Расчет усилителя с общим эмиттером. Биполярный транзистор

Схема с общим эмиттером

Схема включения транзистора с общим эмиттером (ОЭ) изображена на рис. 5.1. Входным электродом является база (точнее, входной сигнал U в x приложен к переходу эмиттер – база, т. е. U в x = U БЭ = f Б – f Э, где f Б и f Э – соответственно, потенциалы базы и эмиттера). Выходным электродом является коллектор, т. е. выходное напряжение U вы x равно падению напряжения между коллектором и эмиттером U K Э: U вы x = U КЭ = f K – f Э, где f K – потенциал коллектора.

Рис. 5.1

Таким образом, эмиттер является «общим электродом» и для U в x , и для U вы x , чем и объясняется название схемы. Допустим, что эмиттер заземлен и f Э = 0. В большинстве случаев непосредственное соединение эмиттера с землей применяют редко, но здесь рассматривается именно схема с заземленным эмиттером, так как наличие дополнительных элементов R Э и C Э не изменяет основной принцип работы схемы с ОЭ, но сильно усложняет объяснение.

Емкости C p 1 и С p 2 будем считать в диапазоне частот сигнала короткими замыканиями, а для постоянных питающих напряжений они, естественно, представляют собой разрывы. Впоследствии вклад С p 1 и С p 2 в характеристики схемы и их назначение будут оговорены.

Для объяснения работы схемы используем известное из физики полупроводников явление: p n- переход при подаче на р -полупроводник положи-

тельного потенциала (относительно потенциала n -полупроводника) открывается и через переход течет ток; причем в определенных пределах ток прямо пропорционален разности потенциалов на переходе. К базе транзистора приложено постоянное положительное напряжение, определяемое значением напряжения источника питания Е и соотношением сопротивлений R Б 1 и R Б2 (R Б 1 и R Б2 называют базовым делителем), поэтому f Б всегда превышает f Э и переход эмиттер – база открыт.

Если теперь учесть, что на базу транзистора кроме постоянного положительного напряжения U в x = = E (R Б2 / (R Б1 + R Б2)) поступает также переменный сигнал U в x ≈ (для простоты примем, что U в x ≈ – гармонический сигнал), то в моменты, когда U в x ≈ имеет положительную полярность, p n -переход открывается еще больше и ток через него возрастает, а в моменты, когда U в x ≈ имеет отрицательную полярность (но сохраняется U в x = + U в x ≈ >0), переход частично закрывается и ток уменьшается. Ток через p n -переход эмиттер – база называют током эмиттера I Э. Внутри транзистора он разделяется на небольшой ток базы I Б << I Э и ток коллектора I К ≈ I Э. В свою очередь, ток коллектора I К течет через сопротивление R K и создает на нем напряжение DU R = I K R K . Отсюда очевидно, что потенциал коллектора f K = Е – DU R = Е I K R K зависит от того, насколько открыт переход эмиттер – база, т. е. от U в x .

Для аналитического описания зависимости I К от U БЭ часто используют параметр S = DI K /DU БЭ, который называется крутизной. Единицей измерения крутизны является ампер на вольт [А/В], ее название связано с очень редко встречающимися в справочниках «сквозными» вольт-амперными характеристиками транзисторов. Итак,

U вы x = f K – f Э = Е I K R K = Е S U БЭ R K = Е S R K (U в x = + U в x ≈) =

= Е S R K U в x = – S R K U в x ≈ .

Два первых слагаемых представляют собой постоянное напряжение U вых= , а переменный выходной сигнал равен U вы x ≈ = – S R K U в x ≈ .

Таким образом, в схеме с общим эмиттером при подаче переменного сигнала на базу транзистора обеспечивается формирование на коллекторе такого же переменного сигнала, отличающегося от входного амплитудой и знаком. При прохождении сигнала через схему имеет место сдвиг фазы, равный 180°). Коэффициент передачи схемы по напряжению

K U = | U вы x ≈ /U в x ≈ | = S R K .

Отметим, что использование такого параметра, как крутизна, удобно лишь для объяснения процессов в схеме. В справочниках величина S не приводится, зато обычно имеются входные и выходные вольт-амперные характеристики (зависимости I Б от U БЭ и I К от U КЭ соответственно).

Остановимся еще на некоторых моментах.

Во-первых, следует обсудить функциональное назначение емкостей C p 1 и С p 2 . Эти емкости представляют собой элементарные фильтры высоких частот, обеспечивающие развязку последовательно соединенных схем по постоянному сигналу. Допустим, что усилитель построен по двухкаскадной схеме, т. е. состоит из двух схем с общим эмиттером (выход первой схемы соединен со входом второй). В этом случае, очевидно, надо без потерь передать переменный сигнал с коллектора транзистора первой схемы на базу транзистора второй схемы. Проще всего это можно было бы сделать, соединив электроды двух транзисторов накоротко. Но ведь как напряжение на базе, так и напряжение на коллекторе содержат не только переменные, но и постоянные составляющие, причем разные:

f Б = = U в x = = E (R Б2 / (R Б1 + R Б2));

f K = = U вы x = = Е S R K U в x = .

Элементом, который пропускает переменный ток, но не пропускает постоянный, является емкость. Именно «разделительная» емкость С p , установленная между двумя каскадами, обеспечивает прохождение переменного сигнала и «развязку» каскадов по постоянному току.

В схеме рис. 5.1 эмиттер заземлен. Обычно это не так: схема с общим эмиттером содержит в цепи эмиттера сопротивление R Э и блокировочный конденсатор С Э. Назначение резистора – обеспечивать термостабилизацию параметров схемы. Дело в том, что при повышении температуры в полупроводниках возрастает подвижность носителей зарядов и их концентрация, в результате чего возрастает ток эмиттера, а значит и ток коллектора. Чтобы вернуть токи в исходное (до нагрева) состояние, надо частично закрыть переход эмиттер-база, а для этого увеличить f Э при неизменном f Б. Если эмиттер заземлен, то изменить f Э невозможно, а если имеется сопротивление R Э – задача решается очень легко: f Э = I Э R Э, поэтому с ростом I Э обеспечивается нужный эффект увеличения потенциала эмиттера. К сожалению, наличие R Э вызовет минимизацию изменений тока I Э не только на инфранизких частотах температурного дрейфа, но и на частотах сигнала, усиление схемы резко снизится. Поэтому необходимо зашунтировать R Э на частотах сигнала, применив для этой цели блокировочный конденсатор. На частотах температурного дрейфа С Э представляет собой большое сопротивление и не влияет на механизм термостабилизации; с возрастанием f превращается в короткое замыкание.

Теперь оговорим, какими параметрами обладает схема с ОЭ.

1. Коэффициент передачи (усиления) по напряжению K U = SR K обычно достигает единиц-десятков раз.

Рис. 5.2

2. Амплитудная характеристика (АХ) – зависимость U вы x ≈ от U в x ≈ (рис. 5.2). Линейный участок АХ имеет наклон α, связанный с коэффициентом передачи соотношением K U = tg α. При малых уровнях входного сигнала U вы x ≈ определяется уровнем шума U ш, при очень больших (U в x > > U лин m ax) – примерно равен уровню коллекторного питания.

3. Коэффициент передачи по току K I равен отношению выходного тока ко входному. Выходным электродом является коллектор, входным – база, поэтому К I = I K /I Б. Но I Б << I Э, а I К = I Э, отсюда K I >> 1.

4. Коэффициент передачи по мощности K P = K U K I , как следствие, весьма значителен.

5. Сдвиг фаз в схеме равен 180°.

6. Входное сопротивление R в x схемы определяется параллельным соединением сопротивлений R Б1 , R Б2 и эквивалентного сопротивления р n -перехода эмиттер – база: r БЭ = I Б /U БЭ.Обычно значения R Б1 и R Б2 , необходимые для работы схемы, а также r БЭ составляют килоомы – десятки килоом, поэтому и входное сопротивление равно килоомам.

7. Выходное сопротивление ненагруженной схемы R вы x определяется в первую очередь значением сопротивления R K (сотни ом – единицы килоом), а также эквивалентным сопротивлением транзистора r КЭ = I К /U КЭ (обычно порядок r КЭ – килоомы).

8. Амплитудно-частотная характеристика K U = K U (f ), где f – частота (рис. 5.3). АЧХ имеет на средних частотах равномерный участок, параллельный оси частот. На низких частотах, где емкости C p 1 и С p 2 еще не являются короткими замыканиями и часть сигнала падает на них, АЧХ имеет спад. Дополнительной причиной спада АЧХ на низких частотах является наличие R Э,

Низкочастотная коррекция (НЧК) осуществляется разделением коллекторного сопротивления (рис. 5.4) на два: R K 1 и R K 2 . Средняя точка делителя через емкость C ф соединяется с землей. На низких частотах C ф представляет собой большое сопротивление, и ее можно не учитывать при определении коэффициента усиления схемы, который определяется как K U = S (R K 1 + R K 2). На средних и высоких частотах C ф превращается в короткое замыкание и шунтирует R K 2 , поэтому коэффициент усиления снижается и равен K U = SR K 1 .

C ф выполняет также функцию фильтра, не допускающего переменный сигнал в источник питания (именно поэтому он помечен индексом «ф»).

Высокочастотная коррекция осуществляется двумя различными способами. Во-первых, последовательно с R K ставят индуктивность L (рис. 5.5) – такой способ называется индуктивной высокочастотной коррекцией (ИВЧК). В этом случае при любом значении индуктивности коэффициент усиления схемы возрастает с ростом частоты, так как

K U = S =

= S .

Рис. 5.5

Рис. 5.6

Второй способ высокочастотной коррекции – эмиттерная (ЭВЧК) не предусматривает введение в схему дополнительных элементов, а лишь существенное уменьшение значения емкости C Э. Независимо от своего значения эта емкость не шунтирует R Э на инфранизких частотах температурного дрейфа, поэтому механизм термостабилизации не нарушается. Но маленькая C Э (при малых значениях ее уже не принято называть блокировочной) не шунтирует R Э и на низких и средних частотах сигнала, при этом K U снижается.

Только на высоких частотах C Э закорачивает эмиттерное сопротивление и коэффициент усиления начинает возрастать – как раз тогда, когда в силу других причин он снижается. ЭВЧК из-за отсутствия индуктивности находит все более широкое применение, хотя обладает существенным недостатком – уменьшением K U усилителя на низких и средних частотах.

Сибирская государственная автомобильно-дорожная академия

Кафедра АПП и Э

КУРСОВОЙ ПРОЕКТ

“РАСЧЕТ ТРАНЗИСТОРНОГО УСИЛИТЕЛЯ

ПО СХЕМЕ С ОБЩИМ ЭМИТТЕРОМ”

по дисциплине: “Электротехника ”

Вариант-17

Выполнил: ст. гр. 31АП

Цигулев С.В.

Проверил: Денисов В.П.

1. Основные понятия

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

3. Задание на работу

4. Порядок расчета транзисторного усилителя по схеме с ОЭ

Библиографический список

1. Основные понятия

Усилители являются одним из самых распространенных электронных устройств, применяемых в системах автоматики и радиосхемах. Усилители подразделяются на усилители предварительные (усилители напряжения) и усилители мощности. Предварительные транзисторные усилители, как и ламповые, состоят из одного или нескольких каскадов усиления. При этом все каскады усилителя обладают общими свойствами, различие между ними может быть только количественное: разные токи, напряжения, различные значения резисторов, конденсаторов и т. п.

Для каскадов предварительного усилителя наиболее распространены резистивныесхемы (с реостатно-емкостной связью). В зависимости от способа подачи входного сигнала и получения выходного сигнала усилительные схемы получили следующие названия:

1) с общей базой ОБ (рис. 1, а);

2) с общим коллектором ОК (эмиттерный повторитель) (рис. 1, б);

3) с общим эмиттером - ОЭ (рис. 1, в).


Наиболее распространенной является схема с ОЭ. Схема с ОБ в предварительных усилителях встречается редко. Эмиттерный повторитель обладает наибольшим из всех трех схем входным и наименьший выходным сопротивлениями, поэтому его применяют при работе с высокоомными преобразователями в качестве первого каскада усилителя, а также для согласования с низкоомным нагрузочным резистором. В табл. 1 дается сопоставление различных схем включения транзисторов.


Таблица 1

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

Существует множество вариантов выполнения схемы усилительного каскада на транзисторе ОЭ. Это обусловлено главным образом особенностями задания режима покоя каскада. Особенности усилительных каскадов и рассмотрим на примере схемы рисунок 2, получившей наибольшее применение при реализации каскада на дискретных компонентах.

Основными элементами схемы являются источник питания

, управляемый элемент - транзистор и резистор . Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекания управляемого по цепи базы коллекторного тока создается усиленное переменное напряжение на выходе схемы. Остальные элементы каскада выполняют вспомогательную роль. Конденсаторы , являются разделительными. Конденсатор исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи → → и, во-вторых, обеспечить независимость от внутреннего сопротивления этого источника напряжения на базе в режиме покоя. Функция конденсатора сводится к пропусканию в цепь нагрузки переменной составляющей напряжения и задержанию постоянной составляющей.

Резисторы

и используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ток покоя управляемого элемента (в данном случае ток ) создается заданием соответствующей величины тока базы покоя . Резистор предназначен для создания цепи протекания тока . Совместно с резистор обеспечивает исходное напряжение на базе относительно зажима ”+” источника питания.

Резистор

является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменении температуры. Температурная зависимость параметров режима покоя обусловливается зависимостью коллекторного тока покоя от температуры. Основными причинами такой зависимости являются изменения от температуры начального тока коллектора , напряжения и коэффициента . Температурная нестабильность указанных параметров приводит к прямой зависимости тока от температуры. При отсутствии мер по стабилизации тока , его температурные изменения вызывают изменение режима покоя каскада, что может привести, как будет показано далее, к режиму работы каскада в нелинейной области характеристик транзистора и искажению формы кривой выходного сигнала. Вероятность появления искажений повышается с увеличением амплитуды выходного сигнала.

Проявление отрицательной обратной связи и ее стабилизирующего действия на ток

В данной статье расскажем про транзистор. Покажем схемы его подключения и расчёт транзисторного каскада с общим эмиттером.

ТРАНЗИСТОР — это полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (Si – кремния, или — германия), содержащего не менее трёх областей с различной - электронной (n ) и дырочной (p ) - проводимостью. Изобретён в 1948 американцами У. Шокли, У. Браттейном и Дж. Бардином. По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и униполярные (чаще называют полевыми транзисторами). В первых, содержащих два, или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых - либо электроны, либо дырки. Термн «транзистор» нередко используют для обозначения портативных радиовещательных приёмников на полупроводниковых приборах.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

Биполярный транзистор

Биполярный транзистор может быть n-p-n и p-n-p проводимости. Не заглядывая во внутренности транзистора, можно отметить разницу проводимостей лишь в полярности подключения в практических схемах источников питания, конденсаторов, диодов, которые входят в состав этих схем. На рисунке справа графически изображены n-p-n и p-n-p транзисторы.

У транзистора три вывода. Если рассматривать транзистор как четырёхполюсник, то у него должно быть два входных и два выходных вывода. Следовательно, какой то из выводов должен быть общим, как для входной, так и для выходной цепи.

Схемы включения транзистора

Схема включения транзистора с общим эмиттером – предназначена для усиления амплитуды входного сигнала по напряжению и по току. При этом входной сигнал, усиливаясь транзистором, инвертируется. Другими словами фаза выходного сигнала поворачивается на 180 градусов. Эта схема, является основной, для усиления сигналов разной амплитуды и формы. Входное сопротивление транзисторного каскада с ОЭ бывает от сотен Ом до единиц килоом, а выходное — от единиц до десятков килоом.

Схема включения транзистора с общим коллектором – предназначена для усиления амплитуды входного сигнала по току. Усиления по напряжению в такой схеме не происходит. Правильнее сказать, коэффициент усиления по напряжению даже меньше единицы. Входной сигнал транзистором не инвертируется.
Входное сопротивление транзисторного каскада с ОК бывает от десятков до сотен килоом, а выходное в пределах сотни ом — единиц килоом. Благодаря тому, что в цепи эмиттера находится, как правило, нагрузочный резистор, схема обладает большим входным сопротивлением. Кроме того, благодаря усилению входного тока, она обладает высокой нагрузочной способностью. Эти свойства схемы с общим коллектором используются для согласования транзисторных каскадов — как «буферный каскад». Так как, входной сигнал, не усиливаясь по амплитуде «повторяется» на выходе, схему включения транзистора с общим коллектором ещё называют Эмиттерный повторитель .

Имеется ещё Схема включения транзистора с общей базой . Эта схема включения в теории есть, но в практике она реализуется очень тяжело. Такая схема включения используется в высокочастотной технике. Особенность её в том, что у неё низкое входное сопротивление, и согласовать такой каскад по входу сложно. Опыт в электронике у меня не малый, но говоря об этой схеме включения транзистора, я извините, ничего не знаю! Пару раз использовал как «чужую» схему, но так и не разбирался. Объясню: по всем физическим законам транзистор управляется его базой, вернее током, протекающим по пути база-эмиттер. Использование входного вывода транзистора — базы на выходе — не возможно. На самом деле базу транзистора через конденсатор «сажают» по высокой частоте на корпус, а на выходе её и не используют. А гальванически, через высокоомный резистор, базу связывают с выходом каскада (подают смещение). Но подавать смещение, по сути можно откуда угодно, хоть от дополнительного источника. Всё равно, попадающий на базу сигнал любой формы гасится через тот же самый конденсатор. Чтобы такой каскад работал, входной вывод — эмиттер через низкоомный резистор «сажают» на корпус, отсюда и низкое входное сопротивление. В общем, схема включения транзистора с общей базой — тема для теоретиков и экспериментаторов. На практике она встречается крайне редко. За свою практику в конструировании схем никогда не сталкивался с необходимостью использования схемы включения транзистора с общей базой. Объясняется это свойствами этой схемы включения: входное сопротивление — от единиц до десятков Ом, а выходное сопротивление — от сотен килоом до единиц мегаом. Такие специфические параметры — редкая потребность.

Биполярный транзистор может работать в ключевом и линейном (усилительном) режимах. Ключевой режим используется в различных схемах управления, логических схемах и др. В ключевом режиме, транзистор может находиться в двух рабочих состояниях – открытом (насыщенном) и закрытом (запертом) состоянии. Линейный (усилительный) режим используется в схемах усиления гармонических сигналов и требует поддержания транзистора в «наполовину» открытом, но не насыщенном состоянии.

Для изучения работы транзистора, мы рассмотрим схему включения транзистора с общим эмиттером, как наиболее важную схему включения.

Схема изображена на рисунке. На схеме VT – собственно транзистор. Резисторы R б1 и R б2 – цепочка смещения транзистора, представляющая собой обыкновенный делитель напряжения. Именно эта цепь обеспечивает смещение транзистора в «рабочую точку» в режиме усиления гармонического сигнала без искажений. Резистор R к – нагрузочный резистор транзисторного каскада, предназначен для подвода к коллектору транзистора электрического тока источника питания и его ограничения в режиме «открытого» транзистора. Резистор R э – резистор обратной связи, по своей сути увеличивает входное сопротивление каскада, при этом, уменьшает усиление входного сигнала. Конденсаторы С выполняют функцию гальванической развязки от влияния внешних цепей.

Чтобы Вам было понятнее, как работает биполярный транзистор, мы проведём аналогию с обычным делителем напряжения (см. рис. ниже). Для начала, резистор R 2 делителя напряжения сделаем управляемым (переменным). Изменяя сопротивление этого резистора, от нуля до «бесконечно» большого значения, мы можем получить на выходе такого делителя напряжение от нуля до значения, подаваемого на его вход. А теперь, представим себе, что резистор R 1 делителя напряжения – это коллекторный резистор транзисторного каскада, а резистор R 2 делителя напряжения – это переход транзистора коллектор-эмиттер. При этом, подавая на базу транзистора управляющее воздействие в виде электрического тока, мы изменяем сопротивление перехода коллектор-эмиттер, тем самым меняем параметры делителя напряжения. Отличие от переменного резистора в том, что транзистор управляется слабым током. Именно так и работает биполярный транзистор. Вышеуказанное изображено на рисунке ниже:

Для работы транзистора в режиме усиления сигнала, без искажения последнего, необходимо обеспечить этот самый рабочий режим. Говорят о смещении базы транзистора. Грамотные специалисты тешат себя правилом: Транзистор управляется током – это аксиома. Но режим смещения транзистора устанавливается напряжением база-эмиттер, а не током – это реальность. И у того, кто не учитывает напряжение смещения, никакой усилитель работать не будет. Поэтому в расчётах его значение должно учитываться.

Итак, работа биполярного транзисторного каскада в режиме усиления происходит при определённом напряжении смещения на переходе база-эмиттер. Для кремниевого транзистора значение напряжения смещения лежит в пределах 0,6…0,7 вольт, для германиевого – 0,2…0,3 вольта. Зная об этом понятии, можно не только рассчитывать транзисторные каскады, но и проверять исправность любого транзисторного усилительного каскада. Достаточно мультиметром с высоким внутренним сопротивлением измерить напряжение смещения база-эмиттер транзистора. Если оно не соответствует 0,6…0,7 вольт для кремния, или 0,2…0,3 вольта для германия, тогда ищите неисправность именно здесь – либо неисправен транзистор, либо неисправны цепи смещения или развязки этого транзисторного каскада.

Вышеуказанное, изображено на графике – вольтамперной характеристике (ВАХ).

Большинство из «спецов», посмотрев на представленную ВАХ скажет: Что за ерунда нарисована на центральном графике? Так выходная характеристика транзистора не выглядит! Она представлена на правом графике! Отвечу, там всё правильно, а началось это с электронно-вакуумных ламп. Раньше вольтамперной характеристикой лампы считалось падение напряжения на анодном резисторе. Сейчас, продолжают измерять на коллекторном резисторе, а на графике приписывают буквы, обозначающие падение напряжения на транзисторе, в чём глубоко ошибаются. На левом графике I б – U бэ представлена входная характеристика транзистора. На центральном графике I к – U кэ представлена выходная вольтамперная характеристика транзистора. А на правом графике I R – U R представлен вольтамперный график нагрузочного резистора R к , который обычно выдают за вольтамперную характеристику самого транзистора.

На графике имеет место линейный участок, используемый для линейного усиления входного сигнала, ограниченный точками А и С . Средняя точка – В , является именно той точкой, в которой необходимо содержать транзистор, работающий в усилительном режиме. Этой точке соответствует определённое напряжение смещения, которое при расчётах обычно берут: 0,66 вольт для транзистора из кремния, или 0,26 вольт для транзистора из германия.

По вольтамперной характеристике транзистора мы видим следующее: при отсутствии, или малом напряжении смещения на переходе база-эмиттер транзистора, ток базы и ток коллектора отсутствуют. В этот момент на переходе коллектор-эмиттер падает всё напряжение источника питания. При дальнейшем повышении напряжения смещения база-эмиттер транзистора, транзистор начинает открываться, появляется ток базы и вместе с ним растёт ток коллектора. При достижении «рабочей области» в точке С , транзистор входит в линейный режим, который продолжается до точки А . При этом, падение напряжения на переходе коллектор-эмиттер уменьшается, а на нагрузочном резисторе R к , наоборот увеличивается. Точка В – рабочая точка смещения транзистора, — это такая точка, при которой на переходе коллектор — эмиттер транзистора, как правило, устанавливается падение напряжения равное ровно половине напряжения источника питания. Отрезок АЧХ от точки С , до точки А называют рабочей областью смещения. После точки А , ток базы и следовательно ток коллектора резко возрастают, транзистор полностью открывается — входит в насыщение. В этот момент, на переходе коллектор-эмиттер падает напряжение обусловленное структурой n-p-n переходов, которое приблизительно равно 0,2…1 вольт, в зависимости от типа транзистора. Всё остальное напряжение источника питания падает на сопротивлении нагрузки транзистора – резисторе R к ., который кроме того, ограничивает дальнейший рост тока коллектора.

По нижним «дополнительным» рисункам, мы видим, как изменяется напряжение на выходе транзистора в зависимости от подаваемого на вход сигнала. Выходное напряжение (падение напряжения на коллекторе) транзистора противофазно (на 180 градусов) к входному сигналу.

Расчёт транзисторного каскада с общим эмиттером (ОЭ)

Прежде чем перейти непосредственно к расчёту транзисторного каскада, обратим внимание на следующие требования и условия:

Расчёт транзисторного каскада проводят, как правило, с конца (т.е. с выхода);

Для расчета транзисторного каскада нужно определить падение напряжения на переходе коллектор-эмиттер транзистора в режиме покоя (когда отсутствует входной сигнал). Оно выбирается таким, чтобы получить максимально неискаженный сигнал. В однотактной схеме транзисторного каскада работающего в режиме «A» это, как правило, половина значения напряжения источника питания;

В эмиттерной цепи транзистора бежит два тока — ток коллектора (по пути коллектор-эмиттер) и ток базы (по пути база-эмиттер), но так как ток базы достаточно мал, им можно пренебречь и принять, что ток коллектора равен току эмиттера;

Транзистор – усилительный элемент, поэтому справедливо будет заметить, что способность его усиливать сигналы должна выражаться какой-то величиной. Величина усиления выражается показателем, взятым из теории четырёхполюсников — коэффициент усиления тока базы в схеме включения с общим эмиттером (ОЭ) и обозначается он — h 21 . Его значение приводится в справочниках для конкретных типов транзисторов, причём, обычно в справочниках приводится вилка (например: 50 – 200). Для расчётов обычно выбирают минимальное значение (из примера выбираем значение — 50);

Коллекторное (R к ) и эмиттерное (R э ) сопротивления влияют на входное и выходное сопротивления транзисторного каскада. Можно считать, что входное сопротивление каскада R вх =R э *h 21 , а выходное равно R вых =R к . Если Вам не важно входное сопротивление транзисторного каскада, то можно обойтись вовсе без резистора R э ;

Номиналы резисторов R к и R э ограничивают токи, протекающие через транзистор и рассеиваемую на транзисторе мощность.

Порядок и пример расчёта транзисторного каскада с ОЭ

Исходные данные:

Питающее напряжение U и.п. =12 В.

Выбираем транзистор, например: Транзистор КТ315Г, для него:

P max =150 мВт; I max =150 мА; h 21 >50.

Принимаем R к =10*R э

Напряжение б-э рабочей точки транзистора принимаем U бэ = 0,66 В

Решение:

1. Определим максимальную статическую мощность, которая будет рассеиваться на транзисторе в моменты прохождения переменного сигнала, через рабочую точку В статического режима транзистора. Она должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике.

Принимаем P рас.max =0,8*P max =0,8*150 мВт=120 мВт

2. Определим ток коллектора в статическом режиме (без сигнала):

I к0 =P рас.max /U кэ0 =P рас.max /(U и.п. /2) = 120мВт/(12В/2) = 20мА.

3. Учитывая, что на транзисторе в статическом режиме (без сигнала) падает половина напряжения питания, вторая половина напряжения питания будет падать на резисторах:

(R к +R э )=(U и.п. /2)/I к0 = (12В/2)/20мА=6В/20мА = 300 Ом.

Учитывая существующий ряд номиналов резисторов, а также то, что нами выбрано соотношение R к =10*R э , находим значения резисторов:

R к = 270 Ом; R э = 27 Ом.

4. Найдем напряжение на коллекторе транзистора без сигнала.

U к0 =(U кэ0 + I к0 *R э )=(U и.п. — I к0 *R к ) = (12 В — 0,02А * 270 Ом) = 6,6 В.

5. Определим ток базы управления транзистором:

I б =I к /h 21 =/h 21 = / 50 = 0,8 мА.

6. Полный базовый ток определяется напряжением смещения на базе, которое задается делителем напряжения R б1 ,R б2 . Ток резистивного базового делителя должен быть на много больше (в 5-10 раз) тока управления базы I б , чтобы последний не влиял на напряжение смещения. Выбираем ток делителя в 10 раз большим тока управления базы:

R б1 ,R б2 : I дел. =10*I б = 10 * 0,8 мА = 8,0 мА.

Тогда полное сопротивление резисторов

R б1 +R б2 =U и.п. /I дел. = 12 В / 0,008 А = 1500 Ом.

7. Найдём напряжение на эмиттере в режиме покоя (отсутствия сигнала). При расчете транзисторного каскада необходимо учитывать: напряжение база-эмиттер рабочего транзистора не может превысить 0,7 вольта! Напряжение на эмиттере в режиме без входного сигнала примерно равно:

U э =I к0 *R э = 0,02 А * 27 Ом= 0,54 В,

где I к0 — ток покоя транзистора.

8. Определяем напряжение на базе

U б =U э +U бэ =0,54 В+0,66 В=1,2 В

Отсюда, через формулу делителя напряжения находим:

R б2 = (R б1 +R б2 )*U б /U и.п. = 1500 Ом * 1,2 В / 12В = 150 Ом R б1 = (R б1 +R б2 )-R б2 = 1500 Ом — 150 Ом = 1350 Ом = 1,35 кОм.

По резисторному ряду, в связи с тем, что через резистор R б1 течёт ещё и ток базы, выбираем резистор в сторону уменьшения: R б1 =1,3 кОм.

9. Разделительные конденсаторы выбирают исходя из требуемой амплитудно-частотной характеристики (полосы пропускания) каскада. Для нормальной работы транзисторных каскадов на частотах до 1000 Гц необходимо выбирать конденсаторы номиналом не менее 5 мкФ.

На нижних частотах амплитудно-частотная характеристика (АЧХ) каскада зависит от времени перезаряда разделительных конденсаторов через другие элементы каскада, в том числе и элементы соседних каскадов. Ёмкость должна быть такой, чтобы конденсаторы не успевали перезаряжаться. Входное сопротивление транзисторного каскада много больше выходного сопротивления. АЧХ каскада в области нижних частот определяется постоянной времени t н =R вх *C вх , где R вх =R э *h 21 , C вх — разделительная входная емкость каскада. C вых транзисторного каскада, это C вх следующего каскада и рассчитывается она так же. Нижняя частота среза каскада (граничная частота среза АЧХ) f н =1/t н . Для качественного усиления, при конструировании транзисторного каскада необходимо выбирать, чтобы соотношение 1/t н =1/(R вх *C вх )< в 30-100 раз для всех каскадов. При этом чем больше каскадов, тем больше должна быть разница. Каждый каскад со своим конденсатором добавляет свой спад АЧХ. Обычно, достаточно разделительной емкости 5,0 мкФ. Но последний каскад, через Cвых обычно нагружен низкоомным сопротивлением динамических головок, поэтому емкость увеличивают до 500,0-2000,0 мкФ, бывает и больше.

Расчёт ключевого режима транзисторного каскада производится абсолютно так же, как и ранее проведённый расчёт усилительного каскада. Отличие заключается только в том, что ключевой режим предполагает два состояния транзистора в режиме покоя (без сигнала). Он, или закрыт (но не закорочен), или открыт (но не перенасыщен). При этом, рабочие точки «покоя», находятся за пределами точек А и С изображённых на ВАХ. Когда на схеме в состоянии без сигнала транзистор должен быть закрыт, необходимо из ранее изображённой схемы каскада удалить резистор R б1 . Если же требуется, чтобы транзистор в состоянии покоя был открыт, необходимо в схеме каскада увеличить резистор R б2 в 10 раз от расчётного значения, а в отдельных случаях, его можно удалить из схемы.

Схема включения биполярного транзистора с общим эмиттером приведена на рис. 6.13:

В транзисторе, включенном по схеме с общим эмиттером, имеет место усиление не только по напряжению, но и по току. Входными параметрами для схемы с общим эмиттером будут ток базы I Б , и напряжение на базе относительно эмиттера U БЭ, а выходными характеристиками будут ток коллектора I К и напряжение на коллекторе U КЭ . Для любых напряжений:

U КЭ = U КБ + U БЭ

Отличительной особенностью режима работы с ОЭ является одинаковая полярность напряжения смещения на входе (базе) и выходе (коллекторе): отрицательный потенциал в случае pnp -транзистора и положительный в случае npn -транзистора. При этом переход база-эмиттер смещается в прямом направлении, а переход база-коллектор – в обратном.

Ранее при анализе биполярного транзистора в схеме с общей базой была получена связь между током коллектора и током эмиттера в следующем виде:
. В схеме с общим эмиттером дляpnp -транзистора (в соответствии с первым законом Кирхгофа) (6.1):
, отсюда получим:

Коэффициент α/(1-α) называется коэффициентом усиления по току биполярного транзистора в схеме с общим эмиттером . Обозначим этот коэффициент знаком β , итак:

.

Коэффициент передачи тока для транзистора, включенного по схеме с общим эмиттером β показывает, во сколько раз изменяется ток коллектора I К при изменении тока базы I Б. Поскольку величина коэффициента передачи α близка к единице (α <1), то из уравнения (6.38) следует, что коэффициент усиления β будет существенно больше единицы (β >>1). При значениях коэффициента передачи α =0,98÷0,99 коэффициент усиления тока базы будет лежать в диапазоне β =50÷100.

6.2.1 Статические вольт-амперные характеристики транзистора, включенные по схеме с общим эмиттером

Рассмотрим ВАХ pnp -транзистора в режиме ОЭ (рис. 6.13, 6.14).

При U КЭ =0
. Сувеличением напряжения U БЭ концентрация на переходе ЭБ растет (рис. 6.15,а), градиент концентрации инжектированных дырок растет, диффузионный ток дырок, как и в прямо смещенном pn -переходе, растет экспоненциально (т. А) и отличается от тока эмиттера только масштабом (6.36).

При обратных напряжениях на коллекторе и фиксированном напряжении на ЭП |U БЭ | (рис. 6.15,б) постоянной будет и концентрация дырок в базе вблизи эмиттера. Увеличение напряжения U КЭ будет сопровождаться расширением ОПЗ коллекторного перехода и уменьшением ширины базы (эффект Эрли) и, следовательно, уменьшением общего количества дырок, находящихся в базе.

При этом градиент концентрации дырок в базе будут расти, что приводит к дальнейшему уменьшению их концентрации. Поэтому число рекомбинаций электронов и дырок в базе в единицу времени уменьшается (возрастает коэффициент переноса ). Так как электроны для рекомбинации приходят через базовый вывод, ток базы уменьшается и входные ВАХ смещаются вниз .

При U БЭ =0 и отрицательном напряжении на коллекторе (U кб << 0) ток через эмиттерный переход равен нулю, в базе транзистора концентрация дырок меньше равновесной, так как у КП эта концентрация равна нулю, а у ЭП ее величина определяется равновесным значением. Через коллекторный переход протекает ток экстрагированных из коллектора дырок I КЭ 0 .

В базе, как и в pn -переходе при обратном смещении, процесс тепловой генерации будет преобладать над процессом рекомбинации. Генерированные электроны уходят из базы через базовый вывод, что означает наличие электрического тока, направленного в базу транзистора (т. В). Это – режим отсечки , он характеризуется сменой направления тока базы.

Выходные ВАХ.

В активном режиме (|U КЭ |> |U БЭ |>0 ) поток инжектированных эмиттером дырок p экстрагируется коллекторным переходом также, как и в режиме ОБ, с коэффициентом
. Часть дырок(1-α) p рекомбинирует в базе в электронами, поступающими из омического контакта базы.

При увеличении тока базы отрицательный заряд электронов уменьшает потенциальный барьер эмиттерного перехода, вызывая дополнительную инжекцию дырок в базе.

Проанализируем, почему малые изменения тока базы I Б вызывают значительные изменения коллекторного тока I К. Значение коэффициента β , существенно большее единицы, означает, что коэффициент передачи α близок к единице. В этом случае коллекторный ток близок к эмиттерному току, а ток базы (по физической природе рекомбинационный) существенно меньше и коллекторного и эмиттерного тока. При значении коэффициента α = 0,99 из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.

Увеличение базового тока в два раза (должны прорекомбинировать две дырки) вызовет в два раза большую инжекцию через эмиттерный переход (должно инжектироваться 200 дырок) и соответственно экстракцию через коллекторный (экстрагируется 198 дырок). Таким образом, малое изменение базового тока, например, с 5 до 10 мкА, вызывает большие изменения коллекторного тока, соответственно с 500 мкА до 1000 мкА. Ток базы стократно вызывает увеличение тока коллектора.

По аналогии с (6.34) можно записать:

Учитывая (6.1):
, получим:

Учитывая, что

, а

где - сквозной тепловой ток отдельно взятого коллекторногоpn -перехода в режиме оторванной базы (при
, т. С, режим отсечки ). За счет прямого смещения базового перехода (рис. 6.16) ток
много больше теплового тока коллектора I к 0 .

Рис. 6.16 U БЭ =const,U КЭ – переменное

В режиме насыщения база должна быть обогащена неосновными носителями. Критерием этого режима является равновесная концентрация носителей на КП (U КБ =0 ). В силу уравнения U КЭ = U КБ + U БЭ, равенство напряжения на коллекторном переходе нулю может иметь место при небольших отрицательных напряжениях между базой и эмиттером. При U КЭ 0 иU БЭ <0, оба перехода смещаются в прямом направлении, их сопротивление падает. При малых напряжениях на коллекторе (U КЭ < U БЭ ) U КБ меняет свой знак, сопротивление коллекторного перехода резко уменьшается, коллектор начинает инжектировать дырки в базу. Поток дырок из коллектора компенсирует поток дырок из эмиттера. Ток коллектора меняет свой знак (на выходных ВАХ эта область обычно не показывается).

При больших напряжениях на коллекторе возможен пробой коллекторного перехода за счет лавинного умножения носителей в ОПЗ (т. D). Напряжение пробоя зависит от степени легирования областей транзистора. В транзисторах с очень тонкой базой возможно расширение ОПЗ на всю базовую область (происходит прокол базы).

Сравнивая выходные ВАХ транзистора, включенного по схеме с ОЭ и ОБ (рис. 6.17), можно заметить две наиболее существенные особенности: во-первых, характеристики в схеме с ОЭ имеют больший наклон, свидетельствующий об уменьшении выходного сопротивления транзистора и, во-вторых, переход в режим насыщения наблюдается при отрицательных напряжениях на коллекторе.

Рост тока коллектора с увеличением U КЭ определяется уменьшением ширины базы. Коэффициенты переноса æ и передачи тока эмиттера α растут, но коэффициент передачи тока базы в схеме с ОЭ
растет быстрееα . Поэтому при постоянном токе базы ток коллектора увеличивается сильнее, чем в схеме с ОБ.

Рис. 6.23 Выходные характеристики pnp -транзистора

а – в схеме с ОБ, б – в схеме с ОЭ

6.3 Включение транзистора по схеме с общим коллектором

Если входная и выходная цепи имеют общим электродом коллектор (ОК) и выходным током является ток эмиттера, а входным ток базы, то для коэффициента передачи тока справедливо:

Вв таком включении коэффициент передачи тока несколько выше, чем во включении ОЭ, а коэффициент усиления по напряжению незначительно меньше единицы, так как разность потенциалов между базой и эмиттером практически не зависит от тока базы. Потенциал эмиттера практически повторяет потенциал базы, поэтому каскад, построенный на основе транзистора с ОК, называют эмиттерным повторителем . Однако этот тип включения используется сравнительно редко.

Сопоставляя полученные результаты, можно сделать выводы :

    Схема с ОЭ обладает высоким усилением как по напряжению, так и по току, У нее самое большое усиление по мощности. Отметим, что схема изменяет фазу выходного напряжения на 180. Это самая распространенная усилительная схема.

    Схема с ОБ усиливает напряжение (примерно, как и схема с ОЭ), но не усиливает ток. Фаза выходного напряжения по отношению к входному не меняется. Схема находит применение в усилителях высоких и сверхвысоких частот.

    Схема с ОК (эмиттерный повторитель) не усиливает напряжение, но усиливает ток. Основное применение данной схемы - согласование сопротивлений источника сигнала и низкоомной нагрузки.

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки»). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто . Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги ).

  1. Коллектор имеет более положительный потенциал, чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

Коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока ! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине . Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!