Самые мощные суперэвм представлены серией. Подписка на новости

Время прочтения: 2 мин.

До сих пор человечество так и не достигло терриконов Марса, не изобрело эликсир молодости, авто еще не могут взмыть над землей, но есть несколько сфер, в которых мы все таки преуспели. Создание мощных суперкомпьютеров – именно такая сфера. Чтобы оценить мощность компьютера, нужно определить какой ключевой параметр отвечает за эту характеристику. Этим параметром является флопс — величина, которая показывает, сколько операций может выполнить ПК за одну секунду. Именно, на основании этой величины, наш журнал Большой Рейтинг и расставил самые мощные компьютеры в мире на 2017 год.

Мощность суперкомпьютера — 8,1 Пфлоп/сек

Этот компьютер хранит данные, которые отвечают за безопасность военной структуры Соединенных Штатов, также он отвечает за состояние готовности ядерной атаки, в случае необходимости. Два года назад эта машина была одной из самых мощных и дорогих в мире, но на сегодня Trinity вытеснили более новые аппараты. Система, на которой работает этот суперкомпьютер — Cray XC40, благодаря ей, аппарат и может «выдавать» такое количество операций в секунду.

Mira

Мощность суперкомпьютера – 8,6 Пфлоп/сек

Компания Cray выпустила еще один суперкомпьютер – Mira. Министерство энергетики США заказало выпуск этой машины, для координации своей работы. Сфера, в которой работает Mira – промышленность и развитие научно-исследовательского потенциала. В секунду этот суперкомпьютер может рассчитать 8,6 петафлопс.

Мощность суперкомпьютера – 10,5 Пфлоп/сек

Название этого аппарата сразу описывает мощность, японское слово «кей» (К) означает десять квадриллионов. Эта цифра почти точно описывать его производительную мощность – 10,5 петафлопс. «Фишкой» этого суперкомпьютера является его система охлаждения. Используют водное охлаждение, которое снижает потребление энергетических запасов и снижает показатели скорости компоновки.

Мощность суперкомпьютера – 13,6 Пфлоп/сек

Fujitsu – компания из страны Восходящего Солнца, не остановилась в работе, выпустив суперкомпьютер K Computer, они сразу же принялись за новый проект. Этим проектом стал суперкомпьютер Oakforest-Pacs, который относят к машинам нового поколения (поколение Knights landing). Его разработку заказали Токийский и Цукубский университеты. По первоначальному плану, память аппарата должна была быть 900 Тбайт, а производительность Oakforest-Pacs составляла бы 25 квадраллионов операций в секунду. Но при нехватке финансирования, не было доработано множество аспектов, поэтому мощность суперкомпьютера составила 13,6 петафлопс в секунду.

Cori

Мощность суперкомпьютера – 14 Пфлоп/сек

Еще в прошлом году Cori был на шестой строчке в списке самых мощных суперкомпьютеров в мире, но при сумасшедшей скорости развития технологий, он уступил одну позицию. Этот суперкомпьютер находится в Соединенных Штатах, в Национальной лаборатории имени Лоуренса и Беркли. Ученые из Швейцарии, с помощью Cori смогли разработать 45-кубитную квантовую вычислительную машину. Производственная мощность этого суперкомпьютера – 14 петафлопс в секунду.

Мощность суперкомпьютера – 17,2 Пфлоп/сек

Ученые со всего мира долго время сходились во мнении, что Sequoia – самый быстрый суперкомпьютер на планете. И это не просто так, ведь он способен произвести арифметические расчеты, на которые бы людям в количестве 6,7 млрд. понадобилось бы 320 лет, за одну секунду. Поистине, поражают размеры машины – она занимает более чем 390 квадратных метра и в ее состав входит 96 стоек. Шестнадцать тысяч триллионов операций или другими словами 17,2 петафлопс – производственная мощность этого суперкомпьютера.

Titan

Мощность суперкомпьютера – 17,6 Пфлоп/сек

Кроме того, что этот суперкомпьютер один из самых быстрых на планете, он еще и очень энергоэффективен. Показатель энергоэффективности составляет 2142,77 мегафлопс на Ватт энергии, необходимой для потребления. Причиной такой низкой энергопотребляемости является ускоритель Nvidia, который обеспечивает до 90% мощности, необходимой для вычислений. Кроме этого, ускоритель Nvidia значительно сократил площадь, которую занимал этот суперкомпьютер, теперь ему нужно всего лишь 404 квадратных метра.

Мощность суперкомпьютера – 19,6 Пфлоп/сек

Первый запуск этого аппарата состоялся в 2013 году, в Швейцарии, в городе Лугано. Сейчас геолокация этого суперкомпьютера – Швейцарский национальный центр суперкомпьютеров. Piz Daint – это сочетание всех лучших характеристик вышеперечисленных машин, у него очень высокий показатель энергоэффективности и он очень быстр в вычислениях. Только одна характеристика оставляет желать лучшего – габариты этого суперкомпьютера, он занимает 28 огромных стоек. Piz Daint способен работать с вычислительной мощностью 19,6 петафлопс в секунду.

Мощность суперкомпьютера – 33,9 Пфлоп/сек

Этот аппарат имеет романтическое название Tianhe, что с китайского, в переводе, значит «Млечный Путь». Tianhe-2 был самым быстрым компьютером в списке 500-ти самых быстрых и мощных суперкомпьютеров. Он может рассчитать 2507 арифметических операций, что в переводе на петафлопсы составит 33,9 Пфлоп/сек. Специализация, в которой используют этот компьютер – строительство, он рассчитывает операции связанные с застройкой и прокладкой дорог. Еще с первого запуска в 2013 году, этот компьютер не теряет свои позиции в списках, что доказывает, что это одна из лучших машин в мире.

Мощность суперкомпьютера – 93 Пфлоп/сек

Sunway TaihuLight – самый быстрый суперкомпьютер в мире, кроме своей огромной скорости вычислений, он славится еще и своими огромными габаритами – он занимает площадь более 1000 квадратных метров. Международная конференция 2016 года, которая проходила в Германии, признала этот суперкомпьютер самым быстрым в мире и он до сих пор не имеет серьезного конкурента в этом плане. Его скорость в три раза превышает показатели Tianhe-2, ближайший к нему суперкомпьютер в этом плане!

Технический прогресс не стоит на месте, он развивается с космической скоростью, влияет на множество аспектов человеческой жизни, имеет множество как позитивных, так и негативных сторон. Для человека сейчас доступной стала техника самых разных типов: компьютеры, роботы и приборы. Но главной целью любой аппаратуры является упрощение жизни человека, техника не должна стать бессмысленным развлечением, которое будет только тратить ваше время.

Супер-ЭВМ это достаточно гибкий и очень широкий термин. В общем понимании супер-ЭВМ это компьютер значительно мощнее всех имеющихся доступных на рынке компьютеров. Некоторые инженеры, шутливо, называют суперкомпьютером любой компьютер масса которого превосходит одну тонну. И хотя большинство современных супер-ЭВМ действительно весят более тонны. Не всякую ЭВМ можно назвать «супер», даже если она весит более тонны. Марк-1, Эниак – тоже тяжеловесы, но суперкомпьютерами не считаются даже для своего времени.

Скорость технического прогресса настолько велика, что сегодняшняя супер-ЭВМ через 5 -10 лет будет уступать домашнему компьютеру. Термин супервычисления появился еще 20-х годах прошлого века, а термин супер-ЭВМ в 60-х годах. Но получил широкое распространение во многом благодоря Сеймура Крея и его супер-ЭВМ Cray-1, Cray-2. Хотя сам Сеймур Крей не предпочитает использовать данный термин. Называет свои машины, просто компьютер.

В 1972 году С.Крэй покидает CDC и основывает свою компанию Cray Research, которая в 1976г. выпускает первый векторно-конвейерный компьютер CRAY-1 : время такта 12.5нс, 12 конвейерных функциональных устройств, пиковая производительность 160 миллионов операций в секунду, оперативная память до 1Мслова (слово - 64 разряда), цикл памяти 50нс. Главным новшеством является введение векторных команд, работающих с целыми массивами независимых данных и позволяющих эффективно использовать конвейерные функциональные устройства.

Cray-1 принято считать одним из первых супер-ЭВМ. В процессорах компьютера был огромный, по тем временам, набор регистров. Которые разделялись на группы. Каждая группа имело свое собственное функциональное назначение. Блок адресных регистров который отвечал за адресацию в памяти ЭВМ. Блок векторных регистров, блок скалярных регистров.

Сборка компьютера Cray-1

Компьютер Cray-2

Первый советский супер-ЭВМ

В самом начале появления супер-ЭВМ было связано с потребностью быстрой обработки больших массивов данных и сложных математически - аналитических вычислениях. Поэтому первые суперкомпьютеры по своей архитектуре мало отличались от обычных ЭВМ. Только их мощность была во много раз больше стандартных рабочих станций. Изначально супер-ЭВМ оснащались векторными процессорами, обычные скалярными. К 80-м перешли на параллельную работу нескольких векторных процессоров. Но данный путь развития оказался не рациональным. Супер-ЭВМ перешли на параллельно работающие скалярные процессоры.

Массивно-параллельные процессоры стали базой для супер-ЭВМ. Тысячи процессорных элементов объединялись создавая мощную платформу для вычислений. Большинство параллельно работающих процессоров создавались на основе архитектуры RISC. RISC (Reduced Instruction Set Computing) – вычисления с сокращенным набором команд. Под этим термином производители процессоров понимают концепцию, где более простые инструкции выполняться быстрее. Данный метод позволяет снизить себестоимость производства процессоров. Одновременно увеличить их производительность.

Потребность в мощных вычислительных решениях быстро возрастала. Супер-ЭВМ слишком дорогие. Требовалась альтернатива. И на смену им пришли кластеры. Но и на сегодняшний день мощные компьютеры называют суперкомпьютерами. Кластер это множество серверов объеденных в сеть и работают над одной задачей. Эта группа серверов обладает высокой производительностью. Во много раз больше чем то же самое количество серверов которые работали бы отдельно. Кластер дает высокую надежность. Выход из строя одного сервера не приведет к аварийной остановке всей системы, а лишь не много отразиться на ее производительности. Возможно произвести замену сервера в кластере без остановки всей системы. Не нужно сразу выкладывать огромные суммы за супер-ЭВМ. Кластер можно наращивать постепенно, что значительно амортизирует затраты предприятия.

Университетский кластер

Цели Супер-ЭВМ

1.Максимальная арифметическая производительность процессора;

2.эффективность работы операционной системы и удобство общения с ней для программиста;

3.Эффективность трансляции с языков высокого уровня и исключение написания программ на автокоде;

4.Эффективность распараллеливания алгоритмов для параллельных архитектур;

5.Повышение надежости.

Архитектура современных Супер-ЭВМ

Архитектура ЭВМ охватывает значительный круг проблем, связанных с созданием комплекса аппаратных и программных средств и учитывающих большое количество определяющих факторов. Среди этих факторов основными являются: стоимость, сфера применения, функциональные возможности, удобство в эксплуатации, а одним из основных компонентов архитектуры считаются аппаратные средства.Архитектура ЭВМ включает в себя как структуру, отражающую состав ПК, так и программно – математическое обеспечение. Структура ЭВМ - совокупность элементов и связей между ними. Основным принципом построения всех современных ЭВМ является программное управление.

Все компьютеры делятся на четыре класса в зависимости от числа потоков команд и данных.

К первому классу (последовательные компьютеры фон Неймана) принадлежат обычные скалярные однопроцессорные системы: одиночный поток команд - одиночный поток данных (SISD). Персональный компьютер имеет архитектуру SISD, причем не важно, используются ли в ПК конвейеры для ускорения выполнения операций.

Второй класс характеризуется наличием одиночного потока команд, но множественного nomoka данных (SIMD). К этому архитектурному классу принадлежат однопроцессорные векторные или, точнее говоря, векторно-конвейерные суперкомпьютеры, например, Cray-1 . В этом случае мы имеем дело с одним потоком (векторных) команд, а потоков данных - много: каждый элемент вектора входит в отдельный поток данных. К этому же классу вычислительных систем относятся матричные процессоры, например, знаменитый в свое время ILLIAC-IV. Они также имеют векторные команды и реализуют векторную обработку, но не посредством конвейеров, как в векторных суперкомпьютерах, а с помощью матриц процессоров.

К третьему классу - MIMD - относятся системы, имеющие множественный поток команд и множественный поток данных. К нему принадлежат не только многопроцессорные векторные суперЭВМ, но и вообще все многопроцессорные компьютеры. Подавляющее большинство современных суперЭВМ имеют архитектуру MIMD.

Четвертый класс в систематике Флинна, MISD, не представляет практического интереса,по крайней мере для анализируемых нами компьютеров. В последнее время в литературе часто используется также термин SPMD (одна программа - множественные данные). Он относится не к архитектуре компьютеров, а к модели распараллеливания программ и не является расширением систематики Флинна. SPMD обычно относится к MPP (т.е. MIMD) - системам и означает, что несколько копий одной программы.

Задачи супер-ЭВМ

В самом начале появления супер-ЭВМ было связано с потребностью быстрой обработки больших массивов данных и сложных математически - аналитических вычислениях. ЭВМ - машины для крупно-маштабных задач.

1.Для решения сложных и больших научных задач, в управлении, разведке

2.Новейшее архитектурные разработки с использованием современной элементарной базы и арифметических ускорителей

3.Проектирование и имитационное моделирование

4.Повышение производительности

5. Централизованное хранилище информции

6.Оценка сложности решаемых на практике задач

Супер-ЭВМ в Мюнхенском техническом университете

Супер-ЭВМ второго поколения,находящийся в ВНИИЭФ

Харакеристики производительности Супер-ЭВМ

За полвека производительность компьютеров выросла более, чем в семьсот миллионов раз. При этом выигрыш в быстродействии, связанный с уменьшением времени такта с 2 микросекунд до 1.8 наносекунд, составляет лишь около 1000 раз.Использование новых решений в архитектуре компьютеров. Основное место среди них занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий. Параллельная обработка данных, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и собственно параллельность.Параллельная обработка данных, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и собственно параллельность.

Параллельная обработка. Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут - принцип параллельности в действии!

Конвейерная обработка Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

Все самые первые компьютеры (EDSAC, EDVAC, UNIVAC) имели разрядно-последовательную память, из которой слова считывались последовательно бит за битом. Первым коммерчески доступным компьютером, использующим разрядно-параллельную память (на CRT) и разрядно-параллельную арифметику, стал IBM 701, а наибольшую популярность получила модель IBM 704 (продано 150 экз.), в которой, помимо сказанного, была впервые применена память на ферритовых сердечниках и аппаратное АУ с плавающей точкой. Иерархия памяти. Иерархия памяти пямого отношения к параллелизму не имеет, однако, безусловно, относится к тем особенностям архитектуры компьютеров, которые имеет огромное значение для повышения их производительности (сглаживание разницы между скоростью работы процессора и временем выборки из памяти). Основные уровни: регистры, кэш-память, оперативная память, дисковая память. Время выборки по уровням памяти от дисковой памяти к регистрам уменьшается, стоимость в пересчете на 1 слово (байт) растет. В настоящее время, подобная иерархия поддерживается даже на персональных компьютерах.

В настоящее время исрльзуются:

1. Векторно-конвейерные компьютеры. Конвейерные функциональные устройства и набор векторных команд

2. Массивно-параллельные компьютеры с распределенной памятью.

3. Параллельные компьютеры с общей памятью. Вся оперативная память таких компьютеров разделяется несколькими одинаковыми процессорами

4.Использование параллельных вычислительных систем

Список самых мощных компьютеров в мире

Организация, где установлен компьютер Тип компьютера Количество вычислительных ядер Максимальная производительность Электропотребление
Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 224162 1759.00 6950.60
National Supercomputing Centre in Shenzhen (NSCS) Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 120640 1271.00 2984.30
DOE/NNSA/LANL Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 122400 1042.00 2345.50
National Institute for Computational Sciences/University of Tennessee Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 98928 831.70 2569
JUGENE - Blue Gene/P Solution / 2009 294912 825.50 2268.00
National SuperComputer Center in Tianjin/NUDT Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 71680 563.10 2578
DOE/NNSA/LLNL BlueGene/L - eServer Blue Gene Solution / 2007 212992 478.20 2329.60
Argonne National Laboratory Intrepid - Blue Gene/P Solution / 2007 163840 458.61 1260
Sandia National Laboratories / National Renewable Energy Laboratory Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband / 2010

Sun Microsystems

42440 433.50 1254
Texas Advanced Computing Center/Univ. of Texas Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008

Sun Microsystems

62976 433.20 2000.00
DOE/NNSA/LLNL Dawn - Blue Gene/P Solution / 2009 147456 415.70 1134
Moscow State University - Research Computing Center Russia Lomonosov - T-Platforms T-Blade2, Xeon 5570 2.93 GHz, Infiniband QDR / 2009 T-Platforms 35360 350.10 1127
Forschungszentrum Juelich (FZJ) JUROPA - Sun Constellation, NovaScale R422-E2, Intel Xeon X5570, 2.93 GHz, Sun M9/Mellanox QDR Infiniband/Partec Parastation / 2009 26304 274.80 1549.00
KISTI Supercomputing Center TachyonII - Sun Blade x6048, X6275, IB QDR M9 switch, Sun HPC stack Linux edition / 2009

Sun Microsystems

26232 274.20 307.80
University of Edinburgh HECToR - Cray XT6m 12-Core 2.1 GHz / 2010 43660 274.70 1189.80
NERSC/LBNL Franklin - Cray XT4 QuadCore 2.3 GHz / 2008 38642 266.30 1150.00
Grand Equipement National de Calcul Intensif - Centre Informatique National de l"Enseignement Supц╘rieur (GENCI-CINES) Jade - SGI Altix ICE 8200EX, Xeon E5472 3.0/X5560 2.8 GHz / 2010 23040 237.80 1064.00
Institute of Process Engineering, Chinese Academy of Sciences Mole-8.5 - Mole-8.5 Cluster Xeon L5520 2.26 Ghz, nVidia Tesla, Infiniband / 2010

IPE, nVidia Tesla C2050, Tyan

33120 207.30 1138.44
Oak Ridge National Laboratory Jaguar - Cray XT4 QuadCore 2.1 GHz / 2008 30976 205.00 1580.71}

На Марс люди так и не летают, рак еще не вылечили, от нефтяной зависимости не избавились. И все же существуют области, где человечество достигло невероятного прогресса за последние десятилетия. Вычислительная мощь компьютеров – как раз одна из них.

Два раза в год специалисты из Национальной лаборатории имени Лоуренса в Беркли и Университета Теннесси публикуют Top-500, в котором предлагают список самых производительных суперкомпьютеров мира.

В качестве ключевого критерия в этом рейтинге используется характеристика, которая уже давно считается одной из наиболее объективных в оценке мощности суперкомпьютеров – флопс, или число операций с плавающей точкой в секунду.

Немного забегая вперед, предлагаем вам заранее попробовать на вкус эти цифры: производительность представителей первого десятка топа измеряется десятками квадриллионов флопс. Для сравнения: ЭНИАК, первый компьютер в истории, обладал мощностью в 500 флопс; сейчас средний персональный компьютер имеет мощность в сотни гигафлопс (миллиардов флопс), iPhone 6 обладает производительностью приблизительно в 172 гигафлопса, а игровая приставка PS4 – в 1,84 терафлопса (триллиона флопс).

Вооружившись последним «Топ-500» от ноября 2014 года, редакция Naked Science решила разобраться, что из себя представляют 10 самых мощных суперкомпьютеров мира, и для решения каких задач требуется столь грандиозная вычислительная мощь.

10. Cray CS-Storm

Местоположение: США
Производительность: 3,57 петафлопс
Теоретический максимум производительности: 6,13 петафлопс
Мощность: 1,4 МВт

Как и практически все современные суперкомпьютеры, включая каждый из представленных в данной статье, CS-Storm состоит из множества процессоров, объединенных в единую вычислительную сеть по принципу массово-параллельной архитектуры. В реальности эта система представляет собой множество стоек («шкафов») с электроникой (узлами, состоящими из многоядерных процессоров), которые образуют целые коридоры.

Cray CS-Storm – это целая серия суперкомпьютерных кластеров, однако один из них все же выделяется на фоне остальных. В частности, это загадочный CS-Storm, который использует правительство США для неизвестных целей и в неизвестном месте.

Известно лишь то, что американские чиновники купили крайне эффективный с точки зрения потребления энергии (2386 мегафлопс на 1 Ватт) CS-Storm с общим количеством ядер почти в 79 тысяч у американской компании Cray.

На сайте производителя, впрочем, сказано, что кластеры CS-Storm подходят для высокопроизводительных вычислений в области кибербезопасности, геопространственной разведки, распознавания образов, обработки сейсмических данных, рендеринга и машинного обучения. Где-то в этом ряду, вероятно, и обосновалось применение правительственного CS-Storm.


CRAY CS-STORM / © Cray

9. Vulcan – Blue Gene/Q

Местоположение: США
Производительность: 4,29 петафлопс
Теоретический максимум производительности: 5,03 петафлопс
Мощность: 1,9 МВт

«Вулкан» разработан американской компанией IBM, относится к семейству Blue Gene и находится в Ливерморской национальной лаборатории имени Э. Лоуренса. Принадлежащий Министерству энергетики США суперкомпьютер состоит из 24 стоек. Функционировать кластер начал в 2013 году.

В отличие уже упомянутого CS-Storm, сфера применения «Вулкана» хорошо известна – это различные научные исследования, в том числе в области энергетики, вроде моделирования природных явлений и анализа большого количества данных.

Различные научные группы и компании могут получить доступ к суперкомпьютеру по заявке, которую нужно отправить в Центр инноваций в области высокопроизводительных вычислений (HPC Innovation Centre), базирующийся в той же Ливерморской национальной лаборатории.


Суперкомпьютер Vulcan / © Laura Schulz and Meg Epperly/LLNL

8. Juqueen – Blue Gene/Q

Местоположение: Германия
Производительность: 5 петафлопс
Теоретический максимум производительности: 5,87 петафлопс
Мощность: 2,3 МВт

С момента запуска в 2012 году Juqueen является вторым по мощности суперкомпьютером в Европе и первым – в Германии. Как и «Вулкан», этот суперкомпьютерный кластер разработан компанией IBM в рамках проекта Blue Gene, причем относится к тому же поколению Q.

Находится суперкомпьютер в одном из крупнейших исследовательских центров Европы в Юлихе. Используется соответственно – для высокопроизводительных вычислений в различных научных исследованиях.


Суперкомпьютер Juqueen / © Jülich Supercomputing Centre (JSC)

7. Stampede – PowerEdge C8220

Местоположение: США
Производительность: 5,16 петафлопс
Теоретический максимум производительности: 8,52 петафлопс
Мощность: 4,5 МВт

Находящийся в Техасе Stampede является единственным в первой десятке Top-500 кластером, который был разработан американской компанией Dell. Суперкомпьютер состоит из 160 стоек.

Этот суперкомпьютер является мощнейшим в мире среди тех, которые применяются исключительно в исследовательских целях. Доступ к мощностям Stampede открыт научным группам. Используется кластер в самом широком спектре научных областей – от точнейшей томографии человеческого мозга и предсказания землетрясений до выявления паттернов в музыке и языковых конструкциях.


Суперкомпьютер Stampede / © Texas Advanced Computing Center

6. Piz Daint – Cray XC30

Местоположение: Швейцария
Производительность: 6,27 петафлопс
Теоретический максимум производительности: 7,78 петафлопс
Мощность: 2,3 МВт

Швейцарский национальный суперкомпьютерный центр (CSCS) может похвастаться мощнейшим суперкомпьютером в Европе. Piz Daint, названный так в честь альпийской горы, был разработан компанией Cray и принадлежит к семейству XC30, в рамках которого является наиболее производительным.

Piz Daint применяется для различных исследовательских целей вроде компьютерного моделирования в области физики высоких энергий.


Суперкомпьютер Piz Daint / © blogs.nvidia.com

5. Mira – Blue Gene/Q

Местоположение: США
Производительность: 8,56 петафлопс
Теоретический максимум производительности: 10,06 петафлопс
Мощность: 3,9 МВт

Суперкомпьютер «Мира» был разработан компанией IBM в рамках проекта Blue Gene в 2012 году. Отделение высокопроизводительных вычислений Аргонской национальной лаборатории, в котором располагается кластер, было создано при помощи государственного финансирования. Считается, что рост интереса к суперкомпьютерным технологиям со стороны Вашингтона в конце 2000-х и начале 2010-х годов объясняется соперничеством в этой области с Китаем.

Расположенный на 48 стойках Mira используется в научных целях. К примеру, суперкомпьютер применяется для климатического и сейсмического моделирования, что позволяет получать более точные данные по предсказанию землетрясений и изменений климата.


Суперкомпьютер Mira / © Flickr

4. K Computer

Местоположение: Япония
Производительность: 10,51 петафлопс
Теоретический максимум производительности: 11,28 петафлопс
Мощность: 12,6 МВт

Разработанный компанией Fujitsu и расположенный в Институте физико-химических исследований в городе Кобе K Сomputer является единственным японским суперкомпьютером, присутствующим в первой десятке Top-500.

В свое время (июнь 2011) этот кластер занял в рейтинге первую позицию, на один год став самым производительным компьютером в мире. А в ноябре 2011 года K Computer стал первым в истории, которому удалось достичь мощности выше 10 петафлопс.

Суперкомпьютер используется в ряде исследовательских задач. К примеру, для прогнозирования природных бедствий (что актуально для Японии из-за повышенной сейсмической активности региона и высокой уязвимости страны в случае цунами) и компьютерного моделирования в области медицины.


Суперкомпьютер K / © Fujitsu

3. Sequoia – Blue Gene/Q

Местоположение: США
Производительность: 17,17 петафлопс
Теоретический максимум производительности: 20,13 петафлопс
Мощность: 7,8 МВт

Мощнейший из четверки суперкомпьютеров семейства Blue Gene/Q, попавших в первую десятку рейтинга, расположен в США в Ливерморской национальной лаборатории. IBM разработали Sequoia для Национальной администрации ядерной безопасности (NNSA), которой требовался высокопроизводительный компьютер для вполне конкретной цели – моделирования ядерных взрывов.

Стоит упомянуть, что реальные ядерные испытания запрещены еще с 1963 года, и компьютерная симуляция является одним из наиболее приемлемых вариантов для продолжения исследований в этой области.

Однако мощности суперкомпьютера использовались для решения и других, куда более благородных задач. К примеру, кластеру удалось поставить рекорды производительности в космологическом моделировании, а также при создании электрофизиологической модели человеческого сердца.


Суперкомпьютер Sequoia / © Bob Hirschfeld/LLNL

2. Titan – Cray XK7

Местоположение: США
Производительность: 17,59 петафлопс
Теоретический максимум производительности: 27,11 петафлопс
Мощность: 8,2 МВт

Наиболее производительный из когда-либо созданных на Западе суперкомпьютеров, а также самый мощный компьютерный кластер под маркой компании Cray находится в США в Национальной лаборатории Оук-Ридж. Несмотря на то, что находящийся в распоряжении американского Министерства энергетики суперкомпьютер официально доступен для любых научных исследований, в октябре 2012 года, когда Titan был запущен, количество заявок превысило всякие пределы.

Из-за этого в Оукриджской лаборатории была созвана специальная комиссия, которая из 50 заявок отобрала лишь 6 наиболее «передовых» проектов. Среди них, к примеру, моделирование поведения нейтронов в самом сердце ядерного реактора, а также прогнозирование глобальных климатических изменений на ближайшие 1-5 лет.

Несмотря на свою вычислительную мощь и впечатляющие габариты (404 квадратных метра), Titan недолго продержался на пьедестале. Уже через полгода после триумфа в ноябре 2012 года гордость американцев в области высокопроизводительных вычислений неожиданно потеснил выходец с Востока, беспрецедентно обогнав предыдущих лидеров рейтинга.


Суперкомпьютер Titan / © olcf.ornl.gov

1. Tianhe-2 / Млечный путь-2

Местоположение: Китай
Производительность: 33,86 петафлопс
Теоретический максимум производительности: 54,9 петафлопс
Мощность: 17,6 МВт

С момента своего первого запуска «Тяньхэ-2», или «Млечный-путь-2», вот уже около двух лет является лидером Top-500. Этот монстр почти в два раза превосходит по производительности №2 в рейтинге – суперкомпьютер TITAN.

Разработанный Оборонным научно-техническим университетом Народно-освободительной армии КНР и компанией Inspur «Тяньхэ-2» состоит из 16 тысяч узлов с общим количеством ядер в 3,12 миллиона. Оперативная память всей это колоссальной конструкции, занимающей 720 квадратных метров, составляет 1,4 петабайт, а запоминающего устройства – 12,4 петабайт.

«Млечный путь-2» был сконструирован по инициативе китайского правительства, поэтому нет ничего удивительного в том, что его беспрецедентная мощь служит, судя по всему, нуждам государства. Официально было заявлено, что суперкомпьютер занимается различными моделированиями, анализом огромного количества данных, а также обеспечением государственной безопасности Китая.

Учитывая секретность, свойственную военным проектам КНР, остается лишь догадываться, какое именно применение время от времени получает «Млечный путь-2» в руках китайской армии.



Суперкомпьютер Tianhe-2 / © Popsci.com

Доктор физико-математических наук В. ВОЕВОДИН

У большинства людей слово "компьютер" ассоциируется в первую очередь с персоналкой, которую можно увидеть сегодня не только в любом офисе, но и во многих квартирах. В самом деле, мы живем в эпоху, когда персональный компьютер вошел буквально в каждый дом. Однако не стоит забывать, что ПК - это лишь часть компьютерного мира, где существуют гораздо более мощные и сложные вычислительные системы, недоступные рядовому пользователю. Многие, наверно, слышали о компьютере по имени Deep Blue, который в 1997 году обыграл самого Гарри Каспарова. Интуитивно понятно, что такая машина не могла быть простой персоналкой. Другой пример - отечественный компьютер МВС-1000 производительностью 200 миллиардов операций в секунду, недавно установленный в Межведомственном суперкомпьютерном центре в Москве. Кроме того, в прессе время от времени появляются сообщения о нелегальных поставках в Россию вычислительной техники, попадающей под эмбарго американского правительства.

Открытие межведомственного суперкомпьютерного центра в Президиуме Российской академии наук. На переднем плане 16-процессорный суперкомпьютер Hewlett-Packard V2250.

ASCI RED, детище программы Accelerated Strategic Computing Initiative, - самый мощный на сегодняшний день компьютер.

CRAY T3E - массивно-параллельный компьютер фирмы Тега Computer Company.

Наука и жизнь // Иллюстрации

Подобные компьютеры для многих так и остаются тайной за семью печатями, окруженной ореолом ассоциаций с чем-то очень большим: огромные размеры, сверхсложные задачи, крупные фирмы и компании, невероятные скорости работы и т.д. Одним словом, супер-ЭВМ, что-то далекое и недоступное. Между тем, если вам хотя бы раз приходилось пользоваться услугами серьезных поисковых систем в Интернете (см. "Наука и жизнь" № 11, 1999 г.), вы, сами того не подозревая, имели дело с одним из приложений суперкомпьютерных технологий.

Доктор физико-математических наук В. ВОЕВОДИН, заместитель директора Научно-исследовательского вычислительного центра МГУ им. М. В. Ломоносова.

ЧТО ТАКОЕ СУПЕРКОМПЬЮТЕР

Считается, что супер-ЭВМ - это компьютеры с максимальной производительностью. Однако быстрое развитие компьютерной индустрии делает это понятие весьма и весьма относительным: то, что десять лет назад можно было назвать суперкомпьютером, сегодня под это определение уже не подпадает. Производительность первых супер-ЭВМ начала 70-х годов была сравнима с производительностью современных ПК на базе традиционных процессоров Pentium. По сегодняшним меркам ни те, ни другие к суперкомпьютерам, конечно же, не относятся.

В любом компьютере все основные параметры взаимосвязаны. Трудно себе представить универсальный компьютер, имеющий высокое быстродействие и мизерную оперативную память либо огромную оперативную память и небольшой объем дисков. Отсюда простой вывод: супер-ЭВМ - это компьютер, имеющий не только максимальную производительность, но и максимальный объем оперативной и дисковой памяти в совокупности со специализированным программным обеспечением, с помощью которого этим монстром можно эффективно пользоваться.

Суперкомпьютерам не раз пытались давать универсальные определения - иногда они получались серьезными, иногда ироничными. Например, как-то предлагалось считать суперкомпьютером машину, вес которой превышает одну тонну. Несколько лет назад был предложен и такой вариант: суперкомпьютер - это устройство, сводящее проблему вычислений к проблеме ввода/вывода. В самом деле, задачи, которые раньше вычислялись очень долго, на супер-ЭВМ выполняются мгновенно, и почти все время теперь уходит на более медленные процедуры ввода и вывода данных, производящиеся, как правило, с прежней скоростью.

Так что же такое современный суперкомпьютер? Самая мощная ЭВМ на сегодняшний день - это система Intel ASCI RED, построенная по заказу Министерства энергетики США. Чтобы представить себе возможности этого суперкомпьютера, достаточно сказать, что он объединяет в себе 9632 (!) процессора Pentium Pro, имеет более 600 Гбайт оперативной памяти и общую производительность в 3200 миллиардов операций в секунду. Человеку потребовалось бы 100000 лет, чтобы даже с калькулятором выполнить все те операции, которые этот компьютер делает всего за 1 секунду!

Создать подобную вычислительную систему - все равно, что построить целый завод со своими системами охлаждения, бесперебойного питания и т.д. Понятно, что любой суперкомпьютер, даже в более умеренной конфигурации, должен стоить не один миллион долларов США: ради интереса прикиньте, сколько стоят, скажем, лишь 600 Гбайт оперативной памяти? Возникает естественный вопрос: какие задачи настолько важны, что требуются компьютеры стоимостью в несколько миллионов долларов? Или еще один: какие задачи настолько сложны, что хорошего Pentium III для их решения недостаточно?

НУЖНЫ ЛИ НАМ СУПЕРКОМПЬЮТЕРЫ?

Оказывается, существует целый ряд жизненно важных проблем, которые просто невозможно решать без использования суперкомпьютерных технологий.

Возьмем, к примеру, США, по территории которых два раза в год проходят разрушительные торнадо. Они сметают на своем пути города, поднимают в воздух автомобили и автобусы, выводят реки из берегов, заливая тем самым гигантские территории. Борьба с торнадо - существенная часть американского бюджета. Только штат Флорида, который находится недалеко от тех мест, где эти смерчи рождаются, за последние годы потратил более 50 миллиардов долларов на экстренные меры по спасению людей. Правительство не жалеет денег на внедрение технологий, которые позволили бы предсказывать появление торнадо и определять, куда он направится.

Как рассчитать торнадо? Очевидно, что для этого надо решить задачу о локальном изменении погоды, то есть задачу о движении масс воздуха и распределении тепла в неком регионе. Принципиально это несложно, однако на практике возникают две проблемы. Проблема первая: чтобы заметить появление смерча, надо проводить расчет на характерных для его образования размерах, то есть на расстояниях порядка двух километров. Вторая трудность связана с правильным заданием начальных и граничных условий. Дело в том, что температура на границах интересующего вас региона зависит от того, что делается в соседних регионах. Рассуждая дальше, легко убедиться, что мы не можем решить задачу о смерче, не имея данных о климате на всей Земле. Климат на планете рассчитать можно, что и делается каждый день во всех странах для составления среднесрочных прогнозов погоды. Однако имеющиеся ресурсы позволяют вести расчеты лишь с очень большим шагом - десятки и сотни километров. Ясно, что к предсказанию смерчей такой прогноз не имеет никакого отношения.

Необходимо совместить две, казалось бы, плохо совместимые задачи: глобальный расчет, где шаг очень большой, и локальный, где шаг очень маленький. Сделать это можно, но лишь собрав в кулаке действительно фантастические вычислительные ресурсы. Дополнительная трудность состоит еще и в том, что вычисления не должны продолжаться более 4 часов, так как за 5 часов картина погоды смазывается совершенно, и все, что вы считаете, уже не имеет никакого отношения к реальности. Нужно не только обработать гигантский объем данных, но и сделать это достаточно быстро. Такое под силу лишь суперкомпьютерам.

Предсказание погоды - далеко не единственный пример использования суперкомпьютеров. Сегодня без них не обойтись в сейсморазведке, нефте- и газодобывающей промышленности, автомобилестроении, проектировании электронных устройств, фармакологии, синтезе новых материалов и многих других отраслях.

Так, по данным компании Ford, для выполнения crash-тестов, при которых реальные автомобили разбиваются о бетонную стену с одновременным замером необходимых параметров, со съемкой и последующей обработкой результатов, ей понадобилось бы от 10 до 150 прототипов для каждой новой модели. При этом общие затраты составили бы от 4 до 60 миллионов долларов. Использование суперкомпьютеров позволило сократить число прототипов на одну треть.

Известной фирме DuPont суперкомпьютеры помогли синтезировать материал, заменяющий хлорофлюорокарбон. Нужно было найти материал, имеющий те же положительные качества: невоспламеняемость, стойкость к коррозии и низкую токсичность, но без вредного воздействия на озоновый слой Земли. За одну неделю были проведены необходимые расчеты на суперкомпьютере с общими затратами около 5 тысяч долларов. По оценкам специалистов DuPont, использование традиционных экспериментальных методов исследований потребовало бы 50 тысяч долларов и около трех месяцев работы - и это без учета времени, необходимого на синтез и очистку требуемого количества вещества.

ПОЧЕМУ СУПЕРКОМПЬЮТЕРЫ СЧИТАЮТ ТАК БЫСТРО?

Итак, мы видим, что без суперкомпьютеров сегодня действительно не обойтись. Осталось прояснить еще один вопрос: почему они считают так быстро? Это может быть связано, во-первых, с развитием элементной базы и, во-вторых, с использованием новых решений в архитектуре компьютеров.

Попробуем разобраться, какой из этих факторов оказывается решающим для достижения рекордной производительности. Обратимся к известным историческим фактам. На одном из первых компьютеров мира EDSAC, появившемся в 1949 году в Кембридже и имевшем время такта 2 микросекунды (2·10 -6 секунды), можно было выполнить 2n арифметических операций за 18n миллисекунд, то есть в среднем 100 арифметических операций в секунду. Сравним с одним вычислительным узлом современного суперкомпьютера Hewlett-Packard V2600: время такта приблизительно 1,8 наносекунды (1,8·10 -9 секунды), а пиковая производительность - около 77 миллиардов арифметических операций в секунду.

Что же получается? За полвека производительность компьютеров выросла более чем в семьсот миллионов раз. При этом выигрыш в быстродействии, связанный с уменьшением времени такта с 2 микросекунд до 1,8 наносекунды, составляет лишь около 1000 раз. Откуда же взялось остальное? Ответ очевиден - за счет использования новых решений в архитектуре компьютеров. Основное место среди них занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий.

Различают два способа параллельной обработки: собственно параллельную и конвейерную. Оба способа интуитивно абсолютно понятны, поэтому сделаем лишь небольшие пояснения.

Параллельная обработка

Предположим для простоты, что некое устройство выполняет одну операцию за один такт. В этом случае тысячу операций такое устройство выполнит за тысячу тактов. Если имеется пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести тактов. Аналогично система из N устройств ту же работу выполнит за 1000/N тактов. Подобные примеры можно найти и в жизни: если один солдат выкопает траншею за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справится с той же работой за 12 минут- принцип параллельности в действии!

Кстати, пионером в параллельной обработке потоков данных был академик А. А. Самарский, выполнявший в начале 50-х годов расчеты, необходимые для моделирования ядерных взрывов. Самарский решил эту задачу методом сеток, посадив несколько десятков барышень с арифмометрами за столы (узлы сетки). Барышни передавали данные одна другой просто на словах и откладывали необходимые цифры на арифмометрах. Таким образом, в частности, была рассчитана эволюция взрывной волны. Работы было много, барышни уставали, а Александр Андреевич ходил между ними и подбадривал. Так создали, можно сказать, первую параллельную систему. Хотя расчеты водородной бомбы провели мастерски, точность их оказалась очень низкой, потому что узлов в используемой сетке было мало, а время счета получалось слишком большим.

Конвейерная обработка

Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций, таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары слагаемых последовательно, одну за другой, до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

Идея конвейерной обработки заключается в расчленении операции на отдельные этапы, или, как это принято называть, ступени конвейера. Каждая ступень, выполнив свою работу, передает результат следующей ступени, одновременно принимая новую порцию входных данных. Получается очевидный выигрыш в скорости обработки. В самом деле, предположим, что в операции сложения можно выделить пять микроопераций, каждая из которых выполняется за один такт работы компьютера. Если есть одно неделимое последовательное устройство сложения, то 100 пар аргументов оно обработает за 500 тактов. Если теперь каждую микрооперацию преобразовать в отдельную ступень конвейерного устройства, то на пятом такте на разной стадии обработки будут находиться первые пять пар аргументов, и далее конвейерное устройство будет выдавать результат очередного сложения каждый такт. Очевидно, что весь набор из ста пар слагаемых будет обработан за 104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

Идеи параллельной обработки появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец сегодня все это в полном объеме воплощается в рабочих станциях и персональных компьютерах. Все современные микропроцессоры, будь то Pentium III или РА-8600, Е2К или Power2 SuperChip, используют тот или иной вид параллельной обработки.

Для того чтобы лишний раз убедиться, что все новое - это хорошо забытое старое, достаточно лишь нескольких примеров. Уже в 1961 году создается компьютер IBM STRETCH, имеющий две принципиально важные особенности: опережающий просмотр вперед для выборки команд (при котором одновременно с текущей считываются команды, выполняемые позднее) и расслоение памяти на два банка - реализация параллелизма при работе с памятью. В 1963 году в Манчестерском университете разработан компьютер ATLAS, использующий конвейерный принцип выполнения команд. Выполнение команд разбито на четыре стадии: выборка команды, вычисление адреса операнда, выборка операнда и выполнение операции. Это позволило уменьшить время выполнения команд в среднем с 6 до 1,6 микросекунды. В1969 году Control Data Corporation выпускает компьютер CDC-7600 с восемью независимыми конвейерными функциональными устройствами.

СОВРЕМЕННЫЕ СУПЕРКОМПЬЮТЕРЫ

А что же сейчас используют в мире? По каким направлениям идет развитие высокопроизводительной вычислительной техники? Таких направлений четыре.

Векторно-конвейерные компьютеры

Две главные особенности таких машин: наличие конвейерных функциональных устройств и набора векторных команд. В отличие от обычных команд векторные оперируют целыми массивами независимых данных, то есть команда вида А=В+С может означать сложение двух массивов, а не двух чисел. Характерный представитель данного направления - семейство векторно-конвейерных компьютеров CRAY, куда входят, например, CRAY EL, CRAY J90, CRAY T90 (в марте этого года американская компания TERA перекупила подразделение CRAY у компании Silicon Graphics, Inc.).

Массивно-параллельные компьютеры с распределенной памятью

Идея построения компьютеров этого класса тривиальна: серийные микропроцессоры соединяются с помощью сетевого оборудования - вот и все. Достоинств у такой архитектуры масса: если нужна высокая производительность, то можно добавить процессоры, а если ограничены финансы или заранее известна требуемая вычислительная мощность, то легко подобрать оптимальную конфигурацию. К этому же классу можно отнести и простые сети компьютеров, которые сегодня все чаще рассматриваются как дешевая альтернатива крайне дорогим суперкомпьютерам. (Правда, написать эффективную параллельную программу для таких сетей довольно сложно, а в некоторых случаях просто невозможно). К массивно-параллельным можно отнести компьютеры Intel Paragon, ASCI RED, IBM SP1, Parsytec, в какой-то степени IBM SP2 и CRAY T3D/T3E.

Параллельные компьютеры с общей памятью

Вся оперативная память в таких компьютерах разделяется несколькими одинаковыми процессорами, обращающимися к общей дисковой памяти. Проблем с обменом данными между процессорами и синхронизацией их работы практически не возникает. Вместе с тем главный недостаток такой архитектуры состоит в том, что по чисто техническим причинам число процессоров, имеющих доступ к общей памяти, нельзя сделать большим. В данное направление суперкомпьютеров входят многие современные SMP-компьютеры (Symmetric Multi Processing), например сервер НР9000 N-class или Sun Ultra Enterprise 5000.

Кластерные компьютеры

Этот класс суперкомпьютеров, строго говоря, нельзя назвать самостоятельным, скорее, он представляет собой комбинации предыдущих трех. Из нескольких процессоров, традиционных или векторно-конвейерных, и общей для них памяти формируется вычислительный узел. Если мощности одного узла недостаточно, создается кластер из нескольких узлов, объединенных высокоскоростными каналами. По такому принципу построены CRAY SV1, HP Exemplar, Sun StarFire, NEC SX-5, последние модели IBM SP2 и другие. В настоящее время именно это направление считается наиболее перспективным.

Два раза в год составляется список пятисот самых мощных вычислительных установок мира (его можно посмотреть в Интернете по адресу http://parallel.ru/top500.html). Согласно последней редакции списка top500, вышедшей в ноябре прошлого года, первое место занимает массивно-параллельный компьютер Intel ASCI Red. На второй позиции стоит компьютер ASCI Blue-Pacific от IBM, объединяющий 5808 процессоров PowerPC 604e/332MHz. Оба эти суперкомпьютера созданы в рамках американской национальной программы Advanced Strategic Computing Initiative, аббревиатура которой и присутствует в названии. Производительность компьютера, стоящего на последнем, 500-м, месте в списке самых мощных, составляет 33,4 миллиарда операций в секунду.

Если мощность существующих компьютеров поражает, то что говорить о планах. В декабре 1999 года корпорация IBM сообщила о новом исследовательском проекте общей стоимостью около 100 миллионов долларов, цель которого - построение суперкомпьютера, в 500 раз превосходящего по производительности самые мощные компьютеры сегодняшнего дня. Компьютер, имеющий условное название Blue Gene, будет иметь производительность порядка 1 PETAFLOPS (10 15 операций в секунду) и использоваться для изучения свойств белковых молекул. Предполагается, что каждый отдельный процессор Blue Gene будет иметь производительность порядка 1 GFLOPS (10 9 операций в секунду). 32 подобных процессора будут помещены на одну микросхему. Компактная плата размером 2x2 фута будет вмещать 64 микросхемы, что по производительности не уступает упоминавшимся ранее суперкомпьютерам ASCI, занимающим площадь 8000 квадратных метров. Более того, 8 таких плат будут помещены в 6-футовую стойку, а вся система будет состоять из 64 стоек с суммарной производительностью 1 PFLOPS. Фантастика!

Вычислительный кластер Московского государственного университета им. М. В. Ломоносова - минимальная стоимость, суперкомпьютерная производительность. В настоящий момент это самая мощная вычислительная система, установленная в вузе России.

СУПЕРКОМПЬЮТЕРЫ В РОССИИ

Идеи построения собственных суперкомпьютерных систем существовали в России всегда. Еще в 1966 году М.А.Карцев выдвинул идею создания многомашинного вычислительного комплекса М-9 производительностью около миллиарда операций в секунду. В то время ни одна из машин мира не работала с такой скоростью. Однако, несмотря на положительную оценку министерства, комплекс М-9 промышленного освоения не получил.

Работы по созданию суперкомпьютерных систем и суперкомпьютерных центров ведутся в России и сейчас. Наиболее известна линия отечественных суперкомпьютеров МВС-1000, создаваемая в кооперации научно-исследовательских институтов Российской академии наук и промышленности. Супер-ЭВМ линии МВС-1000 - это мультипроцессорный массив, объединенный с внешней дисковой памятью, устройствами ввода/вывода информации и управляющим компьютером. Компьютеры МВС-1000 используют микропроцессоры Alpha 21164 (разработка фирмы DEC-Compaq) с производительностью до 1-2 миллиардов операций в секунду и оперативной памятью объемом 0,1-2 Гбайта.

Спектр научных и практических задач, решаемых на таком компьютере, может быть очень велик: расчет трехмерных нестационарных течений вязкосжимаемого газа, расчеты течений с локальными тепловыми неоднородностями в потоке, моделирование структурообразования и динамики молекулярных и биомолекулярных систем, решение задач линейных дифференциальных игр, расчет деформаций твердых тел с учетом процессов разрушения и многие другие. Одна из самых мощных систем линии МВС-1000, установленная в Межведомственном суперкомпьютерном центре, содержит 96 процессоров.

В последнее время в России, также как и во всем мире, активно используется кластерный подход к построению суперкомпьютеров. Покупаются стандартные компьютеры и рабочие станции, которые с помощью стандартных сетевых средств объединяются в параллельную вычислительную систему. По такому пути пошел, и, надо сказать, успешно, Научно-исследовательский вычислительный центр Московского государственного университета им. М.В.Ломоносова, создавший кластер из 12 двухпроцессорных серверов "Эксимер" на базе Intel Pentium III/500MHz (в сумме 24 процессора, более 3 Гбайт оперативной памяти, 66 Гбайт дисковой памяти). Сегодня это крупнейшая вычислительная установка в вузе России, предназначенная для поддержки фундаментальных научных исследований и образования. При минимальной стоимости вычислительный кластер НИВЦ МГУ показывает производительность 5,7 миллиарда операций в секунду при решении системы линейных алгебраических уравнений с плотной матрицей размером 16000x16000! В будущем планируется значительно увеличить мощность кластера как за счет добавления новых процессоров, так и за счет модернизации вычислительных узлов.

ВМЕСТО ЗАКЛЮЧЕНИЯ

К сожалению, чудеса в нашей жизни случаются редко. Гигантская производительность параллельных компьютеров и супер-ЭВМ с лихвой компенсируется сложностью их использования. Да что там использование, иногда даже вопросы, возникающие вокруг суперкомпьютеров, ставят в тупик. Как вы думаете, верно ли утверждение: чем мощнее компьютер, тем быстрее на нем можно решить данную задачу? Ну, конечно же, нет... Простой бытовой пример. Если один землекоп выкопает яму за 1 час, то два землекопа справятся с задачей за 30 мин - в это еще можно поверить. А за сколько времени эту работу сделают 60 землекопов? Неужели за 1 минуту? Конечно же, нет! Начиная с некоторого момента они будут просто мешать друг другу, не ускоряя, а замедляя процесс. Так же и в компьютерах: если задача слишком мала, то мы будем дольше заниматься распределением работы, синхронизацией процессов, сборкой результатов и т. п., чем непосредственно полезной деятельностью.

Но все вопросы, сопровождающие суперкомпьютер, конечно же, решаются. Да, использовать суперкомпьютеры сложнее, чем персоналку: нужны дополнительные знания и технологии, высококвалифицированные специалисты, более сложная информационная инфраструктура. Написать эффективную параллельную программу намного сложнее, чем последовательную, да и вообще создание программного обеспечения для параллельных компьютеров - это центральная проблема суперкомпьютерных вычислений. Но без супер-ЭВМ сегодня не обойтись, и отрадно, что в нашей стране есть понимание необходимости развития этих технологий. Так, в ноябре прошлого года в Президиуме Российской академии наук состоялось открытие межведомственного суперкомпьютерного центра. В процессе становления суперкомпьютерные центры в Дубне, Черноголовке, Институте прикладной математики РАН им. М. В. Келдыша, Институте математического моделирования РАН, Московском государственном университете им. М. В. Ломоносова. Создана и развивается линия отечественных суперкомпьютеров МВС-1000. Активно разворачивает свою деятельность Информационно-аналитический центр по параллельным вычислениям в сети Интернет WWW.PARALLEL.RU, осуществляющий информационную поддержку многих российских проектов. А иначе и нельзя. Параллельные вычисления и параллельные компьютеры - это реальность, и это уже навсегда.

ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ

ЗАКОН АМДАЛА

Представьте себе ситуацию: у вас есть программа и доступ, скажем, к 256-процессорному суперкомпьютеру. Вы, вероятно, ожидаете, что программа будет выполняться в 256 раз быстрее, чем на одном процессоре? А вот этого, скорее всего, и не произойдет.

Предположим, что в вашей программе доля операций, которые нужно выполнять последовательно, равна f, причем 0 ≤ f ≤ 1 (эта доля определяется не по числу строк кода, а по числу операций в процессе выполнения). Крайние случаи в значениях f соответствуют полностью параллельным (f=0) и полностью последовательным (f=1) программам. Так вот, для того, чтобы оценить, какое ускорение S можно получить на компьютере, состоящем из р процессоров, при данном значении f, воспользуемся законом Амдала:

S ≤ 1/{f+(1- f)/p}.

Если вдуматься как следует, то закон на самом деле страшный. Предположим, что в вашей программе лишь 10% последовательных операций, т.е. f=0,1. В этом случае закон утверждает: сколько бы процессоров вы ни использовали, ускорения работы программы более чем в десять раз никак не получите. Да и то десять - это теоретическая оценка сверху самого лучшего случая, когда никаких других отрицательных факторов нет...

Отсюда первый вывод - прежде, чем переходить на параллельный компьютер (а любой суперкомпьютер именно таков), надо оценить заложенный в программе алгоритм. Если доля последовательных операций в нем велика - на значительное ускорение рассчитывать явно не приходится.

В ряде случаев последовательный характер алгоритма изменить не так сложно. Допустим, что в программе есть следующий фрагмент для вычисления суммы п чисел:

Этот алгоритм строго последовательный, так как на i-той итерации цикла требуется результат (i-1)-вой, и все итерации выполняются одна за другой. В данном случае f=1, и, стало быть, никакого эффекта от использования параллельных компьютеров для выполнения этого алгоритма мы не получим. Вместе с тем выход очевиден. Поскольку в большинстве реальных случаев нет существенной разницы, в каком порядке складывать числа, выберем иную схему сложения. Сначала найдем сумму пар соседних элементов: а(1)+а(2), а(3)+а(4), а(5)+а(6) и т. д. Заметим, что при такой схеме все пары можно складывать одновременно. На следующих шагах будем действовать аналогично, получив вариант параллельного алгоритма.

Казалось бы, в данном случае все проблемы удалось разрешить. Но остается еще множество других трудностей, связанных с разной производительностью процессоров, скоростью передачи данных и т. д. Но это уже тонкости параллельного программирования, с азами которого вы в скором времени сможете познакомиться в интернетовском курсе по адресу

http://parallel.ru/vvv/.

РАСПРЕДЕЛЕНИЕ ПЯТИСОТ САМЫХ МОЩНЫХ КОМПЬЮТЕРОВ МИРА ПО СТРАНАМ, ГДЕ ОНИ РАСПОЛОЖЕНЫ, И ФИРМАМ-ПРОИЗВОДИТЕЛЯМ

2 15 10 10 2 57
США-Канада Европа Япония Остальные ВСЕГО
IBM 67 67 2 5 141
SGI/CRAY 92 27 12 2 133
SUN 76 29 4 4 113
Hewlett-Packard 33 10 45
Fujitsu 1 9 1 26
NEC 2 7 2 21
Hitachi 1 11
Остальные 6 2 10
ВСЕГО 277 152 14 500

Главная → История отечественной вычислительной техники → Суперкомпьютеры

Суперкомпьютеры

Андрей Борзенко

Суперкомпьютерами называют самые быстрые компьютеры. Их основное отличие от мэйнфреймов состоит в следующем: все ресурсы такого компьютера обычно направлены на то, чтобы решить одну или в крайнем случае несколько задач насколько возможно быстро, тогда как мэйнфреймы, как правило, выполняют довольно большое число задач, конкурирующих друг с другом. Бурное развитие компьютерной индустрии определяет относительность базового понятия — то, что десять лет назад можно было назвать суперкомпьютером, сегодня под это определение уже не подпадает. Существует и такое шутливое определение суперкомпьютера — это устройство, сводящее проблему вычислений к проблеме ввода-вывода. Впрочем, и в нем есть доля истины: часто единственным узким местом в быстродействующей системе остаются именно устройства ввода-вывода. Узнать, какие суперкомпьютеры в настоящее время имеют максимальную производительность, можно из официального списка пятисот самых мощных систем мира — Top500 (http://www.top500.org), который публикуется два раза в год.

В любом компьютере все основные параметры тесно связаны. Трудно себе представить универсальный компьютер, имеющий высокое быстродействие и мизерную оперативную память либо огромную оперативную память и небольшой объем дисков. По этой причине и суперкомпьютеры характеризуются в настоящее время не только максимальной производительностью, но и максимальным объемом оперативной и дисковой памяти. Обеспечение таких технических характеристик обходится довольно дорого — стоимость суперкомпьютеров чрезвычайно высока. Какие же задачи настолько важны, что требуют систем стоимостью в десятки и сотни миллионов долларов? Как правило, это фундаментальные научные или инженерные вычислительные задачи с широкой областью применения, эффективное решение которых возможно только при наличии мощных вычислительных ресурсов. Вот лишь некоторые области, где возникают задачи подобного рода:

  • предсказания погоды, климата и глобальных изменений в атмосфере;
  • науки о материалах;
  • построение полупроводниковых приборов;
  • сверхпроводимость;
  • структурная биология;
  • разработка фармацевтических препаратов;
  • генетика человека;
  • квантовая хромодинамика;
  • астрономия;
  • автомобилестроение;
  • транспортные задачи;
  • гидро- и газодинамика;
  • управляемый термоядерный синтез;
  • эффективность систем сгорания топлива;
  • разведка нефти и газа;
  • вычислительные задачи в науках о Мировом океане;
  • распознавание и синтез речи;
  • распознавание изображений.

Суперкомпьютеры считают очень быстро благодаря не только использованию самой современной элементной базы, но и новым решениям в архитектуре систем. Основное место здесь занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий. Параллельная обработка имеет две разновидности: конвейерность и собственно параллельность. Суть конвейерной обработки заключается в том, чтобы выделить отдельные этапы выполнения общей операции, причем каждый этап, выполнив свою работу, передает результат следующему, одновременно принимая новую порцию входных данных. Очевидный выигрыш в скорости обработки получается за счет совмещения прежде разнесенных во времени операций.

Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если имеется пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени.

Конечно, сегодня параллелизмом в архитектуре компьютеров уже мало кого удивишь. Все современные микропроцессоры используют тот или иной вид параллельной обработки даже в рамках одного кристалла. Вместе с тем сами эти идеи появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных компьютерах своего времени. Здесь особая заслуга принадлежит компаниям IBM и Control Data Corporation (CDC). Речь идет о таких нововведениях, как разрядно-параллельная память, разрядно-параллельная арифметика, независимые процессоры ввода-вывода, конвейер команд, конвейерные независимые функциональные устройства и т. д.

Обычно слово «суперкомпьютер» ассоциируется с компьютерами марки Cray, хотя сегодня это уже далеко не так. Разработчиком и главным конструктором первого суперкомпьютера был Сеймур Крэй — один из самых легендарных личностей в компьютерной отрасли. В 1972 г. он уходит из компании CDC и основывает собственную компанию Cray Research. Первый суперкомпьютер CRAY-1 был разработан через четыре года (в 1976 г.) и имел векторно-конвейерную архитектуру с 12 конвейерными функциональными устройствами. Пиковая производительность Cray-1 составляла 160 млн операций/с (время такта 12,5 нс), а цикл 64-разрядной оперативной памяти (которая могла расширяться до 8 Мбайт) занимал 50 нс. Главным новшеством было, конечно, введение векторных команд, работающих с целыми массивами независимых данных и позволяющих эффективно использовать конвейерные функциональные устройства.

На протяжении 60-80-х годов внимание мировых лидеров по производству суперкомпьютеров было сосредоточено на изготовлении вычислительных систем, хорошо справляющихся с решением задач на большие объемы вычислений с плавающей точкой. Недостатка в таких задачах не ощущалось — почти все они были связаны с ядерными исследованиями и аэрокосмическим моделированием и велись в интересах военных. Стремление достичь максимальной производительности в самые сжатые сроки означало, что критерием оценки качества системы была не ее цена, а быстродействие. Например, суперкомпьютер Cray-1 стоил тогда от 4 до 11 млн долл. в зависимости от комплектации.

На рубеже 80-90-х гг. закончилась «холодная» война и на смену военным заказам пришли коммерческие. К тому времени промышленность достигла больших успехов в производстве серийных процессоров. Они обладали примерно той же вычислительной мощностью, что и заказные, но были значительно дешевле. Использование стандартных комплектующих и изменяемое количество процессоров позволило решить проблему масштабируемости. Теперь с увеличением вычислительной нагрузки можно было повышать производительность суперкомпьютера и его периферийных устройств, добавляя новые процессоры и устройства ввода-вывода. Так, в 1990 г. появился суперкомпьютер Intel iPSC/860 с числом процессоров, равным 128, который показал на тесте LINPACK производительность 2,6 Гфлопс.

В ноябре прошлого года была опубликована 18-я редакция списка 500 мощнейших компьютеров мира — Top500. Лидером списка по-прежнему остается корпорация IBM (http://www.ibm.com), которой принадлежит 32% установленных систем и 37% от общей производительности. Интересной новостью стало появление Hewlett-Packard на втором месте по количеству систем (30%). При этом, поскольку все эти системы относительно невелики, то их суммарная производительность составляет всего 15% от всего списка. Ожидается, что после слияния с Compaq обновленная компания займет доминирующее положение в этом списке. Далее по количеству компьютеров в списке идут SGI, Cray и Sun Microsystems.

Самым мощным суперкомпьютером мира оставалась по-прежнему система ASCI White (к ней мы еще вернемся), установленная в Ливерморской лаборатории (США) и показавшая производительность 7,2 Тфлопс на тесте LINPACK (58% от пиковой производительности). На втором месте стояла система Compaq AlphaServer SC, установленная в Питтсбургском суперкомпьютерном центре с производительностью в 4 Тфлопс. Замыкает список система Cray T3E с производительностью на LINPACK в 94 Гфлопс.

Стоит отметить, что список включал уже 16 систем с производительностью более 1 Тфлопс, половина из которых установлены IBM. Стабильно увеличивается число систем, представляющих собой кластеры из небольших SMP-блоков, — сейчас в списке уже 43 такие системы. Однако большинство в списке по-прежнему за массивно-параллельными системами (50%), за которыми идут кластеры, состоящие из больших SMP-систем (29%).

Типы архитектур

Основной параметр классификации параллельных компьютеров — наличие общей или распределенной памяти. Нечто среднее представляют собой архитектуры, где память физически распределена, но логически общедоступна. С аппаратной точки зрения для реализации параллельных систем напрашиваются две основные схемы. Первая — несколько отдельных систем, с локальной памятью и процессорами, взаимодействующих в какой-либо среде посредством посылки сообщений. Вторая — системы, взаимодействующие через разделяемую память. Не вдаваясь пока в технические детали, скажем несколько слов о типах архитектур современных суперкомпьютеров.

Идея массивно-параллельных систем с распределенной памятью (Massively Parallel Processing, MPP) довольно проста. Для этой цели берутся обычные микропроцессоры, каждый из которых снабжают своей локальной памятью и соединяют посредством некоей коммутационной среды. Достоинств у такой архитектуры много. Если нужна высокая производительность, то можно добавить еще процессоров, а если ограничены финансы или заранее известна требуемая вычислительная мощность, то легко подобрать оптимальную конфигурацию. Однако у MPP есть и недостатки. Дело в том, что взаимодействие между процессорами идет намного медленнее, чем обработка данных самими процессорами.

У параллельных компьютеров с общей памятью вся оперативная память разделяется между несколькими одинаковыми процессорами. Это снимает проблемы предыдущего класса, но добавляет новые. Дело в том, что число процессоров, имеющих доступ к общей памяти, по чисто техническим причинам нельзя сделать большим.

Основные особенности векторно-конвейерных компьютеров — это, конечно, конвейерные функциональные устройства и набор векторных команд. В отличие от традиционного подхода векторные команды оперируют целыми массивами независимых данных, что позволяет эффективно загружать доступные конвейеры.

Последнее направление, строго говоря, не является самостоятельным, а скорее представляет собой комбинации предыдущих трех. Из нескольких процессоров (традиционных или векторно-конвейерных) и общей для них памяти формируется вычислительный узел. Если полученной вычислительной мощности недостаточно, то объединяют несколько узлов высокоскоростными каналами. Как известно, подобную архитектуру называют кластерной.

MPP-системы

Массово-параллельные масштабируемые системы предназначены для решения прикладных задач, требующих большого объема вычислений и обработки данных. Рассмотрим их подробнее. Как правило, они состоят из однородных вычислительных узлов, включающих:

  • один или несколько центральных процессоров;
  • локальную память (прямой доступ к памяти других узлов невозможен);
  • коммуникационный процессор или сетевой адаптер;
  • иногда накопители на жестких дисках и/или другие устройства ввода-вывода.

Кроме того, в систему могут быть добавлены специальные узлы ввода-вывода и управляющие узлы. Все они связаны через некоторую коммуникационную среду (высокоскоростная сеть, коммутатор и т. п.). Что касается ОС, то здесь есть два варианта. В первом случае полноценная ОС работает только на управляющей машине, тогда как на каждом узле работает сильно урезанный вариант ОС, обеспечивающий только работу расположенной в нем ветви параллельного приложения. В другом случае на каждом узле работает полноценная UNIX-подобная ОС.

Число процессоров в системах с распределенной памятью теоретически ничем не ограничено. С помощью подобных архитектур можно строить масштабируемые системы, производительность которых растет линейно с увеличением числа процессоров. Кстати, сам термин «массивно-параллельные системы» применяется обычно для обозначения таких масштабируемых компьютеров с большим числом (десятки и сотни) узлов. Масштабируемость вычислительной системы необходима для пропорционального ускорения вычислений, но ее, увы, недостаточно. Чтобы получить адекватный выигрыш при решении задачи, требуется еще и масштабируемый алгоритм, способный загрузить полезными вычислениями все процессоры суперкомпьютера.

Напомним, что существуют две модели выполнения программ на многопроцессорных системах: SIMD (single instruction stream — multiple data streams) и MIMD (multiple instructions streams — multiple data streams). Первая предполагает, что все процессоры выполняют одну и ту же команду, но каждый над своими данными. Во второй каждый процессор обрабатывает свой поток команд.

В системах с распределенной памятью для пересылки информации от процессора к процессору необходим механизм передачи сообщений по сети, связывающей вычислительные узлы. Чтобы абстрагироваться от подробностей функционирования коммуникационной аппаратуры и программировать на высоком уровне, обычно пользуются библиотеками передачи сообщений.

Суперкомпьютеры Intel

Корпорация Intel (http://www.intel.com) хорошо известна в мире суперкомпьютеров. Ее многопроцессорные компьютеры Paragon с распределенной памятью стали такой же классикой, как векторно-конвейерные компьютеры от Cray Research.

Intel Paragon использует в одном узле пять процессоров i860 ХР с тактовой частотой 50 МГц. Иногда в один узел помещают процессоры разных типов: скалярный, векторный и коммуникационный. Последний служит для того, чтобы разгрузить основной процессор от выполнения операций, связанных с передачей сообщений.

Самая существенная характеристика новой параллельной архитектуры — тип коммуникационного оборудования. Именно от него зависят два наиболее важных показателя работы суперкомпьютера — скорость передачи данных между процессорами и накладные расходы на передачу одного сообщения.

Межсоединение сконструировано таким образом, чтобы обеспечить высокую скорость обмена сообщениями при минимальной задержке. Оно обеспечивает соединение более тысячи гетерогенных узлов по топологии двухмерной прямоугольной решетки. Однако при разработке большинства приложений можно считать, что любой узел непосредственно связан со всеми другими узлами. Межсоединение масштабируемо: его пропускная способность возрастает с увеличением числа узлов. При конструировании разработчики стремились минимизировать участие в передаче сообщений тех процессоров, которые выполняют пользовательские процессы. С этой целью введены специальные процессоры обработки сообщений, которые располагаются на плате узла и отвечают за отработку протокола обмена сообщениями. В результате основные процессоры узлов не отвлекаются от решения задачи. В частности, не происходит достаточно дорогостоящего переключения с задачи на задачу, а решение прикладных задач идет параллельно с обменом сообщениями.

Собственно передача сообщений осуществляется системой маршрутизации, основанной на компонентах маршрутизатора узлов сети (Mesh Router Components, MRC). Для доступа MRC данного узла к его памяти в узле имеется еще специальный интерфейсный сетевой контроллер, который представляет собой заказную СБИС, обеспечивающую одновременную передачу в память узла и обратно, а также отслеживающую ошибки при передаче сообщений.

Модульное строение Intel Paragon способствует не только поддержанию масштабируемости. Оно позволяет рассчитывать на то, что данная архитектура послужит основой для новых компьютеров, базирующихся на иных микропроцессорах или использующих новые технологии обмена сообщениями. Масштабируемость опирается также на сбалансированность различных блоков суперкомпьютера на самых разных уровнях; в противном случае с ростом числа узлов где-либо в системе может появиться узкое место. Так, скорость и емкость памяти узлов балансируются с пропускной способностью и задержками межсоединения, а производительность процессоров внутри узлов — с пропускной способностью кэш-памяти и оперативной памяти и т. д.

До недавнего времени одним из самых быстродействующих компьютеров был Intel ASCI Red — детище ускоренной стратегической компьютерной инициативы ASCI (Accelerated Strategic Computing Initiative). В этой программе участвуют три крупнейшие национальные лаборатории США (Ливерморская, Лос-Аламосская и Sandia). Построенный по заказу Министерства энергетики США в 1997 г., ASCI Red объединяет 9152 процессора Pentium Pro, имеет 600 Гбайт суммарной оперативной памяти и общую производительность 1800 млрд операций в секунду.

Суперкомпьютеры IBM

Когда на компьютерном рынке появились универсальные системы с масштабируемой параллельной архитектурой SP (Scalable POWER parallel) корпорации IBM (http://www.ibm.com), они достаточно быстро завоевали популярность. Сегодня подобные системы работают в различных прикладных областях — таких, как вычислительная химия, анализ аварий, проектирование электронных схем, сейсмический анализ, моделирование водохранилищ, поддержка систем принятия решений, анализ данных и оперативная обработка транзакций. Успех систем SP определяется прежде всего их универсальностью, а также гибкостью архитектуры, базирующейся на модели распределенной памяти с передачей сообщений.

Вообще говоря, суперкомпьютер SP — это масштабируемая массивно-параллельная вычислительная система общего назначения, представляющая собой набор базовых станций RS/6000, соединенных высокопроизводительным коммутатором. Действительно, кому не известен, например, суперкомпьютер Deep Blue, который сумел обыграть в шахматы Гарри Каспарова? А ведь одна из его модификаций состоит из 32 узлов (IBM RS/6000 SP), базирующихся на 256 процессорах P2SC (Power Two Super Chip).

Семейство RS/6000 — это второе поколение компьютеров IBM, основанное на архитектуре с ограниченным набором команд (RISC), разработанной корпорацией в конце 70-х годов. Благодаря этой концепции для выполнения всей работы в компьютерной системе используется очень простой набор команд. Поскольку команды просты, они могут исполняться с очень высокой скоростью а также обеспечивают более эффективную реализацию исполняемой программы. Семейство RS/6000 основано на архитектуре POWER (архитектура с производительностью, оптимизированной за счет применения модернизированного RISC) и ее производных — PowerPC, P2SC, POWER3 и т. д. Поскольку архитектура POWER сочетает концепции архитектуры RISC с некоторыми более традиционными концепциями, в результате получается система с оптимальной общей производительностью.

Система RS/6000 SP предоставляет мощность нескольких процессоров для решения самых сложных вычислительных задач. Система коммутации SP — это новейшая разработка IBM в области широкополосной межпроцессорной связи без задержек для эффективных параллельных вычислений. Несколько разновидностей узлов процессора, изменяемые размеры фрейма (стойки) и разнообразные дополнительные возможности ввода-вывода обеспечивают подбор наиболее подходящей конфигурации системы. SP поддерживается лидирующими производителями ПО в таких областях, как параллельные базы данных и обработка транзакций в реальном времени, а также основными производителями технического ПО в таких областях, как обработка сейсмических данных и инженерное конструирование.

IBM RS/6000 SP расширяет возможности приложений благодаря параллельной обработке. Система снимает ограничения по производительности, помогает избежать проблем, связанных с масштабированием и присутствием неделимых, отдельно выполняемых фрагментов. Установленные по всему миру более чем у тысячи клиентов, SP предлагают решения для сложных и объемных технических и коммерческих приложений.

Основной блок SP — это процессорный узел, который имеет архитектуру рабочих станций RS/6000. Существует несколько типов SP-узлов: Thin, Wide, High, отличающихся рядом технических параметров. Так, например, High-узлы на базе POWER3-II включают до 16 процессоров и до 64 Гбайт памяти, а вот Thin-узлы допускают не более 4 процессоров и 16 Гбайт памяти.

Система масштабируется до 512 узлов, при этом возможно совмещение узлов различных типов. Узлы устанавливаются в стойки (до 16 узлов в каждой). SP может практически линейно масштабировать диски вместе с процессорами и памятью, что позволяет получать реальный доступ к терабайтам памяти. Такое увеличение мощности упрощает наращивание и расширение системы.

Узлы связаны между собой высокопроизводительным коммутатором (IBM high-performance switch), который имеет многостадийную структуру и работает с коммутацией пакетов.

Каждый узел SP работает под управлением полноценной ОС AIX, благодаря чему можно использовать тысячи уже существующих приложений для этой ОС. Кроме того, узлы системы можно объединять в группы. К примеру, несколько узлов могут выполнять роль серверов Lotus Notes, в то время как все остальные — обрабатывать параллельную базу данных.

Управление большими системами — это всегда сложная задача. SP использует для этих целей одну графическую консоль, на которой отображаются состояния аппаратного и программного обеспечения, выполняемые задачи и информация о пользователях. Системный администратор при помощи такой консоли (управляющей рабочей станции) и прилагаемого к SP программного продукта PSSP (Parallel Systems Support Programs) решает задачи управления, в том числе управления защитой паролями и полномочиями пользователей, учета выполняемых задач, управления печатью, системного мониторинга, запуска и выключения системы.

Самые-самые

Как уже отмечалось, согласно Top500 (таблица), самый мощный суперкомпьютер современности — ASCI White, занимающий площадь размером в две баскетбольные площадки и установленный в Ливерморской национальной лаборатории. Он включает 512 SMP-узлов на базе 64-разрядных процессоров POWER3-II (в общей сложности 8192 процессора) и использует новую коммуникационную технологию Colony с пропускной способностью около 500 Мбайт/с, что почти в четыре раза быстрее коммутатора SP high-performance switch.

Первая десятка Top500 (18-я редакция)

Позиция Производитель Компьютер Где установлен Страна Год Число процес-соров
1 IBM ASCI White США 2000 8192
2 Compaq AlphaServer SC Питтсбургский суперкомпью-терный центр США 2001 3024
3 IBM SP Power3 Институт исследований в области энергетики NERSC США 2001 3328
4 Intel ASCI Red Национальная лаборатория Sandia США 1999 9632
5 IBM ASCI Blue Pacific Ливерморская национальная лаборатория США 1999 5808
6 Compaq AlphaServer SC США 2001 1536
7 Hitachi SR8000/MPP Токийский университет Япония 2001 1152
8 SGI ASCI Blue Mountain Лос-Аламосская национальная лаборатория США 1998 6144
9 IBM SP Power3 Океанографи-ческий центр NAVOCEANO США 2000 1336
10 IBM SP Power3 Немецкая служба погоды Германия 2001 1280

Архитектура нового суперкомпьютера основана на зарекомендовавшей себя массивно-параллельной архитектуре RS/6000 и обеспечивает производительность в 12,3 Тфлопс (триллионов операций в секунду). Система включает в общей сложности 8 Тбайт оперативной памяти, распределенной по 16-процессорным SMP-узлам, и 160 Тбайт дисковой памяти. Доставка системы из лабораторий IBM в штате Нью-Йорк в Ливермор (Калифорния) потребовалось 28 грузовиков-трейлеров.

Все узлы системы работают под управлением ОС AIX. Суперкомпьютер используется учеными Министерства энергетики США для расчета сложных трехмерных моделей с целью поддержания ядерного оружия в безопасном состоянии. Собственно ASCI White — это третий шаг в пятиступенчатой программе ASCI, которая планирует создание нового суперкомпьютера в 2004 г. Вообще говоря, ASCI White состоит из трех отдельных систем, среди которых самой большой является White (512 узлов, 8192 процессора), а есть еще Ice (28 узлов, 448 процессоров) и Frost (68 узлов, 1088 процессоров).

Предшественником ASCI White был суперкомпьютер Blue Pacific (другое название ASCI Blue), включающий 1464 четырехпроцессорных узла на базе кристаллов PowerPC 604e/332 МГц. Узлы связаны в единую систему с помощью кабелей общей длиной почти в пять миль, а площадь машинного зала составляет 8 тыс. квадратных футов. Система ASCI Blue состоит в общей сложности из 5856 процессоров и обеспечивает пиковую производительность в 3,88 Тфлопс. Суммарный объем оперативной памяти составляет 2,6 Тбайт.

Суперкомпьютер — это километры кабелей.

Американский национальный центр по исследованию атмосферы (NCAR) выбрал IBM в качестве поставщика самого мощного в мире суперкомпьютера, предназначенного для прогнозирования климатических изменений. Система, известная под именем Blue Sky («Синее небо»), после окончательного ввода в эксплуатацию в этом году на порядок увеличит возможности NCAR в области моделирования климата. Ядром Blue Sky станут суперкомпьютер IBM SP и системы IBM eServer p690, применение которых позволит добиться пиковой производительности почти в 7 Тфлопс при объеме дисковой подсистемы IBM SSA в 31,5 Тбайт.

Суперкомпьютер, получивший название «Синий шторм» (Blue Storm), создается по заказу Европейского центра среднесрочных прогнозов погоды (European Centre for Medium-Range Weather Forecasts — ECMWF). Blue Storm будет в два раза мощнее ASCI White. Для его создания необходимо 100 серверов IBM eServer p690, также известных как Regatta. Каждый системный блок размером с холодильник содержит более тысячи процессоров. В 2004 г. «Синий шторм» будет оснащен серверами нового поколения p960, которые сделают его еще в два раза мощнее. Суперкомпьютер будет работать под управлением ОС AIX. Первоначально общая емкость накопителей Blue Storm составит 1,5 петабайт, вычислительная мощь — около 23 Тфлопс. Система будет весить 130 т, а по мощи будет в 1700 раз превосходить шахматный суперкомпьютер Deep Blue.

Исследователи IBM совместно с Ливерморской национальной лабораторией ведут работы над компьютерами Blue Gene/L и Blue Gene/C. Эти компьютеры — часть начатого еще в 1999 г. с целью изучения белков 5-летнего проекта Blue Gene, в который было вложено 100 млн долл. Создание нового суперкомпьютера Blue Gene/L (200 Тфлоп) будет завершено в 2004 г. — на полгода-год раньше, чем ожидается завершение работ над более мощным компьютером Blue Gene/C (1000 Тфлоп). Проектная производительность Blue Gene/L будет, таким образом, превышать суммарную производительность 500 самых мощных компьютеров в мире. При этом новый суперкомпьютер занимает площадь, равную всего половине теннисного корта. Инженеры IBM поработали и над снижением потребления энергии — его удалось уменьшить в 15 раз.

Примечания

Тесты LINPACK .
Эталонные тесты LINPACK базируются на решении системы линейных уравнений с плотно заполненной матрицей коэффициентов над полем действительных чисел методом исключения Гаусса. Вещественные числа, как правило, представляются с полной точностью. Благодаря большому числу операций над вещественными числами результаты LINPACK принято считать эталоном производительности аппаратно-программной конфигурации в областях, интенсивно использующих сложные математические вычисления.

Earth Simulator .
По мнению журнала New Scientist, в новой, 19-й версии списка суперкомпьютеров Top500 на первое место выйдет суперкомпьютерная система для проекта Earth Simulator корпорации NEC. Она установлена в японском Институте наук о Земле (Yokohama Institute for Earth Sciences) в г. Канагава, префектура Йокогама. Разработчики утверждают, что ее пиковая производительность может достигать 40 Тфлопс.

Суперкомпьютер Earth Simulator предназначен для моделирования климатических изменений на основе данных, которые поступают со спутников. По утверждению представителей NEC, высокая производительность компьютера достигнута за счет использования специально разработанных векторных процессоров. Система базируется на 5120 таких процессорах, объединенных в 640 узлов SX-6 (по 8 процессоров в каждом). Суперкомпьютер работает под управлением ОС SUPER-UX. В числе средств разработки установлены компиляторы языков C/C++, Fortran 90 и HPF, а также средства автоматической векторизации, реализация интерфейса MPI-2 и математическая библиотека ASL/ES. Вся машина занимает площадь трех теннисных кортов (50в65 м) и использует несколько километров кабеля.