Python сравнение чисел. Операторы в Python

Все ранее рассматриваемые программы имели линейную структуру: все инструкции выполнялись последовательно одна за одной, каждая записанная инструкция обязательно выполняется.

Допустим мы хотим по данному числу x определить его абсолютную величину (модуль). Программа должна напечатать значение переменной x, если x>0 или же величину -x в противном случае. Линейная структура программы нарушается: в зависимости от справедливости условия x>0 должна быть выведена одна или другая величина. Соответствующий фрагмент программы на Питоне имеет вид:

273 x = int(input()) if x > 0: print(x) else: print(-x)

В этой программе используется условная инструкция if (если). После слова if указывается проверяемое условие (x > 0) , завершающееся двоеточием. После этого идет блок (последовательность) инструкций, который будет выполнен, если условие истинно, в нашем примере это вывод на экран величины x . Затем идет слово else (иначе), также завершающееся двоеточием, и блок инструкций, который будет выполнен, если проверяемое условие неверно, в данном случае будет выведено значение -x .

Итак, условная инструкция в Питоне имеет следующий синтаксис:

If Условие: Блок инструкций 1 else: Блок инструкций 2

Блок инструкций 1 будет выполнен, если Условие истинно. Если Условие ложно, будет выполнен Блок инструкций 2 .

В условной инструкции может отсутствовать слово else и последующий блок. Такая инструкция называется неполным ветвлением. Например, если дано число x и мы хотим заменить его на абсолютную величину x , то это можно сделать следующим образом:

273 x = int(input()) if x < 0: x = -x print(x)

В этом примере переменной x будет присвоено значение -x , но только в том случае, когда x<0 . А вот инструкция print(x) будет выполнена всегда, независимо от проверяемого условия.

Для выделения блока инструкций, относящихся к инструкции if или else в языке Питон используются отступы. Все инструкции, которые относятся к одному блоку, должны иметь равную величину отступа, то есть одинаковое число пробелов в начале строки. Рекомендуется использовать отступ в 4 пробела и не рекомедуется использовать в качестве отступа символ табуляции.

Это одно из существенных отличий синтаксиса Питона от синтаксиса большинства языков, в которых блоки выделяются специальными словами, например, нц... кц в Кумире, begin... end в Паскале или фигурными скобками в Си.

2. Вложенные условные инструкции

Внутри условных инструкций можно использовать любые инструкции языка Питон, в том числе и условную инструкцию. Получаем вложенное ветвление - после одной развилки в ходе исполнения программы появляется другая развилка. При этом вложенные блоки имеют больший размер отступа (например, 8 пробелов). Покажем это на примере программы, которая по данным ненулевым числам x и y определяет, в какой из четвертей координатной плоскости находится точка (x,y):

2 -3 x = int(input()) y = int(input()) if x > 0: if y > 0: # x > 0, y > 0 print("Первая четверть") else: # x > 0, y < 0 print("Четвертая четверть") else: if y > 0: # x < 0, y > 0 print("Вторая четверть") else: # x < 0, y < 0 print("Третья четверть")

В этом примере мы использовали комментарии - текст, который интерпретатор игнорирует. Комментариями в Питоне является символ # и весь текст после этого символа до конца строки.

3. Операторы сравнения

Как правило, в качестве проверяемого условия используется результат вычисления одного из следующих операторов сравнения: < Меньше — условие верно, если первый операнд меньше второго.
> Больше — условие верно, если первый операнд больше второго.
<= Меньше или равно.
>= Больше или равно.
== Равенство. Условие верно, если два операнда равны.
!= Неравенство. Условие верно, если два операнда неравны.

Например, условие (x * x < 1000) означает “значение x * x меньше 1000”, а условие (2 * x != y) означает “удвоенное значение переменной x не равно значению переменной y ”.

Операторы сравнения в Питоне можно объединять в цепочки (в отличии от большинства других языков программирования, где для этого нужно использовать логические связки), например, a == b == c или 1 <= x <= 10 .

4. Тип данных bool

Операторы сравнения возвращают значения специального логического типа bool . Значения логического типа могут принимать одно из двух значений: True (истина) или False (ложь). Если преобразовать логическое True к типу int , то получится 1, а преобразование False даст 0. При обратном преобразовании число 0 преобразуется в False , а любое ненулевое число в True . При преобразовании str в bool пустая строка преобразовывается в False , а любая непустая строка в True .

4.1. Логические операторы

Иногда нужно проверить одновременно не одно, а несколько условий. Например, проверить, является ли данное число четным можно при помощи условия (n % 2 == 0) (остаток от деления n на 2 равен 0), а если необходимо проверить, что два данных целых числа n и m являются четными, необходимо проверить справедливость обоих условий: n % 2 == 0 и m % 2 == 0 , для чего их необходимо объединить при помощи оператора and (логическое И): n % 2 == 0 and m % 2 == 0 .

В Питоне существуют стандартные логические операторы: логическое И, логическое ИЛИ, логическое отрицание.

Логическое И является бинарным оператором (то есть оператором с двумя операндами: левым и правым) и имеет вид and . Оператор and возвращает True тогда и только тогда, когда оба его операнда имеют значение True .

Логическое ИЛИ является бинарным оператором и возвращает True тогда и только тогда, когда хотя бы один операнд равен True . Оператор “логическое ИЛИ” имеет вид or .

Логическое НЕ (отрицание) является унарным (то есть с одним операндом) оператором и имеет вид not , за которым следует единственный операнд. Логическое НЕ возвращает True , если операнд равен False и наоборот.

Пример. Проверим, что хотя бы одно из чисел a или b оканчивается на 0:

15 40 a = int(input()) b = int(input()) if a % 10 == 0 or b % 10 == 0: print("YES") else: print("NO")

Проверим, что число a — положительное, а b — неотрицательное:

If a > 0 and not (b < 0):

Или можно вместо not (b < 0) записать (b >= 0) .

5. Каскадные условные инструкции

Пример программы, определяющий четверть координатной плоскости, можно переписать используя “каскадную“ последовательность операцией if... elif... else:

5 7 x = int(input()) y = int(input()) if x > 0 and y > 0: print("Первая четверть") elif x > 0 and y < 0: print("Четвертая четверть") elif y > 0: print("Вторая четверть") else: print("Третья четверть")

В такой конструкции условия if , ..., elif проверяются по очереди, выполняется блок, соответствующий первому из истинных условий. Если все проверяемые условия ложны, то выполняется блок else , если он присутствует.

Operator

Описание

Примеры

Логический оператор "И". Условие будет истинным если оба операнда истина.

True and True равно True. True and False равно False. False and True равно False. False and False равно False.

Логический оператор "ИЛИ". Если хотя бы один из операндов истинный, то и все выражение будет истинным.

True or True равно True. True or False равно True. False or True равно True. False or False равно False.

Логический оператор "НЕ". Изменяет логическое значение операнда на противоположное.

not True равно False. not False равно True.

    Python. Операторы ветвления. Условный оператор. Оператор множественного выбора. Структуры организации циклов.

Оператор ветвления (условная инструкция, условный оператор) - оператор, конструкция языка программирования, обеспечивающая выполнение определённой команды (набора команд) только при условии истинности некоторого логического выражения, либо выполнение одной из нескольких команд (наборов команд) в зависимости от значения некоторого выражения.

Оператора ветвления if....else

Условный оператор реализует выполнение определённых команд при условии, что некоторое логическое выражение (условие) принимает значение «истина» true. В большинстве языков программирования условный оператор начинается с ключевого слова if

Оператор множественного выбора

Инструкция множественного выбора позволяет выполнять различные части программы в зависимости от того, какое значение будет иметь некоторая целочисленная переменной elif

Циклы while и for

Инструкция while, обеспечивает способ организации универсальных циклов;

Инструкция for, предназначена для обхода элементов в последовательностях и выполнения

блока программного кода для каждого из них.

14. Python. Кортежи, словари, списки. Срезы

Кортеж, по сути - неизменяемый список.

Зачем нужны кортежи, если есть списки?

Защита от дурака. То есть кортеж защищен от изменений, как намеренных (что плохо), так и случайных (что хорошо).

Ну и создать кортеж из итерируемого объекта можно с помощью все той же пресловутой функции tuple()

>>> a = tuple("hello, world!")

("h", "e", "l", "l", "o", ",", " ", "w", "o", "r", "l", "d", "!")

Словари в Python - неупорядоченные коллекции произвольных объектов с доступом по ключу. Их иногда ещё называют ассоциативными массивами или хеш-таблицами.

Методы словарей

dict.clear () - очищает словарь.

dict.copy () - возвращает копию словаря.

classmethod dict.fromkeys (seq[, value]) - создает словарь с ключами из seq и значением value (по умолчанию None).

dict.get (key[, default]) - возвращает значение ключа, но если его нет, не бросает исключение, а возвращает default (по умолчанию None).

dict.items () - возвращает пары (ключ, значение).

dict.keys () - возвращает ключи в словаре.

dict.pop (key[, default]) - удаляет ключ и возвращает значение. Если ключа нет, возвращает default (по умолчанию бросает исключение).

dict.popitem () - удаляет и возвращает пару (ключ, значение). Если словарь пуст, бросает исключение KeyError. Помните, что словари неупорядочены.

dict.setdefault (key[, default]) - возвращает значение ключа, но если его нет, не бросает исключение, а создает ключ с значением default (по умолчанию None).

dict.update () - обновляет словарь, добавляя пары (ключ, значение) из other. Существующие ключи перезаписываются. Возвращает None (не новый словарь!).

dict.values () - возвращает значения в словаре.

Что такое списки?

Списки в Python - упорядоченные изменяемые коллекции объектов произвольных типов (почти как массив, но типы могут отличаться).

Чтобы использовать списки, их нужно создать. Создать список можно несколькими способами. Например, можно обработать любой итерируемый объект (например, строку) встроенной функцией list:.

Таблица "методы списков"

Метод Что делает

list.append(x) Добавляет элемент в конец списка

list.extend(L) Расширяет список list, добавляя в конец все элементы списка L

list.insert(i, x) Вставляет на i-ый элемент значение x

list.remove(x) Удаляет первый элемент в списке, имеющий значение x

list.pop([i]) Удаляет i-ый элемент и возвращает его. Если индекс не указан, удаляется последний элемент

list.index(x, ]) Возвращает положение первого элемента от start до end со значением x

list.count(x) Возвращает количество элементов со значением x

list.sort() Сортирует список на основе функции

list.reverse() Разворачивает список

list.copy() Поверхностная копия списка (новое в python 3.3)

list.clear() Очищает список (новое в python 3.3)

Срезы

В Python, кроме индексов, существуют ещё и срезы.

item - берёт срез от номера START, до STOP (не включая его), с шагом STEP. По умолчанию START = 0, STOP = длине объекта, STEP = 1. Соответственно, какие-нибудь (а возможно, и все) параметры могут быть опущены.

>>> a =

Также все эти параметры могут быть и отрицательными:

>>> a =

>>> a[::-1]

>>> a[-2::-1]

>>> a

В последнем примере получился пустой список, так как START < STOP, а STEP отрицательный. То же самое произойдёт, если диапазон значений окажется за пределами объекта:

>>> a =

>>> a

Также с помощью срезов можно не только извлекать элементы, но и добавлять и удалять элементы (разумеется, только для изменяемых последовательностей).

>>> a =

>>> a =

  • Перевод

В этой части статьи рассматриваются уловки для выбора одного из двух значений на основе логического условия, передача и получение произвольного числа аргументов функций, а также распространенный источник ошибок - тот факт, что дефолтные значения аргументов функции вычисляются только один раз.

4. Выбор значений

4.1. Правильный путь
Начиная с версии 2.5, Python поддерживает синтаксис «value_if_true if test else value_if_false». Таким образом, вы можете выбрать одно из двух значений, не прибегая к странному синтаксису и подробным пояснениям:
test = True # test = False result = "Test is True" if test else "Test is False" # result = "Test is True"
Увы, это всё еще немного некрасиво. Вы также можете использовать несколько таких конструкций в одной строке:
test1 = False test2 = True result = "Test1 is True" if test1 else "Test1 is False, test2 is True" if test2 else "Test1 and Test2 are both False"
Сначала выполняется первый if/else, а если test1 = false, выполняется второй if/else. Вы можете делать и более сложные вещи, особенно если воспользуетесь скобками.

Этот способ весьма новый, и я испытываю к нему смешанные чувства. Это правильная, понятная конструкция, она мне нравится… но она всё еще уродлива, особенно при использовании нескольких вложенных конструкций. Конечно, синтаксис всех уловок для выбора значений некрасив. У меня слабость к описанному ниже способу с and/or, сейчас я нахожу его интуитивным, сейчас я понимаю, как он работает. К тому же он ничуть не менее эффективен, чем «правильный» способ.

Хотя инлайновый if/else - новый, более правильный способ, вам всё же стоит ознакомиться со следующими пунктами. Даже если вы планируете использовать Python 2.5, вы встретите эти способы в старом коде. Разумеется, если вам нужна обратная совместимость, будет действительно лучше просмотреть их.

4.2. Уловка and/or
«and» и «or» в Python - сложные создания. Применение and к нескольким выражениям не просто возвращает True или False. Оно возвращает первое false-выражение, либо последнее из выражений, если все они true. Результат ожидаем: если все выражения верны, возвращается последнее, являющееся true; если одно из них false, оно и возвращается и преобразуется к False при проверке логического значения.

Аналогично, операция or возвращает первое true-значение, либо последнее, если ни одно из них не true.

Это вам не поможет, если вы просто проверяете логическое значение выражения. Но можно использовать and и or в других целях. Мой любимый способ - выбор значения в стиле, аналогичном тернарному оператору языка C «test? value_if_true: value_if_false»:
test = True # test = False result = test and "Test is True" or "Test is False" # теперь result = "Test is True"
Как это работает? Если test=true, оператор and пропускает его и возвращает второе (последнее) из данных ему значений: "Test is True" or "Test is False" . Далее, or вернет первое true выражение, т. е. "Test is True".

Если test=false, and вернет test, останется test or "Test is False" . Т. к. test=false, or его пропустит и вернет второе выражение, "Test is False".

Внимание, будьте осторожны со средним значением («if_true»). Если оно окажется false, выражение с or будет всегда пропускать его и возвращать последнее значение («if_false»), независимо от значения test.

После использования этого метода правильный способ (п. 4.1) кажется мне менее интуитивным. Если вам не нужна обратная совместимость, попробуйте оба способа и посмотрите, какой вам больше нравится. Если не можете определиться, используйте правильный.

Конечно, если вам нужна совместимость с предыдущими версиями Python, «правильный» способ не будет работать. В этом случае and/or - лучший выбор в большинстве ситуаций.

4.3. True/False в качестве индексов
Другой способ выбора из двух значений - использование True и False как индексов списка с учетом того факта, что False == 0 и True == 1:
test = True # test = False result = ["Test is False","Test is True"] # теперь result = "Test is True"
Этот способ более честный, и value_if_true не обязано быть true. Однако у него есть существенный недостаток: оба элемента списка вычисляются перед проверкой. Для строк и других простых элементов это не проблема. Но если каждый из них требует больших вычислений или операций ввода-вывода, вычисление обоих выражений недопустимо. Поэтому я предпочитаю обычную конструкцию или and/or.

Также заметьте, что этот способ работает только тогда, когда вы уверены, что test - булево значение, а не какой-то объект. Иначе придется писать bool(test) вместо test, чтобы он работал правильно.

5. Функции

5.1. Значения по умолчанию для аргументов вычисляются только один раз
Начнем этот раздел с предупреждения. Эта проблема много раз смущала многих программистов, включая меня, даже после того, как я разобрался в проблеме. Легко ошибиться, используя значения по умолчанию:
def function(item, stuff = ): stuff.append(item) print stuff function(1) # выводит "" function(2) # выводит "" !!!
Значения по умолчанию для аргументов вычисляются только один раз, в момент определения функции. Python просто присваивает это значение нужной переменной при каждом вызове функции. При этом он не проверяет, изменилось ли это значение. Поэтому, если вы изменили его, изменение будет в силе при следующих вызовах функции. В предыдущем примере, когда мы добавили значение к списку stuff, мы изменили его значение по умолчанию навсегда. Когда мы вызываем функцию снова, ожидая дефолтное значение, мы получаем измененное.

Решение проблемы: не используйте изменяемые объекты в качестве значений по умолчанию. Вы можете оставить всё как есть, если не изменяете их, но это плохая идея. Вот как следовало написать предыдущий пример:
def function(item, stuff = None): if stuff is None: stuff = stuff.append(item) print stuff function(1) # выводит "" function(2) # выводит "", как и ожидалось
None неизменяем (в любом случае, мы не пытаемся его изменить), так что мы обезопасили себя от внезапного изменения дефолтного значения.

С другой стороны, умный программист, возможно, превратит это в уловку для использования статических переменных, как в языке C.

5.1.1. Заставляем дефолтные значения вычисляться каждый раз
Если вы не хотите вносить в код функции лишний беспорядок, можно заставить интерпретатор заново вычислять значения аргументов перед каждым вызовом. Следующий декоратор делает это:
from copy import deepcopy def resetDefaults(f): defaults = f.func_defaults def resetter(*args, **kwds): f.func_defaults = deepcopy(defaults) return f(*args, **kwds) resetter.__name__ = f.__name__ return resetter
Просто примените этот декоратор к функции, чтобы получить ожидаемые результаты:
@resetDefaults # так мы применяем декоратор def function(item, stuff = ): stuff.append(item) print stuff function(1) # выводит "" function(2) # выводит "", как и ожидалось
5.2. Переменное число аргументов
Python позволяет использовать произвольное число аргументов в функциях. Сначала определяются обязательные аргументы (если они есть), затем нужно указать переменную со звездочкой. Python присвоит ей значение списка остальных (не именованных) аргументов:
def do_something(a, b, c, *args): print a, b, c, args do_something(1,2,3,4,5,6,7,8,9) # выводит "1, 2, 3, (4, 5, 6, 7, 8, 9)"
Зачем это нужно? Например, функция должна принимать несколько элементов и делать с ними одно и то же (например, складывать). Можно заставить пользователя передавать функции список: sum_all(). А можно позволить передавать произвольное число аргументов, тогда получится более чистый код: sum_all(1,2,3).

Функция также может иметь переменное число именованных аргументов. После определения всех остальных аргументов укажите переменную с "**" в начале. Python присвоит этой переменной словарь полученных именованных аргументов, кроме обязательных:
def do_something_else(a, b, c, *args, **kwargs): print a, b, c, args, kwargs do_something_else(1,2,3,4,5,6,7,8,9, timeout=1.5) # выводит "1, 2, 3, (4, 5, 6, 7, 8, 9), {"timeout": 1.5}"
Зачем так делать? Я считаю, самая распространенная причина - функция является оберткой другой функции (или функций), и неиспользуемые именованные аргументы могут быть переданы другой функции (см. п. 5.3).

5.2.1. Уточнение
Использование именованных аргументов и произвольного числа обычных аргументов после них, по-видимому, невозможно, потому что именованные аргументы должны быть определены до "*"-параметра. Например, представим функцию:
def do_something(a, b, c, actually_print = True, *args): if actually_print: print a, b, c, args
У нас проблема: не получится передать actually_print как именованный аргумент, если при этом нужно передать несколько неименованных. Оба следующих варианта вызовут ошибку:
do_something(1, 2, 3, 4, 5, actually_print = True) # actually_print сначала приравнивается к 4 (понятно, почему?), а затем # переопределяется, вызывая TypeError ("got multiple values for keyword argument") do_something(1, 2, 3, actually_print = True, 4, 5, 6) # Именованные аргументы не могут предшествовать обычным. Происходит SyntaxError. Единственный способ задать actually_print в этой ситуации - передать его как обычный аргумент: do_something(1, 2, 3, True, 4, 5, 6) # результат: "1, 2, 3, (4, 5, 6)"
Единственный способ задать actually_print в этой ситуации - передать его как обычный аргумент:
do_something(1, 2, 3, True, 4, 5, 6) # результат: "1, 2, 3, (4, 5, 6)"
5.3. Передача списка или словаря в качестве нескольких аргументов
Поскольку можно получить переданные аргументы в виде списка или словаря, нет ничего удивительного в том, что передавать аргументы функции тоже можно из списка или словаря. Синтаксис совершенно такой же, как в предыдущем пункте, нужно поставить перед списком звездочку:
args = pow(*args) # возвращает pow(5,2), т. е. 25
А для словаря (что используется чаще) нужно поставить две звездочки:
def do_something(actually_do_something=True, print_a_bunch_of_numbers=False): if actually_do_something: print "Something has been done" # if print_a_bunch_of_numbers: print range(10) kwargs = {"actually_do_something": True, "print_a_bunch_of_numbers": True} do_something(**kwargs) # печатает "Something has been done", затем ""
Историческая справка: в Python до версии 2.3 для этих целей использовалась встроенная функция apply (function, arg_list, keyword_arg_dict)".

Часто в реальной жизни мы соглашаемся с каким-либо утверждением или отрицаем его. Например, если вам скажут, что сумма чисел 3 и 5 больше 7, вы согласитесь, скажете: «Да, это правда». Если же кто-то будет утверждать, что сумма трех и пяти меньше семи, то вы расцените такое утверждение как ложное.

Подобные фразы предполагают только два возможных ответа – либо "да", когда выражение оценивается как правда, истина, либо "нет", когда утверждение оценивается как ошибочное, ложное. В программировании и математике если результатом вычисления выражения может быть лишь истина или ложь, то такое выражение называется логическим .

Например, выражение 4 > 5 является логическим, так как его результатом является либо правда, либо ложь. Выражение 4 + 5 не является логическим, так как результатом его выполнения является число.

На позапрошлом уроке мы познакомились с тремя типами данных – целыми и вещественными числами, а также строками. Сегодня введем четвертый – логический тип данных (тип bool). Его также называют булевым. У этого типа всего два возможных значения: True (правда) и False (ложь).

>>> a = True >>> type (a) >>> b = False >>> type (b)

Здесь переменной a было присвоено значение True, после чего с помощью встроенной в Python функции type() проверен ее тип. Интерпретатор сообщил, что это переменная класса bool. Понятия "класс" и "тип данных" в данном случае одно и то же. Переменная b также связана с булевым значением.

В программировании False обычно приравнивают к нулю, а True – к единице. Чтобы в этом убедиться, можно преобразовать булево значение к целочисленному типу:

>>> int (True ) 1 >>> int (False ) 0

Возможно и обратное. Можно преобразовать какое-либо значение к булевому типу:

>>> bool (3.4 ) True >>> bool (-150 ) True >>> bool (0 ) False >>> bool (" " ) True >>> bool ("" ) False

И здесь работает правило: всё, что не 0 и не пустота, является правдой.

Логические операторы

Говоря на естественном языке (например, русском) мы обозначаем сравнения словами "равно", "больше", "меньше". В языках программирования используются специальные знаки, подобные тем, которые используются в математике: > (больше), < (меньше), >= (больше или равно), <= (меньше или равно), == (равно), != (не равно).

Не путайте операцию присваивания значения переменной, обозначаемую в языке Python одиночным знаком "равно", и операцию сравнения (два знака "равно"). Присваивание и сравнение – разные операции.

>>> a = 10 >>> b = 5 >>> a + b > 14 True >>> a < 14 - b False >>> a <= b + 5 True >>> a != b True >>> a == b False >>> c = a == b >>> a, b, c (10, 5, False)

В данном примере выражение c = a == b состоит из двух подвыражений. Сначала происходит сравнение (==) переменных a и b . После этого результат логической операции присваивается переменной c. Выражение a, b, c просто выводит значения переменных на экран.

Сложные логические выражения

Логические выражения типа kByte >= 1023 являются простыми, так как в них выполняется только одна логическая операция. Однако, на практике нередко возникает необходимость в более сложных выражениях. Может понадобиться получить ответа "Да" или "Нет" в зависимости от результата выполнения двух простых выражений. Например, "на улице идет снег или дождь", "переменная news больше 12 и меньше 20".

В таких случаях используются специальные операторы, объединяющие два и более простых логических выражения. Широко используются два оператора – так называемые логические И (and ) и ИЛИ (or ).

and , необходимо, чтобы результаты обоих простых выражений, которые связывает данный оператор, были истинными. Если хотя бы в одном случае результатом будет False, то и все сложное выражение будет ложным.

Чтобы получить True при использовании оператора or , необходимо, чтобы результат хотя бы одного простого выражения, входящего в состав сложного, был истинным. В случае оператора or сложное выражение становится ложным лишь тогда, когда ложны оба составляющие его простые выражения.

Допустим, переменной x было присвоено значение 8 (x = 8), переменной y присвоили 13 (y = 13). Логическое выражение y < 15 and x > 8 будет выполняться следующим образом. Сначала выполнится выражение y < 15 . Его результатом будет True. Затем выполнится выражение x > 8 . Его результатом будет False. Далее выражение сведется к True and False , что вернет False.

>>> x = 8 >>> y = 13 >>> y < 15 and x > 8 False

Если бы мы записали выражение так: x > 8 and y < 15 , то оно также вернуло бы False. Однако сравнение y < 15 не выполнялось бы интерпретатором, так как его незачем выполнять. Ведь первое простое логическое выражение (x > 8) уже вернуло ложь, которая, в случае оператора and, превращает все выражение в ложь.

В случае с оператором or второе простое выражение проверяется, если первое вернуло ложь, и не проверяется, если уже первое вернуло истину. Так как для истинности всего выражения достаточно единственного True, неважно по какую сторону от or оно стоит.

>>> y < 15 or x > 8 True

В языке Python есть еще унарный логический оператор not , т. е. отрицание. Он превращает правду в ложь, а ложь в правду. Унарный он потому, что применяется к одному выражению, стоящему после него, а не справа и слева от него как в случае бинарных and и or.

Логический тип данных (или Boolean) – это примитивный тип, который принимает одно из двух возможных значений: истину (True) или ложь (False). Этот тип используется во многих языках программирования для построения алгоритмов и управления поведением программ.

Примечание : Название этого типа данных (Boolean) всегда пишется с заглавной буквы, поскольку он назван в честь математика Джорджа Буля, который занимался исследованиями математической логики. Значения True и False тоже пишутся с большой буквы – в Python они являются специальными значениями.

Данное руководство ознакомит вас с основами булевой логики в Python: операторами сравнения, логическими операторами, таблицами истинности и т.п.

Операторы сравнения

В программировании операторы сравнения используются при оценке и сравнении значений для последующего сведения их к одному логическому значению (True или False).

Операторы сравнения Python 3 представлены в этой таблице:

Оператор Значение
== Проверяет равенство между компонентами; условие истинно, если компоненты равны.
!= Проверяет равенство между компонентами; условие истинно, если компоненты НЕ равны.
< Оценивает значение левого компонента; условие истинно, если он меньше, чем правый.
> Оценивает значение левого компонента; условие истинно, если он больше, чем правый.
<= Оценивает значение левого компонента; условие истинно, если он меньше или равен правому компоненту.
>= Оценивает значение левого компонента; условие истинно, если он больше или равен правому компоненту.

Попробуйте поработать с этими операторами, чтобы понять, как они действуют. Для начала создайте пару переменных:

Теперь сравните значения переменных с помощью вышеперечисленных операторов.

x = 5
y = 8
print("x == y:", x == y)
print("x != y:", x != y)
print("x < y:", x < y)
print("x > y:", x > y)
print("x <= y:", x <= y)
print("x >= y:", x >= y)
x == y: False
x != y: True
x < y: True
x > y: False
x <= y: True
x >= y: False

Следуя математической логике, Python оценивает соотношения между значениями переменных так:

  • 5 равно 8? Ложь
  • 5 не равно 8? Истина
  • 5 меньше 8? Истина
  • 5 больше 8? Ложь
  • 5 меньше или равно 8? Истина
  • 5 больше или равно 8? Ложь

Также операторы сравнения можно применять к числам с плавающей точкой и строкам.

Примечание : Строки чувствительны к регистру; чтобы отключить такое поведение, нужно использовать специальный метод.

Попробуйте сравнить две строки:

Hello = "Hello"
hello = "hello"

Hello == hello: False

Строки Hello и hello содержат одинаковый набор символов, однако они не равны, поскольку одна из них содержит символы верхнего регистра. Попробуйте добавить ещё одну переменную, которая также будет содержать символы верхнего регистра, а затем сравните их.

Hello = "Hello"
hello = "hello"
Hello_there = "Hello"
print("Hello == hello: ", Hello == hello)
print("Hello == Hello_there", Hello == Hello_there)
Hello == hello: False
Hello == Hello_there: True

Также для сравнения строк можно использовать операторы > и <. Python выполнит лексикографическое сравнение строк на основе значений символов ASCII.

Операторы сравнения можно применять к логическим значениям True и False:

t = True
f = False
print("t != f: ", t != f)
t != f: True

Обратите внимание на разницу между операторами = и ==.

x = y # Оператор присваивания. Устанавливает равенство между x и y (то есть присваивает x значение y).
x == y # Оператор сравнения. Проверяет равенство между x и y и оценивает выражение как истинное или ложное. Выражение истинно, если x и y равны.

Логические операторы

Для сравнения значений используется три логических оператора, которые сводят результат к логическому значению True или False.

Логические операторы обычно используются для оценки двух или больше выражений. Например, их можно использовать в программе, которая проверит:

  • сдал ли студент экзамен
  • и зарегистрирован ли он.

Если оба значения истинны, студент будет переведён на следующий курс.

Другой пример: программа с логическими операторами может проверять активность пользователя в онлайн-магазине:

  • использовал ли он кредит магазина
  • или заказывал ли он товары в течение последних 6 месяцев.

Для примера попробуйте сравнить три выражения:

print((9 > 7) and (2 < 4)) # Оба выражения истинны (True)
print((8 == 8) or (6 != 6)) # Одно из выражений истинно (True)
print(not(3 <= 1)) # Выражение ложно (False)
True
True
True

В первом случае оба выражения истинны, потому оператор and возвращает True.

Во втором случае истинно только значение 8 == 8. Поскольку хотя бы одно из предложенных условий истинно, оператор or возвращает True. Оператор and в таком случае выдал бы False.

В третьем случае выражение 3 <= 1 ложно. Оператор not изменяет полученное логическое значение на противоположное: not False = True.

Теперь попробуйте сравнить числа с плавающей точкой.

print((-0.2 > 1.4) and (0.8 < 3.1)) # Одно из выражений ложно (False)
print((7.5 == 8.9) or (9.2 != 9.2)) # Оба выражения ложны (False)
print(not(-5.7 <= 0.3)) # Выражение истинно (True)

  • Поскольку в первом примере одно из выражений ложно, and вернёт False. Оператор and оценивает выражение как истинное только тогда, когда оба компонента истинны.
  • Поскольку оба выражения ложны, оператор or выдаст False.
  • Поскольку выражение истинно, оператор not вернёт False (not True = False).

Примечание : Если вы не понимаете, как это работает, вам помогут разобраться таблицы истинности. Эту тему мы рассмотрим далее в этом руководстве.

Логические операторы можно объединять в составные выражения:

not((-0.2 > 1.4) and ((0.8 < 3.1) or (0.1 == 0.1)))

Выражение (0.8 < 3.1) or (0.1 == 0.1) истинно, поскольку оба математических выражения, из которых оно состоит, истинны. Оператор or вернёт True.

Полученное значение True становится компонентом следующего выражения: (-0.2 > 1.4) and (True). Оператор and выдаст False, потому что выражение -0.2 > 1.4 ложно. (False) and (True) = False.

Таблицы истинности

Математическая логика – очень полезная в программировании область знаний. В данном руководстве мы ознакомимся с основными её аспектами.

Ниже представлены таблицы истинности для оператора сравнения == и всех логических операторов. Ими можно пользоваться при написании логических выражений. В таблицах перечислены общие случаи использования оператора, потому их рекомендуется выучить наизусть.

Таблица истинности оператора ==

Таблица истинности оператора AND

Таблица истинности оператора OR

Таблица истинности оператора NOT

Таблицы истинности – общие математические таблицы, которые используются в логике. Их полезно выучить наизусть, чтобы затем применять при построении алгоритмов и написании программ.

Использование логических операторов для управления потоком

Для управления результатом и потоками данных программы можно использовать условные операторы (condition) с выражениями (clause).

Условные операторы оценивают значение как истинное или ложное.

Выражение – это блок кода, который идёт после условного оператора и определяет результат программы.

Ниже приведён блок кода, который показывает, как объединить условные операторы для управления потоком программы Python.

if grade >= 65: # условие
print("Passing grade") # выражение
else:
print("Failing grade")

Эта программа оценивает результат каждого студента и определяет, сдал он экзамен или нет. К примеру, если студент набрал 83, первое условие будет иметь значение True, и программа выведет на экран строку:

Если же студент набрал 59 баллов, первое условие будет ложно, потому программа выдаст.