблонами (при идентификации) или с единственным зарегистрированным шаблоном (при установлении подлинности – аутентификации). Маловероятно, чтобы sample побитно соответствовал шаблону. Это вызвано самыми различными причинами: наличием приближений в процедуре сканирования (разрешение 50 мкМ далеко от идеала), перекосов изображения, ошибок аппроксимации процедуры извлечения деталей и пр. Поэтому необходим алгоритм выявления соответствия, определяющий степень соответствия в числовом выражении. Соответствие считается подтвержденным после преодоления некоторого заданного числового уровня. В результате появляется два типа ошибок:

  • FAR (False Acceptance Rate) – ложное принятие отпечатка, когда сравнение несоответствующих sample и template выдает настолько высокий уровень соответствия, что он принимается. В результате система пропускает самозванца.
  • FRR (False Rejection Rate) – ложное отклонение, возникающее, если соответствующие sample и template не дают достаточно высоких значений соответствия. Это приводит к нераспознаванию системой зарегистрированной личности.

Все системы распознавания отпечатков пальцев пытаются минимизировать FAR и FRR, однако на практике между этими параметрами существует зависимость. При уменьшении FAR происходит увеличение FRR и наоборот.

В целом в процессе идентификации личности используется следующий комплект программного обеспечения:

  • Программный драйвер от ATMEL для датчика FingerChip
  • Программное обеспечение реконструкции изображения отпечатка пальца (демо-версия программы FC_Demo, исходные коды алгоритмов реконструкции изображения и способа управления драйвером FingerChip доступны на сайте www.atmel.com)
  • Программа извлечения шаблона или образца отпечатка (любого стороннего производителя)
  • База данных для хранения шаблонов (при необходимости)
  • Программное обеспечение для сравнения шаблона и образца

Датчики FUJITSU

Компания Fujitsu производит обширный спектр емкостных датчиков отпечатков пальцев. Они значительно меньше оптических датчиков и позволяют минимизировать искажения получаемого изображения, поскольку кончик пальца непосредственно касается поверхности полупроводникового кристалла, что в результате обеспечивает простое и надежное установление подлинности.

Датчики Fujitsu изготавливаются по стандартной кремниевой КМОП-технологии, облегчающей интеграцию разнообразных схем управления, памяти, интерфейсов и пр. Они имеют низкое энергопотребление и доступны в корпусах различных типоразмеров для удовлетворения потребностей самых разнообразных приложений. Активная поверхность датчика, к которой производится прикосновение пальцев, защищена запатентованным ультра-износостойким покрытием, значительно повышающим долговечность прибора.

В основе всех датчиков Fujitsu лежит емкостная технология получения изображения отпечатка. Верхний слой кристалла содержит массив конденсаторных электродов. Когда кончик пальца прикасается к поверхности датчика, гребни и впадины пальца вызывают изменение емкости электродов. Датчик считывает значения емкости каждого конденсатора массива и с помощью 8-разрядного АЦП преобразует их в цифровой поток, поступающий на выход устройства. Размер каждого конденсатора равен 50?50 мкМ, что позволяет сенсору точно определять месторасположение гребней поверхности пальца, имеющих ширину более 200 мкМ.

На сегодняшний день ассортимент датчиков отпечатков пальцев компании Fujitsu насчитывает 4 прибора, два из которых являются статическими датчиками (MBF110 и MBF200), а два - датчиками sweep-типа (MBF300 и MBF310). Все устройства обладают разрешением 500 dpi. Датчик MBF110 имеет самую большую область получения изображения - 15x15 мм и соответствующее количество пикселей 300x300. Более старшие модели оснащены интерфейсами MCU и SPI, а модели MBF200 и MBF300 в дополнение к этому позволяют передавать информацию через интегрированный USB версии 1.1. Более подробно особенности датчиков можно рассмотреть на примере MBF300 Solid State Sweep Sensor™ (рис.5), получившего по итогам 2002 г. множество наград, в т.ч.:

  • продукт года, по мнению TMC"s BiometriTech (http://www.biometritech.com/features/poty03.htm);
  • лучший продукт 2002 года, выбранный читателями журнала Design News;
  • победитель 2002 года по итогам конкурса журнала EDN в категории инноваций в области периферийных устройств.


Рис.5 Емкостной датчик для считывания отпечатков пальцев MBF300 корпорации FUJITSU

Датчик MBF300 представляет собой высококачественный недорогой ёмкостной sweep-сенсор с малым потреблением энергии. Он имеет массив пикселей из 256 столбцов и 32 строк и размер чувствительной области 12.8?1.6 мм. Это первый в мире сенсор, поддерживающий три различных стандартных интерфейса: MСU, SPI и USB. Интерфейсы USB и SPI позволяют передавать изображение со скоростью 100 кадров/сек, а MCU – со скоростью 1000 кадров/сек. При этом для работы с микропроцессором через SPI необходимо только 6 линий. MBF300 рассчитан на работу при напряжении от 2,8 В до 5 В в диапазоне температур от 0°С до +60°С. Потребление тока в активном режиме составляет 20 мА, в режиме «standby» не превышает 20 мкА. Конструктивно датчик выпускается в 54-выводных корпусах FBGA или FLGA и имеет толщину 1.2 мм.

В общем виде процесс получения изображения датчиком состоит из двух фаз. В первой фазе происходит предварительный заряд ячеек выбранной строки массива элементов датчика от источника питания. С каждым столбцом массива связаны две схемы выборки и хранения. В течение предварительного заряда внутренний сигнал разрешает первому набору схем выборки и хранения сохранить величины напряжений элементов строки. Во второй фазе электроды строки разряжаются источником тока. Величина разряда каждой ячейки пропорциональна току разряда, определяемому в т.ч. близостью поверхности пальца. После некоторого периода времени (называемого «периодом разряда»), внутренний сигнал включает второй набор схем выборки и хранения для запоминания итоговых напряжений электродов. Разница между напряжениями после заряда и после разряда является критерием емкости ячеек сенсора. Сохраненные после разряда напряжения на электродах строки оцифровываются. Чувствительность кристалла можно изменять, регулируя ток и время разряда. Это выполняется программным образом. Номинальная величина источника тока определяется внешним резистором, подключенным к выводу ISET. Для получения полного изображения описанные действия повторяются необходимое количество раз.

Полученный на выходе датчика цифровой поток подвергается программной обработке для реконструкции изображения и выделения из него template или sample.

Компанией Fujitsu предлагается комплект программного обеспечения для разработчика DKF200. Он дает возможность работать с датчиком MBF200 в ОС Windows 98 и 2000 через USB-порт V1.1. В состав комплекта входит набор объектных кодов, примеры исходных кодов на С++, исполняемый файл myMinutia™, аппаратное обеспечение USB-порта MBF200 с необходимыми схемами. В совокупности модули программного обеспечения комплекта DKF200 выполняют захват изображения, автоматическую настройку чувствительности датчика и устранение шумов изображения, извлечение деталей (minutia) и сравнение полученного sample отпечатков c хранящимися в программе шаблонами конкретных индивидуумов.

Возможности применения датчиков отпечатков пальцев чрезвычайно обширны и охватывают следующие приложения:

  • Сотовые телефоны, Smart-фоны
  • Ноутбуки, системы доступа к персональным компьютерам
  • Системы разграничения доступа в здания
  • Электронные ключи (автомобили, дома и пр.)
  • PDA (управление доступом, защита данных)
  • Финансовые транзакции и транзакции через Интернет (Smart Сard и их считыватели)

Подводя итог, хотелось бы отметить, что биометрические технологии находятся в стадии бурного развития и совершенствования. Но уже сейчас наиболее простые и надежные решения из этой области, в частности, основанные на приборах считывания отпечатков пальцев, начинают активно проникать в нашу жизнь.

Таблица 2 Характеристики датчиков отпечатков пальцев ATMEL и FUJITSU

Тип Разре-
шение
Кол-во
пикселей
Размер
области
считывания
мм
Частота
кадров
кадр/с
Рабочая
темп-ра, °С
Устой-
чивость
к ESD
кВ
Напря-
жение
питания-
В
Потре-
бляемый
ток
Корпус
Размер
мм
ATMEL FingerChip™ (тепловые датчики)
AT77C101B 500 dpi 280x8 14x0.4 1780 0…+70 ±16 5 3-5.5 20мВт при 3.3В COB6,
COB с разъемом,
CDIP-20
26.6x9 (COB)
FUJITSU
MBF110 500 dpi 300x300 15x15 10 0…+60 - 3.3-5 170мВт при 40МГц LQFP-80,
VSPA-80
24x24
MBF200 500 dpi 256x300 12.8x15 30 c MCU;
13 c USB;
10 c SPI
-20…+85 10 3.3-5 20 мА LQFP-80
24x24x1.4
MBF300 500 dpi 256x32 12.8x0.2 1000 c MCU;
100 c USB;
100 c SPI
0…+60 - 2.8-5 20 мА FBGA-54,
FLGA-54
14x4.3x1.2
MBF310 500 dpi 218x8 12.8x0.2 1000 c MCU;
700 c SPI
-20…+85 - 2.7-3.6 12 мА FBGA-42
16.1x6.5x1.2

СПИСОК ЛИТЕРАТУРЫ

  1. The Biometric Consortium , Web: http://www.biometrics.org
  2. Common Biometric Exchange File Format (CBEFF), January 2001, USA National Institute of Standards and Technology (NIST), Web: http://www.nist.gov
  3. FBI Integrated Automated Fingerprint Identification System (IAFIS), USA Federal Bureau of Investigation, Web: http://www.fbi.gov/hq/cjisd/iafis/iafisbuilds.htm

Когда пользуешься смартфоном каждый день, то особо не задумываешься том, как работает та или иная функция. Взять тот же сканер отпечатков пальца в смартфонах Meizu: разблокирует аппарат с первого раза, вот и хорошо. Не все знают, что бывает несколько типов сканера, которые отличаются друг от друга. А ну-ка давайте заполним пробел в знаниях.

Зачем нужен сканер отпечатков

Защита персональной информации - сейчас главный вопрос в нашем цифровом мире, важно не только обладать данными, но и защищать их. Далеко ходить за примерами не надо, мало кому приятно, когда одногруппник на лекции берёт телефон «покрутить и посмотреть», а потом начинает копаться в фотогалерее. Конечно, если у вас Meizu и вы закрыли доступ к приложению паролем, можно не париться на этот счёт, но не все в курсе такой возможности.

Идентификация по отпечатку пальца - один из самых надежных способов для подтверждения личности владельца. По точности такой метод уступает только сканированию сетчатки глаза и анализу ДНК, но это впереди. Согласитесь, сложно представить в реальных условиях необходимость анализа крови для разблокировали смартфона.

Что надо знать об отпечатках пальцев

Во-первых, отпечаток образуется папиллярными узором на коже, его можно рассмотреть на своих пальцах. Это выступы и углубления на коже, образующие неповторимый рисунок.


Во-вторых, узор у каждого человека уникален даже у близких родственников и близнецов. Он формируется еще у нерожденного плода и остается неизменным на протяжении всей жизни.

В-третьих, даже при повреждении эпидермиса со временем узор восстанавливается, вопрос лишь во времени и степени повреждения кожи. Поэтому фильмы, где главные герои удалют свои отпечатки не более чем художественный вымысел.

В-четвёртых, каждый отпечаток содержит не только визуальные особенности, но и свою тепловую и электрическую характеристику.

Все эти свойства и легли в основу методик по идентификации владельцев современных смартфонов, ноутбуков и другой техники. Сенсоры делятся на три группы: оптические, полупроводниковые и ультразвуковые.

Оптические датчики

Как понятно из названия, принцип распознавания строится на анализе изображения папиллярных узоров. В свою очередь, способы получения изображения делятся на базирующиеся несколько видов: отражение, просвет или бесконтактное распознавание.

Отражающие сенсоры

Такие сканеры используют эффект нарушенного полного внутреннего отражения. Его суть проста: при попадании света на границу разных поверхностей поток делится на две части, одна отражается от границы, а вторая проникает через границу в другую среду. Что за поверхности? Это возвышения узора, приложенные к сенсору, и свободная часть сенсора, на которую приходятся углубления в рисунке.

Если поиграть с величиной угла можно добиться отражения всего потока от границы раздела сред, простыми словами, свет отражается от мест, где кожа не касается сенсора, построив таким образом, изображение узора, в памяти устройства.

Это самый простой способ, но с недостатками: его можно обмануть муляжом, такие сенсоры чувствительны к загрязнению.

Просвечивающие сенсоры

Такие датчики работают при помощи оптоволоконной матрицы, в которой на одном конце каждого канала закреплен фотоэлемент. Палец прикладывается к сенсору, сверху на него излучается свет, а сенсоры фиксируют остаточный световой поток в точках соприкосновения возвышений на узоре с поверхностью датчика. Такой датчик сложно обмануть, муляж уже не подействует, но мобильным такой метод не назовешь.

Бесконтактные датчики

Наиболее распространенные из всех оптических датчиков на мобильных платформах. Суть похожа на отражающие сенсоры, за одним исключением, прямого контакта пальца с поверхностью сенсора не требуется. Палец прикладывается к защитному стеклу, под которым находится линза сенсора и источники света по бокам от нее. Свет отражается от рисунка пальца, фокусируется матрицу через линзы. Принцип действия очень похож на работу цифрового фотоаппарата. Такой датчик тоже чувствителен к загрязнению защитного стекла, при желании его можно обмануть муляжом отпечатка.

Полупроводниковые датчики

В таких сенсорах используются изменение свойств полупроводников в месте контакта гребня узора с поверхностью самого сенсора.

Емкостные сканеры

Они работают на изменении емкости полупроводника в области соприкосновения двух полупроводников с разными типами проходимости. Разница возникает в местах касания гребня папиллярного узора с полупроводниковой матрицей. Полученные данные преобразуются в отпечаток пальца отдельным защищенным процессором. Такие датчики дешевые и неприхотливые, но их тоже можно обмануть муляжом.

Радиочастотные сканеры

Еще один подвид, который использует радиосигналы низкой интенсивности. Сенсор фиксирует отраженный сигнал в месте приложения гребня узора, таким образом, формируется цифровое изображение отпечатка. Такой датчик сложно обмануть, ведь отражающие свойства кожи в совокупности с уникальным узором подделать практически невозможно, но при плохом контакте пальца с поверхностью датчика распознавание отпечатка становится затруднительным.

Пьезоэлектрические элементы

Чувствительные к давлению на поверхность сенсоры определяют рисунок отпечатка, когда прикладываете палец: гребни узора оказывают давление, а впадины нет. Такие сенсоры тоже легко провести, да и общая чувствительность у них небольшая, зато они относительно дешевые.

Температурные сенсоры

Они считывают уникальную температурную карту поверхности отпечатка. За преобразование температуры в цифровой отпечаток отвечают пироэоектрические элементы. Обмануть такие датчики сложно, тем более, они устойчивы к электростатике и работают при любых температурных условиях. Недостаток только один, температурная карта быстро исчезает, т.к. поверхность сенсора и пальца быстро приходят к температурному равновесию.

Ультразвуковые датчики

Такие сенсоры самые совершенные и самые быстрые, они сканируют поверхность приложенного пальца. Разница в уровне отраженного сигнала от гребней и впадин узора регистрируется сенсором, после чего строится полная цифровая картина отпечатка. Такие сенсоры почти невозможно обмануть, т.к. кроме карты приложенной поверхности они могут считывать и пульс, и другие показатели биологической активности. Тем более, такие сенсоры хорошо реагируют даже при касании влажного пальца, а это особенно актуально в повседневном использовании смартфонов. Среди всех описанных они самые дорогостоящие, но именно такой тип используется в последних аппаратах Meizu.

Заключение

Наш небольшой ликбез по сканерам отпечатков завершен, теперь, беря в руки аппарат и прикладывая палец к сенсору, вы знаете как он работает и как эта маленькая штучка защищает ваши персональные данные. Что умеют сканеры отпечатков пальцев, вы можете прочитать в отдельной на эту тему.

На сегодняшний день цифровые технологии проникли практически во все сферы нашей жизни: мы в пару кликов совершаем покупки в интернете, кладем и снимаем наличные на банковскую карту, делаем различные операции с виртуальными счетами, а также храним свои фотографии и прочие данные в облачных хранилищах. При всей глобализации цифровых технологий вопрос касаемо защиты персональных данных по-прежнему остается актуальным.

Ни для кого не секрет, что современные продвинутые злоумышленники уже не пользуются ломом и отмычками, а виртуозно используют те же самые цифровые технологии и ПО для своих корыстных целей. Смартфоны по-прежнему остаются уязвимыми, поскольку с его помощью пользователь часто авторизуется в различных онлайн-сервисах. И, если еще вчера защита данных на смартфоне происходила посредством графического ключа или паролей, то в последние годы многие производители начали внедрять разные виды биометрической защиты, которые основаны на уникальности строения определенных частей тела человека. В частности, мы говорим об отпечатках пальцев, геометрии лица, сетчатке глаза, идентификация голоса. Биометрическая аутентификация – это довольно надежный и удобный способ защиты. А главное, такой «пароль» не забудешь, не подсмотришь, к тому же он всегда так сказать под рукой. Сегодня мы поговорим о дактилоскопическом сканере в смартфоне или, иными словами, сканере отпечатков пальцев. Интересно узнать, что из себя представляет это устройство, каких видов бывает сканер, а также как он работает.

Следует отметить, что процесс идентификации с помощью отпечатков пальцев стоит в одном ряду с самыми надежными способами, с помощью которых можно подтвердить личность пользователя. По точности аутентификации сканирование отпечатков пальцев уступает только методу, а рамках которого осуществляется сканирование сетчатки глаза, а также анализу ДНК. Отпечатки человеческих пальцев представлены папиллярными узорами на коже, которые у каждого человека уникальные, причем появляются они внутриутробно, на двенадцатой неделе синхронно с нервной системой. Интересно, что на папиллярные узоры могут повлиять различные факторы, например, это касается генетического кода ребёнка и прочего. Другими словами, папиллярными узорами являются выступы и борозды на коже, которые формируют уникальный и неповторимый рисунок. Даже незначительная травма или повреждение покровов кожи не могут «стереть» отпечаток, поскольку он со временем восстановится, если конечно в результате травмы не снесло пол пальца.

Как работает сканер отпечатка пальцев в современном смартфоне

В сканерах отпечатков пальцев имеются две основные функции. При помощи первой из них сканер считывает изображение отпечатка, в то время как вторая функция проверяет совпадение отпечатка с существующими в базе данных. Практически во всех современных смартфонах применяются оптические сканеры. Принцип их работы схож с цифровыми фотоаппаратами. Снимок делается с помощью микросхемы, куда входят светочувствительные фотодиоды, а также автономный источник освещения в виде матрицы светодиодов, с помощью которой узоры на пальце подсвечиваются.

Когда свет попадает на считываемый папиллярный рисунок, с помощью фотодиодов появляется электрический заряд, в результате чего отдельно взятый пиксель запечатлевается на будущем снимке. С помощью пикселей различной интенсивности на сканере образуется снимок отпечатка пальца. Кроме того, перед тем как сверить отпечаток с базой данных, сканер осуществляет проверку качества снимка.

После получения снимка отпечатка его анализирует специальное программное обеспечение с помощью сложных алгоритмов. К слову, происходит анализ трёх типов узоров отпечатка: дугового, петлевого и завиткового. После того, как ПО определило тип узора, происходит идентификация окончаний линий узоров (разрывы или раздвоения, которые называются минуциями), ведь именно они являются неповторимыми и с их помощью можно осуществить идентификацию владельца устройства. Дальше идет довольно сложный анализ, в рамках которого сканер анализирует положение минуций по отношению друг к другу, с разбитием отпечатка на микроблоки. Примечательно, что в процессе сопоставления сканер не анализирует отдельно взятую линию узора. Сканер определяет совпадение в отдельных блоках и по ним определяет сходство.

Каких типов бывают дактилоскопические сканеры

Оптические сканеры бывают двух основных видов. Что касается первого из них, то он снимает нужную область пальца при посредстве его прикосновения непосредственно к сканеру. Такой тип применяется в «яблочных» смартфонах, начиная с iPhone 5s. В отношении второго типа отметим, что в этом случае пользователь проводит пальцем по оптическому сканеру. В результате получается серия снимков, которые программным обеспечением объединяются в один. Этот тип какое-то время использовала в своих продуктах компания Samsung, однако, со временем она перешла на первый тип, поскольку он более удобен, хотя и более дорогостоящий. Основной недостаток оптического дактилоскопического сканера является уязвимость к царапинам и загрязнению. Также его можно «обвести вокруг пальца» при помощи слепка фаланги пальца.

Стоит также отметить о полупроводниковом типе сканера отпечатка пальца, который в смартфонах не применяется по целому ряду причин. Его невозможно обмануть с помощью слепка пальца. Еще одним типом дактилоскопических сканеров является ультразвуковой сканер. Он отличается большой перспективой развития, а действует он по принципу медицинского УЗИ. Обмануть его практически нереально, так как он способен проникнуть в эпидермальный слой кожи, которые уникален.

Следует отметить, что сканеры могут быть размещены в разных частях смартфона. Многие производители устанавливают сканер отпечатков пальцев на тыльной панели, недавно пошла мода на боковую грань, а компания HMD подготавливает свой новый флагман с интегрированным сканером в дисплей.

Сканером отпечатка пальца сейчас оборудован практически каждый небюджетный смартфон. Большинство производителей уверяет, что использовать дактилоскопические датчики не только удобно, но и безопасно.

Все мы привыкли пользоваться этой технологией для разблокировки смартфона, но она может выполнять еще множество полезных функций. Многие считают, что впервые данная технология была использована компанией Apple в iPhone 5S. На самом деле в период с 2002 по 2011 год в продаже появилось около 30 телефонов, оснащенных дактилоскопическим датчиком. В 2011 году Motorola выпустила смартфон на операционной системе Android, на задней крышке которого размещался полноценный сканер отпечатка пальца. Тем не менее, про устройство и новую технологию практически сразу забыли, а вернуть интерес к ней смогли только сотрудники Apple.

Какие бывают сканеры отпечатков?

Есть несколько видов сканеров, самым распространенным считает оптический . Большинство производителей используют именно этот тип - он не только является самым бюджетным, но и самым простым в реализации. Принцип работы заключается в «фотографировании» и запоминании отпечатка пальца. У таких дактилоскопов есть ряд минусов, ведь на качество и скорость отклика влияют загрязненность сканера, чистота и влажность пальца, а также наличие на нем механических повреждений. Кроме того, именно их проще всего обмануть.

Ультразвуковые сканеры отпечатков понемногу приходят на смену предшественникам. Они сканируют поверхность пальца с помощью звуковых волн. Такая технология более безопасна, время отклика меньше, загрязнения и повреждения на коже не страшны. На данный момент, этим видом датчика оснащены несколько топовых смартфонов китайских производителей.

Функции сканера отпечатков пальцев

Не стоит забывать, что сегодня смартфон играет действительно крайне важную роль в жизни практически каждого человека. Это не только устройство для совершения звонков и написания сообщений, но и настоящее хранилище личных данных, фото, воспоминаний, заметок и финансовой информации. Все это требует надежной защиты, которую и обеспечивает сканер отпечатка пальцев. Таким образом, первая его функция заключается в возможности разблокировки смартфона .

Второй функцией можно назвать доступ к личным файлам . На некоторых Android-смартфонах можно установить запрос отпечатка не только при разблокировке устройства, но и при открытии некоторых приложений, например, галереи, календаря или документов. Кроме того, такая функция будет полезна и для ограничения доступа к некоторым финансовым приложениям. Только вспомните, сколько детей приобрели вещи или танки в онлайн-играх, пользуясь смартфонами родителей?

В некоторых моделях Huawei с помощью дактилоскопического датчика можно ответить на звонок - нужно просто приложить палец к сканеру и дождаться начала разговора. На первый взгляд эта функция кажется удобной, но, с другой стороны, существует большая вероятность взять трубку случайно.

Оплата в интернете . С помощью специальных приложений можно совершать покупки в интернет-магазинах, денежные переводы, оплату коммунальных услуг и многое другое. С помощью сканера отпечатка пальцев можно существенно уменьшить время операции и подтвердить оплату простым касанием дактилоскопа.

Передача данных . Смартфоны оснащены множеством функций, одна из которых позволяет передавать файл с устройства на устройство «по воздуху», например, через Bluetooth. Чтобы не вводить лишний раз пароль, можно подтвердить действие с помощью дактилоскопа.

Используя сканер, можно отключить будильник . Принцип действия точно такой же, как и во всех вышеперечисленных случаях - как только слышен звук будильника, достаточно поднести палец к датчику, и сигнал автоматически выключится. Только не забудьте настроить автоповтор, иначе можно проспать.

Насколько надежен сканер отпечатков пальцев?

Дактилоскопические датчики по праву могут считаться надежными. Тем не менее, хакеры уже научились взламывать и их. Самый банальный способ заключается в том, чтобы сделать фото отпечатка (например, на прозрачной стеклянной вазе), распечатать его с помощью струйного принтера и приложить к сканеру. Этот способ может сработать только с первыми поколениями дактилоскопов.

Чтобы разблокировать новые поколения потребуется исхитриться - сделать слепок из силикона. Конечно, эти методы больше похожи на примеры из кино, но все равно нужно быть начеку и беречь свой смартфон.

Сканер отпечатков пальцев стал очень продвинутой фишкой большинства смартфонов. Некоторым пользователям он не нужен, другие же хотят, чтобы такой сканер был встроен в их телефон, так как это стало очень модно.

Но как работает такой сканер? Есть ли у него альтернативы? Откуда он вообще взялся? На этот и другие вопросы мы попытаемся дать вам ответ.

Предыстория

Как многие знают, Apple была первой компанией, которая вставила сканер отпечатков в свой IPhone. На самом деле нет. Первым телефоном, который получил такое дополнение был представлен ещё в 2004 году, который назывался Pantech GI100.

И тут компания Apple представляет новый iPhone 5S, у которого в кнопку “Home” встроен сканер отпечатков пальцев. И тут мир цифровых технологий взорвался. Apple подтолкнула многих производителей вставлять такую функцию в свои смартфоны, и сейчас сканер можно встретить в большинстве , не говоря о среднем ценовом сегменте и флагманах.

Как работают сканеры в современных смартфонах?

Существует несколько типов сканеров:

  • Оптические
  • Полупроводниковые
  • Радиочастотные
  • Ультразвуковые
  • Термосканеры
  • Сканер использующий метод давления

О всех типах рассказывать мы не станем, а расскажем только о тех, которые используются в смартфонах.

Самые простые и дешёвые в реализации – оптические сканеры. Если описать принцип его работы в двух словах, то он просто фотографирует узоры вашего пальца. В таких сканерах в основном стоят КМОП и ПЗС матрицы, которые и фиксируют изображения. Лучшие образцы таких сканеров обладают разрешением 1200 dpi. Но даже оно не спасает от частых ошибок.

На работу оптических сканеров сильно влияют такие факторы, как загрязнённость пальца или поверхность сканера. Не малую роль играют и повреждения кожи. Кроме этого, оптические сканеры легче всего обмануть.

На смену оптическим сканерам потихоньку приходят ультразвуковые. Они сканируют поверхность пальца звуковыми волнами, и могут похвастаться очень большой скоростью и точностью распознавания. Таким сканерам не страшны ни грязь, ни влага, ни повреждённая кожа. И что не мало важно – их практически невозможно взломать. Благодаря хорошей проницательной способности звуковых волн, сканер можно разместить даже под поверхностью экрана или под крышкой смартфона.

Но это всё пока в теории. На данный момент такие сканеры ещё сырые и особо не обкатаны производителем. На конец 2016 года ультразвуковыми сканерами было оснащено всего лишь 3 смартфона, один из которых Xiaomi Mi 5S версии 4/128.

Как взломать сканер отпечатков пальца?

Раз мы начали говорить про безопасность, давайте поговорим о том, как же можно взломать сканер отпечатков.

Первый, и самый банальный способ – это сделать фотографию и напечатать её на струйном принтере, а затем приложить к сканеру. Правда этот способ работает только с первым поколением оптических сканеров. Для обхода более новых потребуется дополнительный этап – создание слепка из силикона. Данный метод позволяет обойти 99% сканеров. Перед ним не устоял даже хвалебный IPhone.

Хакеры из немецкой ассоциации House Computer Club уже давно описали процесс взлома посредством создания силиконового слепка. Но стоит отметить, что таким способом пока не удастся обмануть ультразвуковой сканер, так как он во время сканирования ещё и считывает пульс владельца и может отличить живой палец от силиконовой имитации.

Ну и в конце концов, можно просто взять ваш палец и приложить его к сканеру, пока вы спите. От такого типа взлома не застрахованы даже ультразвуковые датчики.

Где стоят самые быстрые и точные сканеры?

Производители часто хвастаются на своих презентациях тем, что их устройства распознают отпечаток за считанные доли секунды и что их устройство быстрее всех на рынке. Но зачастую это бывает не всегда так.

Есть три действительно хороших смартфона, в котором сканеры отпечатков показали себя достойно.

Zuk Z1. В своё время, работа его сканера поражала своей молниеносностью. Порой он даже уделывал второе поколение Touch ID от Apple, чем повергал в шок владельцев айфонов 6S и 6S+.

Ещё очень крутой сканер стоит в Xiaomi Mi5. Он срабатывает ещё быстрее, чем в предыдущем смартфоне, да и процент удачных распознаваний гораздо выше.

Но самый быстрый и самый чёткий сканер пока у . Устройство считывает палец и разблокирует его просто мгновенно. Срабатывает сканер просто невероятно – 10 из 10. Да и реагирует он на прикосновения прямо из коробки отлично, без всяких .

Есть ли замена сканерам отпечатков пальцев?

Хорошей альтернативой сканерам отпечатков пальцев является иридосканер. Иными словами – сканер радужки глаза. Хорош он тем, что вам не обязательно иметь непосредственный контакт с гаджетом.

Допустим ваши руки чем-то заняты, или чем-то сильно испачканы, да так сильно, что даже ультразвуковой сканер не может распознать ваши отпечатки. В таком случае, как нельзя лучше, подойдёт иридосканер. Он просто считает узор с вашей радужной оболочки глаза на расстоянии и всё.

Смартфоны с таким биометрическим датчиком начали появляться на азиатском рынке ещё в 2015 году. Японцы и китайцы в лице ZTE, Viewsonic и Vivo уже опробовали эту технологию на своих внутренних рынках. На мировой арене, технология должна была дебютировать в Samsung Galaxy Note 7, но все мы прекрасно знаем, где он сейчас находится. Хотя сама по себе реализация иридосканера в Note 7 была близка к идеалу. Благодаря инфракрасной подсветке он срабатывал даже в темноте. А обмануть его подсунув фотографию глаза владельца было невозможно, так как датчик считывал не только узор радужки глаза, но и мониторил температуру пользователя.

Заключение

Напоследок хочется посоветовать небольшой лайфхак: чтобы сканер лучше распознавал отпечаток, задайте в систему один и тот же отпечаток два раза. Тогда процент попаданий увеличится.

Ну и помимо обычных сканеров отпечатков пальца будем ждать, когда в смартфоны начнут массово вставлять иридосканеры, ведь это ещё больший прорыв в мобильной индустрии. Хотя маловероятно, что такая функция будет в от 70 долларов, но возможно следующие флагманы от Samsung получат такое дополнение.