Беспроводная передача электроэнергии: история, технологии, оборудование. Способы беспроводной передачи электроэнергии

Всем известно, что Никола Тесла является изобретателем таких повсеместно используемых вещей как переменный ток и трансформатор. Но далеко не все ученые знакомы с другими изобретениями Теслы.

Мы используем переменный ток. Мы используем трансформаторы. В любой квартире. Трудно представить как можно обходиться без этих изобретений. Но КАК мы их используем? Тесла использовал эти известные нам (как нам кажется) вещи совсем по-другому. Как мы подключаем любой электроприбор в сеть? Вилкой - т.е. двумя проводниками. Если мы подключим только один проводник, тока не будет - цепь не замкнута.

Тесла демонстрировал эффект передачи мощности по одному проводнику. Более того, в других экспериментах он передавал мощность вообще без проводов. Великий изобретатель смог в конце XIX века передать без проводов электрическую энергию на расстояние свыше 40 километров. Поскольку этот широко известный эксперимент Теслы до сих пор не повторен, нашим читателям наверняка будут интересны подробности этой истории, а также современное состояние проблемы передачи электрической энергии без проводов.

Биография американского изобретателя, серба по происхождению, Николы Теслы достаточно известна, и мы на ней останавливаться не будем. Но сразу уточним: прежде чем продемонстрировать свой уникальный эксперимент, Тесла, сначала в 1892 году в Лондоне, а через год в Филадельфии, в присутствии специалистов продемонстрировал возможность передачи электрической энергии по одному проводу, не используя при этом заземления второго полюса источника энергии.

И тогда же у него возникла идея использовать в качестве этого единственного провода... Землю! И в этом же году на съезде ассоциации электрического освещения в Сант-Льюисе он продемонстрировал электрические лампы, горящие без подводящих проводов, и работающий без подключения к электрической сети электромотор. Эту необычную экспозицию он прокомментировал следующим образом: «Несколько слов об идее, постоянно занимающей мои мысли и касающейся всех нас. Я имею в виду передачу сигналов, а также и энергии на любое расстояние без проводов. Мы уже знаем, что электрические колебания могут передаваться по единственному проводнику. Почему же не воспользоваться для этой цели Землей? Если мы сможем установить период колебаний электрического заряда Земли при его возмущении, связанном с действием противоположно заряженной цепи, это будет фактом чрезвычайной важности, который послужит на благо всего человечества».

Увидя столь эффектную демонстрацию, такие известные олигархи, как Дж. Вестингауз и Дж. П. Морган, вложили в это перспективное дело свыше миллиона долларов, купив у Теслы его патенты (громадные, кстати, по тем временам деньги!). На эти средства в конце 90-х годов XIX века Тесла сооружает в Колорадо-Спрингс свою уникальную лабораторию. Подробные сведения об экспериментах в лаборатории Теслы изложены в книге его биографа Джона О’Нейла «Электрический Прометей» (в нашей стране ее перевод был опубликован в журнале «Изобретатель и рационализатор» №4-11 за 1979 год). Приведем здесь лишь краткую выдержку из нее, чтобы не ссылаться на более поздние перепечатки: «В Колорадо-Спрингс Тесла провел первые испытания беспроводной передачи электроэнергии. Он смог питать током, извлекаемым из Земли во время работы гигантского вибратора, 200 электрических лампочек накаливания, расположенных на расстоянии 42 километа от его лаборатории. Мощность каждой составляла 50 ватт, так что суммарный расход энергии составлял 10 кВт, или 13 л.с. Тесла был убежден, что с помощью более мощного вибратора он смог бы зажечь дюжину электрических гирлянд по 200 лампочек в каждой, разбросанных по всему земному шару».

Самого же Теслу настолько вдохновили успехи этих экспериментов, что он заявил в широкой печати, что намерен осветить Всемирную промышленную выставку в Париже, которую предполагалось провести в 1903 году, энергией электростанции, расположенной на Ниагарском водопаде и переданной в Париж без проводов. Известно по многочисленным фотографиям и описаниям очевидцев и помощников изобретателя, что представлял собой генератор энергии, передаваемой на 42 километра без проводов (правда, это чисто журналистский термин: один провод, в качестве которого выступала Земля, в этой цепи присутствует, и об этом прямо говорят и сам Тесла, и его биограф).

То, что Тесла называл вибратором, было гигантским трансформатором его системы, имевшим первичную обмотку из нескольких витков толстого провода, намотанных на ограде диаметром 25 метров, и размещенную внутри нее многовитковую однослойную вторичную обмотку на цилиндре из диэлектрика. Первичная обмотка вместе с конденсатором, индукционной катушкой и искровым промежутком образовывала колебательный контур-преобразователь частоты. Над трансформатором, располагавшимся в центре лаборатории, возвышалась деревянная башня высотой 60 метров, увенчанная большим медным шаром. Один конец вторичной обмотки трансформатора соединялся с этим шаром, другой - заземлялся. Все устройство питалось от отдельной динамо-машины мощностью 300 л.с. В нем возбуждались электромагнитные колебания частотой 150 килогерц (длина волны 2000 метров). Рабочее напряжение в высоковольтной цепи составляло 30 000 В, а резонирующий потенциал шара достигал 100 000 000 В, порождая искусственные молнии длиной в десятки метров! Вот как объясняет работу вибратора Теслы его биограф: «В сущности, Тесла «накачивал» в Землю и извлекал оттуда поток электронов. Частота накачки составляла 150 кГц. Распространяясь концентрическими кругами все дальше от Колорадо-Спрингс, электрические волны сходились затем в диаметрально противоположной точке Земли. Там вздымались и опадали волны большой амплитуды в унисон с поднятыми в Колорадо. Опадая, такая волна посылала электрическое эхо обратно в Колорадо, где электрический вибратор усиливал волну, и она мчалась обратно.

Если привести всю Землю в состояние электрической вибрации, то в каждой точке ее поверхности мы будем обеспечены энергией. Ее можно будет улавливать из мечущихся между электрическими полюсами волн простыми устройствами наподобие колебательных контуров в радиоприемниках, только заземленными и снабженными небольшими антеннами высотой с сельский коттедж. Эта энергия будет обогревать дома и освещать их с помощью трубчатых ламп Теслы, не требующих проводов. Для электромоторов переменного тока понадобились бы только преобразователи частоты».

Сведения об экспериментах Теслы по передаче электроэнергии без проводов вдохновили и других исследователей на работы в этой области. Сообщения об аналогичных экспериментах часто появлялись в печати в начале прошлого века. Стоит привести в связи с этим выдержку из статьи A.M. Горького «Беседы о ремесле», опубликованной в 1930 году: «В текущем году Маркони передал по воздуху электроток из Генуи в Австралию и зажег там электрические лампы на выставке в Сиднее. Это же было сделано 27 лет тому назад у нас, в России, литератором и ученым М.М. Филипповым, который несколько лет работал над передачей электротока по воздуху и в конце концов зажег из Петербурга люстру в Царском Селе (то есть на расстоянии 27 километров. -В.П. ). Тогда на этот факт не было обращено должного внимания, но Филиппова через несколько дней нашли мертвым в своей квартире, а аппараты и бумаги его конфисковала полиция».

Эксперименты Теслы произвели большое впечатление и на другого литератора - Алексея Толстого, бывшего инженером по образованию. А когда Тесла, а затем и Маркони сообщили в печати, что их аппараты принимают странные сигналы внеземного, по-видимому, марсианского происхождения, это вдохновило писателя на написание фантастического романа «Аэлита». В романе марсиане пользуются изобретением Теслы и без проводов передают энергию от расположенных на полюсах Марса электростанций в любую точку планеты. Эта энергия приводит в действие двигатели летающих судов и другие механизмы. Однако построить свою «мировую систему» для обеспечения электроэнергией населения земного шара без использования проводов Тесле не удалось.

Как только в 1900 году он начал возводить на острове Лонг-Айленд под Нью-Йорком научно-исследовательскую лабораторию-городок на 2000 сотрудников и громадную металлическую башню с гигантской медной тарелкой на верхушке, спохватились и «проводные» электрические олигархи: ведь повсеместное внедрение системы Теслы грозило им разорением.

Башня «Уорденклиф» (1902)

На миллиардера Дж.П. Моргана, финансировавшего строительство, последовал жестокий нажим, в том числе и от подкупленных конкурентами правительственных чиновников. (или было наоборот) Начались перебои с поставками оборудования, строительство застопорилось, а когда Морган под этим нажимом прекратил финансирование, и вовсе прекратилось. В начале Первой мировой войны, по наущению тех же конкурентов, правительство США распорядилось взорвать уже готовую башню под надуманным предлогом, что ее могут использовать в целях шпионажа.

Ну а затем электротехника пошла привычным путем.

Долгое время никто не мог повторить эксперименты Теслы хотя бы потому, что потребовалось бы создать аналогичную по размерам и мощности установку. Но в том, что Тесле удалось найти способ передачи электрической энергии на расстояние без проводов, более ста лет назад никто не сомневался. Авторитет Теслы, имевшего рейтинг второго после Эдисона изобретателя, во всем мире был достаточно высок, а его вклад в развитие электротехники переменного тока (в пику Эдисону, ратовавшему за постоянный ток) несомненен. При его экспериментах присутствовало много специалистов, не считая прессы, и никто никогда не пытался уличить его в каких-либо фокусах или подтасовке фактов. О высоком авторитете Теслы свидетельствует и название его именем единицы напряженности магнитного поля. Вот только вывод Теслы о том, что во время эксперимента в Колорадо-Спрингс энергия была передана на расстояние 42 километра с к.п.д., равным около 90%, слишком оптимистичен. Напомним, что общая мощность зажженных на расстоянии ламп составляла 10 кВт, или 13 л.с., в то время как мощность динамо-машины, питавшей вибратор, достигала 300 л.с. То есть можно говорить о к.п.д. всего лишь порядка 4-5%, хотя и эта цифра поразительна. Физическое обоснование экспериментов Теслы по беспроводной передаче электроэнергии до сих пор волнует многих специалистов.
www.elec.ru/news/2003/03/14/1047627665.h tml

Специалисты Массачусетского технологического института сумели заставить гореть лампу накаливания, находящуюся на расстоянии 2-х метров от источника энергии. rus.newsru.ua/world/08jun2007/tesla.html

Беспроводные зарядники от Intel odessabuy.com/news/item-402.html

"Аргументы и факты" №52, 2008 (24-30 декабря):
НАУКА - Электричество без проводов. Говорят, что американские ученые сумели передать без проводов электроэнергию мощностью 800 Вт.

Когда компания Apple представила свое первое беспроводное зарядное устройство для сотовых телефонов и гаджетов, многие посчитали это революцией и огромным скачком вперед в беспроводных способах передачи энергии.

Но были ли они первопроходцами или еще до них, кому-то удавалось проделать нечто похожее, правда без должного маркетинга и пиара? Оказывается были, притом очень давно и изобретателей таких было множество.

Так еще в далеком 1893г прославленный Никола Тесла, продемонстрировал изумленной публике свечение люминесцентных ламп. При том, что все они были без проводов.

Сейчас такой фокус может повторить любой школьник, выйдя в чистое поле и встав с лампой дневного света под линию высокого напряжения от 220кв и выше.

Чуть попозже, Тесла уже сумел зажечь таким же беспроводным способом фосфорную лампочку накаливания.

В России в 1895г А.Попов показал в работе первый в мире радиоприемник. А ведь по большому счету это тоже является беспроводной передачей энергии.

Самый главный вопрос и одновременно проблема всей технологии беспроводных зарядок и подобных методов заключается в двух моментах:

  • как далеко можно передать электроэнергию таким способом
  • и какое количество

Для начала давайте разберемся, какую мощность имеют приборы и бытовая техника нас окружающие. Например для телефона, смартчасов или планшета требуется максимум 10-12Вт.

У ноутбука запросы уже побольше - 60-80Вт. Это можно сравнить со средней лампочкой накаливания. А вот бытовая техника, особенно кухонная, кушает уже несколько тысяч ватт.

Поэтому очень важно не экономить с количеством розеток на кухне.

Так какие же методы и способы для передачи эл.энергии без применения кабелей или любых других проводников, придумало человечество за все эти годы. И самое главное, почему они до сих пор не внедрены столь активно в нашу жизнь, как того хотелось бы.

Взять ту же самую кухонную технику. Давайте разбираться подробнее.

Передача энергии через катушки

Самый легко реализуемый способ - использование катушек индуктивности.

Здесь принцип очень простой. Берутся 2 катушки и размещаются недалеко друг от друга. На одну из них подается питание. Другая играет роль приемника.

Когда в источнике питания регулируется или изменяется сила тока, на второй катушке магнитный поток автоматически также изменяется. Как гласят законы физики, при этом будет возникать ЭДС и она будет напрямую зависеть от скорости изменения этого потока.

Казалось бы все просто. Но недостатки портят всю радужную картинку. Минусов три:

  • маленькая мощность

Данным способом вы не передадите большие объемы и не сможете подключить мощные приборы. А попытаетесь это сделать, то просто поплавите все обмотки.

  • небольшое расстояние

Даже не задумывайтесь здесь о передаче электричества на десятки или сотни метров. Такой способ имеет ограниченное действие.

Чтобы физически понять, насколько все плохо, возьмите два магнита и прикиньте, как далеко их нужно развести, чтобы они перестали притягиваться или отталкиваться друг от друга. Вот примерно такая же эффективность и у катушек.

Можно конечно исхитриться и добиться того, чтобы эти два элемента всегда были близко друг от друга. Например электромобиль и специальная подзаряжающая дорога.

Но в какие суммы выльется строительство таких магистралей.

  • малый КПД

Еще одна проблема это низкий КПД. Он не превышает 40%. Получается, что таким способом передать много эл.энергии на большие расстояния вы не сможете.

Тот же Н.Тесла указал на это еще в 1899г. Позже он перешел на эксперименты с атмосферным электричеством, рассчитывая в нем найти разгадку и решение проблемы.

Однако какими бы не казались бесполезными все эти штуки, с их помощью до сих пор можно устраивать красивые светомузыкальные представления.

Или подзаряжать технику гораздо большую чем телефоны. Например электрические велосипеды.

Лазерная передача энергии

Но как же передать больше энергии на большее расстояние? Задумайтесь, в каких фильмах подобную технологию мы видим очень часто.

Первое что приходит на ум даже школьнику - это "Звездные войны", лазеры и световые мечи.

Безусловно, с их помощью можно передать большое количество эл.энергии на очень приличные расстояния. Но опять все портит маленькая проблемка.

К нашему счастью, но несчастью для лазера, на Земле есть атмосфера. А она как раз таки хорошо глушит и кушает большую часть всей энергии лазерного излучения. Поэтому с данной технологией нужно идти в космос.

На Земле также были попытки и эксперименты по проверке работоспособности метода. Nasa даже устраивали состязания по лазерной беспроводной передаче энергии с призовым фондом чуть менее 1млн.$.

В итоге выиграла компания Laser Motive. Их победный результат - 1км и 0,5квт переданной непрерывной мощности. Правда при этом в процессе передачи, ученые потеряли 90% всей изначальной энергии.




Но все равно, даже с КПД в десять процентов, результат посчитали успешным.

Напомним, что у простой лампочки полезной энергии, которая идет непосредственно на свет, и того меньше. Поэтому из них и выгодно изготавливать инфракрасные обогреватели.

Микроволны

Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.

Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.

Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.

Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.

Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат. Зайдите на кухню и обратите внимание на свою микроволновку.

У нее внутри стоит тот самый магнетрон с КПД равным 95%.

Но вот как сделать обратное преобразование? И тут было выработано два подхода:

  • Американский
  • Советский

В США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.

Он даже дал ей свое название - ректенна.

После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.

Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?

И тут опять всплывают недостатки. Ректенны были собраны на основе миниатюрных полупроводников. Нормальная работа для них - это передача всего нескольких ватт мощности.

А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.

И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.

Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.

Вторая головная боль - нестабильность полупроводников в панелях. Достаточно из-за малой перегрузки перегореть одному, и остальные выходят из строя лавинообразно, подобно спичкам.

В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.

В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.

Внешне это что-то вроде трубки длиной 40см и диаметром 15см. КПД у этого лампового агрегата чуть меньше, чем у американской полупроводниковой штуки - до 85%.

Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:

  • надежность
  • большая мощность
  • стойкость к перегрузкам
  • отсутствие переизлучения
  • невысокая цена изготовления

Однако несмотря на все вышесказанное, во всем мире передовым считаются именно полупроводниковые методы реализации проектов. Здесь тоже присутствует свой элемент моды.

После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.

Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.

Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях.

В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.

Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1км.

Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.

Он предложил на тот момент не совсем нормальную идею - вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.

Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.

Этакая "звезда смерти" в наших земных реалиях.

На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше - 5км (размер Садового кольца).

Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.

Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос - увидим ли мы в ближайшее время его реализацию?

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

Сам принцип действия наглядно показан на простой поделке , в которой светодиод может загораться без проводов на расстоянии 2 см от источника энергии. Схема, которая действует как повышающий преобразователь напряжения, а также беспроводные передатчик и приемник электроэнергии, может быть улучшена и реализована во многих мозгопроектах .

Шаг 1: Нам понадобится

NPN транзистор — я взял 2N3904, но вы можете использовать любой NPN транзистор (337, BC547 и т.д.), PNP транзистор тоже будет работать только соблюдайте полярность соединений.
обмоточный или изолированный провод — около 3-4 метров (провода можно «добыть» из многих приборов, трансформаторов, динамиков, моторчиков, реле и т.д.)
резистор 1 кОм – будет использоваться для защиты транзистора от сгорания в случае перегрузки, также можно использовать резисторы до 5 кОм, можно даже без резистора, но тогда аккумулятор будет разряжаться быстрее.
светодиод – сгодится любой, главное следовать схеме.
батарейка 1.5В – не применяйте батарейки большего вольтажа, чтобы не повредить транзистор.
ножницы или нож.
паяльник (опционально).
зажигалка(опционально) для удаления изоляции с проводов.

Шаг 2: Смотрим видео процесса

Шаг 3: Резюмируя видео

Итак, на цилиндрический предмет наматываем катушку из 30 витков, это будет катушка А. Далее наматываем вторую катушку того же диаметра, но при этом сначала накручиваем 15 витков и делаем отвод, а затем еще 15 витков, это катушка В. Катушки закрепляем от разматывания любым подходящим способом, например просто делаем узлы из выводов катушек. Важный момент: для правильного функционирования этой поделки диаметры обеих катушек и количество витков должны быть одинаковыми.

Выводы обеих катушек зачищаем и приступаем к пайке цепи. Определяемся с эмиттером, базой и коллектором своего транзистора и к базе припаиваем резистор. Другой вывод резистора припаиваем к свободному выводу катушки В, не к выводу-отводу. Второй свободный вывод катушки В, снова не отвод, припаиваем к коллектору.

Для удобства можно к эмиттеру припаять небольшой кусочек провода, так буде проще подсоединять батарейку.

Цепь приемника собирается легко: к выводам катушки А припаиваем светодиод. И мозгоподелка готова!

Шаг 4: Принципиальная схема

Шаг 5: Наглядный рисунок

Шаг 6: Тестирование


Для приведения самоделки в работоспособное состояние подключаем отвод катушки В к «плюсу» батарейки, а «минус» к эмиттеру транзистора. Затем подносим катушки параллельно друг к другу и диод светится!

Шаг 7: Пояснение

Немного поясню, как все это функционирует.

Передатчик в нашей поделке это цепь осциллятора. Вы может слышали о «цепи ворующей Джоули», которая поразительна схожа с нашей цепью передатчика. В «цепи ворующей Джоули» электроэнергия от батарейки 1.5В преобразуется в более высокое напряжение, но импульсное. Светодиоду требуется 3В, но благодаря «цепи ворующей Джоули» он прекрасно светится и от 1.5В.

«Цепь, ворующая Джоули» известна как конвертер и генератор, цепь, которую мы создали, также является генератором и конвертером. А энергия на светодиод подается посредством индукции, возникающей в катушках, которую можно пояснить на мозгопримере обычного трансформатора.

Предположим, что трансформатор имеет две одинаковые катушки. Тогда во время прохождения электричества по одной катушке она становится магнитом, вторая катушка попадает в магнитное поле первой и, вследствие этого, по ней тоже начинает течь ток. Если напряжение в первой катушке переменное, следовательно, она импульсно теряет свои магнитные свойства, значит и вторая катушка импульсно попадает в магнитное поле первой, то есть и во второй катушке образуется переменное напряжение.

В нашей самоделке катушка передатчика создает магнитное поле, в которое попадает катушка приемника, соединенная со светодиодом, который преобразует полученную энергию в свет!

Представленная мозгоподелка преобразует полученную энергию в свет, но можно использовать ее более разнообразно. Также можно применять принципы этой самоделки для создания фокусов, забавных подарков или научных проектов. Если варьировать диаметры и число витков на катушках, то можно добиться максимальных значений, или можно изменить форму катушек и т.д., возможности не ограничены!

Шаг 9: Устранение неисправностей

При создании этой самоделки возможны следующие проблемы:
Транзистор слишком греется – проверьте номинал резистора, возможно его нужно повысить. Я сначала не использовал резистор, и транзистор при этом сгорел. Или как вариант используйте радиатор для транзистора, а может и другой транзистор, с более высоким значением усиления.
Светодиод не светится – причин может быть много. Проверьте качество соединения, правильно ли распаяли базу и коллектор, убедитесь, что катушки равного диаметра, нет ли короткого замыкания в цепи.

Сегодняшний эксперимент с индукцией закончен, благодарю за внимание и успехов в творчестве!

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

Так появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.


Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология


Принцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.


Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.
До сих пор не решена проблема передачи энергии на расстояние. Хотя была поставлена на рубеже веков. Первым, кто смог осуществить эту мечту стал Никола Тесла: "Передача энергии без проводов - не теория и не просто вероятность, как это представляется большинству людей, но явление, которое я экспериментально демонстрировал в течение ряда лет. Сама идея появилась у меня не сразу, а в результате длительного и постепенного развития и стала логическим следствием моих исследований, которые были убедительно продемонстрированы в 1893 году, когда я впервые представил миру схему моей системы беспроводной передачи энергии для всевозможных целей. Мои опыты с токами высокой частоты были первыми за всё время, проведенными публично, и они вызвали острейший интерес по причине тех возможностей, которые они открывали, а также поразительной природы самих явлений. Немногие из специалистов, знакомых с современной аппаратурой, по достоинству оценят трудность задачи, когда у меня в распоряжении были примитивные устройства”.

В 1891 Никола Тесла сконструировал резонансный трансфоpматоp (тpансфоpматоp Тесла), позволяющий получать высокочастотные колебания напряжения с амплитудой до миллиона вольт, и первым указал на физиологическое воздействие токов высокой частоты. Наблюдаемые во время грозы стоячие волны электрического поля привели Тесла к идее о возможности создания системы для обеспечения электроэнеpгией удаленных от генеpатоpа потребителей энергии без использования проводов. Изначально катушка Тесла использовалась с целью передачи энергии на большие расстояния без проводов, но вскоре эта идея отошла на последний план, так как передать таким образом энергию на расстояние практически невозможно, причиной этому является маленький КПД катушки Тесла.

Трансформатор Тесла, или катушка Тесла, - единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий высокое напряжение при высокой частоте. Это устройство использовалось ученым в нескольких размерах и вариациях для его экспериментов. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Существует 3 вида катушек Тесла:

SGTC-spark gap Tesla coil - катушка Тесла на искровом промежутке.
VTTC-vacuum tube Tesla coil - катушка Тесла на радиолампе.
SSTC-solid state Tesla coil - катушка тесла на более сложных деталях.

Описание конструкции трансформатора. В элементарной форме состоит из двух катушек - первичной и вторичной, а также обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора и терминала (на схеме показан как «выход»). В отличие от многих других трансформаторов, здесь нет никакого ферримагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферримагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент - разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов.

Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Тесла сильно влияют на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.

Ещё одно интересное устройство - генератор Ван де Граафа. Это генератор высокого напряжения, принцип действия которого основан на электризации движущейся диэлектрической ленты. Первый генератор был разработан американским физиком Робертом Ван де Граафом в 1929 и позволял получать разность потенциалов до 80 киловольт. В 1931 и 1933 были построены более мощные генераторы, позволившие достичь напряжения до 7 миллионов вольт. Схема генератора Ван де Граафа:


Большой полый металлический электрод, имеющий вид полусферического купола, установлен на высоковольтной изолирующей колонне. В полость электрода заходит верхний конец ленточного транспортера электрических зарядов, представляющий собой бесконечный резиновый ремень на текстильной основе, натянутый на два металлических шкива и движущийся обычно со скоростью 20 - 40 м/сек. Нижний шкив, установленный на металлической плите, вращается электродвигателем. Верхний шкив размещается под высоковольтным электродом-куполом и находится под полным напряжением машины. Там же находится система питания источника ионов и сам источник. Нижний конец ленты проходит мимо электрода поддерживаемого обычным высоковольтным источником под высоким относительно земли напряжением до 100 кВ. В результате коронного разряда электроны с ленты переносятся на электрод. Положительный заряд поднимаемой транспортером ленты компенсируется вверху электронами купола, который получает положительный заряд. Максимально достижимый потенциал ограничивается изолирующими свойствами колонны и воздуха вокруг нее. Чем больше электрод, тем выше потенциал он может выдержать. Если установка герметически закрыта и внутреннее пространство наполнено сухим сжатым газом, размеры электрода для данного потенциала могут быть уменьшены. Заряженные частицы ускоряются в откачанной трубке, расположенной между высоковольтным электродом и «землей» или между электродами, если их два. С помощью генератора Ван-де-Граафа может быть получен очень высокий потенциал, что позволяет ускорять электроны, протоны и дейтроны до энергии 10 Мэв, а альфа-частицы, несущие двойной заряд до 20 Мэв. Энергию заряженных частиц на выходе генератора можно легко контролировать с большой точностью, что делает возможными точные измерения. Ток пучка протонов в постоянном режиме 50 мкА, а в импульсном режиме может быть доведен до 5 мА.