Блок питания шим. ШИМ-контроллер: схема, принцип работы, управление

Когда в какой-нибудь литературе мы встречаем незнакомое слово или понятие, мы хотим скорее узнать его определение. Зная точное определение можно дальше проследить сферу использования и методы применения главного действующего лица того или иного понятия. Сегодня мы ближе познакомимся с таким понятием как шим - контроллер.

Понятие шима

Прежде чем дать определение упомянутому словосочетанию, следует узнать или кому-то просто напомнить себе принцип нагревания силовых компонентов радиосхемы. Их сущность заключается в действии нескольких переключательных режимах. Все электросиловые компоненты в подобных радиосхемах всегда пребывают в двух состояниях. Первое - это открытое, а второе раскрытое. В чём разница между этими двумя состояниями? В первом случае компонент обладает нулевым током. Во втором же у компонента нулевое значение напряжения. Конечным результатом взаимодействия электросиловых компонентов с необходимой напряжённостью можно считать получения сигнала той формы, которая нужна согласно установленным правилам.

Шимом же называют специальный модулятор, предназначенный для контролирования времени открытия силового ключа. Время для открытия ключа устанавливается с учётом получаемого напряжения. Получить идеальный вариант сигнала возможно лишь в том случае, если перед преобразованием сигнал без затруднений прошёл все необходимые этапы. Какие это этапы из чего состоит формирование такого сигнала.

Особенности шим - контроллера

Сам процесс создания шим - сигналов очень непростой. Чтобы облегчить этот процесс, были придуманные специальные микросхемы. Именно микросхемы, участвующие в формировании шим - сигналов называют шим - контролёрами. Их существование в большинстве случаев помогает полностью решить проблему с формированием широко — импульсных сигналов. Чтобы легче понять миссию и значимость шим - контролёра, необходимо познакомиться с особенностями его строения. На сегодняшний день известно, что любой шим - контролёр, активно использующийся в электронике, обладает следующими составляющими:

  • Вывод питания. Несёт большую ответственность за электрическое питание всех существующих схем. Нередко вывод питания путают с выводом контроля питания . Важно знать, что несмотря на похожие слова в названии, эти два понятия имеют совершенно разную характеристику. Это ещё раз наглядно докажет знакомство с выводом контроля питания.
  • Вывод контроля питания. Эта составляющая часть микросхемы следит за состоянием показателей напряжения прямо на выводе микросхемы. Главная задача вывода контроля питания - это не допустить превышение расчётной отметки. Существует одна серьёзная опасность, а именно снижения напряжения на выходе. Если напряжения снижено, транзисторы начинают открываться наполовину. Из-за неполного открытия они быстро нагреваются и в конечном счёте могут быстро выйти из строя. Поэтому умеренное напряжение - это залог долгой работы транзисторов микросхемы шим — контроллеров.
  • общий выход. Третий главный элемент схемы имеет форму ножки. Эта ножка, в свою очередь, подключена к общему проводу схемы, которые отвечает за питания всей системы.

Все три составляющих очень важны. Если хотя бы один из элементов по какой-то причине выходит из строя, работа всей микросхемы заметно ухудшается или совершенно прекращается.

Системы управления микросхемами

Важно знать не только из чего состоят микросхемы шим - контроллеров, но и какие существуют виды самих систем. В настоящее время доступно две основных системы широко — импульсной модуляции в которых шим - контроль принимает активное участие. Вот их некоторые особенности:

А вот получить на выходе нужный сигнал можно как с программным, так и аппаратным методом.

Аппаратный метод. Получение сигнала этим способом происходит с помощью специального таймера, который изначально встроен в цифровую систему. Такой таймер генерирует или способствует включению импульсов на определённых этапах вывода сигнала.

Программный метод. В этом случае получения сигналов происходит посредством выполнения специальных программных команд. У программного способа больше возможностей , нежели у аппаратного. В то же время использования этого метода получения сигналов может занять много памяти.

А что можно сказать о «сердце системы». У шима - контролёра, который активно применяется в цифровых модуляторах есть свои преимущества. Стоит помнить о следующих:

  • Низкая стоимость.
  • Стабильная работа.
  • Высокая надёжность.
  • Возможность экономить энергию.
  • высокая эффективность преобразования сигналов.

Все перечисленные преимущества делают цифровую систему более востребованной среди потребителей.

  • Аналоговый модулятор. Принцип работы аналогового модулятора в корне отличается от принципа работы цифрового Вся суть работы такого модулятора состоит в сравнении двух сигналов. Эти сигналы отличаются между собой порядком частоты. Операционный усилитель - это главный элемент аналогового модулятора, который отвечает за сравнение сигналов. Сравнение сигналов осуществляется на выходе. В качестве сравнения усилитель используется два сигнала. Первый - пилообразное напряжение высокой частоты. Второй сигнал - низкочастотное напряжение. После сравнения на свет появляются импульсы прямоугольной формы. Длительность импульсов напрямую зависят от модулирующего сигнала .

Шим - контроллер в импульсных блоках питания

Многие электрические приборы сегодня оснащены специальными блоками питания. Эти блоки помогают преобразить один вид напряжения в другой. В процессе преобразования энергии принимают участия два устройства:

  • Импульсный блок питания.
  • аналоговые трансформаторные устройства.

В этой статье мы больше внимания обратим на первое устройство, так как именно в нём используется шим - контролёр.

Схема работы импульсного блока питания

Это устройство появилось на свет всего лишь несколько десятилетий назад. Однако уже успело стать популярным и востребованным. Импульсный блок питания состоит из следующих деталей:

  1. Фильтрующего конденсата.
  2. Ключевого силового транзистора.
  3. Сетевого выпрямителя, состоящего из нескольких элементов.
  4. Выпрямительных диодов выходной системы.
  5. Силовой дроссели. Дроссель помогает корректировать возникающее напряжение.
  6. Импульсивного источника питания. Именно отсюда напряжение преобразовывается в силовую цепь.
  7. Цепей управления выходного напряжения.
  8. Накопительной фильтрующей ёмкости;
  9. Оптопара;
  10. Задающего генератора.
  11. схемы обратной связи.

Зная состав импульсного блока, следует ознакомиться с принципом его работы.

Принцип работы импульсного блока

Принцип работы импульсного блока заключается в выдаче стабилизированного питающего напряжения на основе принципа взаимодействия элементов инертной системы. Вот поэтапные шаги, наглядно демонстрирующие всю суть деятельности такого блока питания:

  • Передача сетевого напряжения на выпрямитель (осуществляется при помощи специальных проводов).
  • С помощью фильтра выпрямителя происходит сглаживание напряжения. В этом процессе принимают участие и конденсаторы.
  • с помощь диодного входного моста выпрямляются синусоиды. Далее при участии транзисторной системы проходящие синусоиды должны преобразоваться в высокочастотные импульсы. Зачастую импульсы имеют прямоугольную форму.

Но возникает вопрос, какую роль в импульсном блоке играют шим - контролёры. Мы постараемся дать ответ на него в следующем подзаголовке.

Роль шима - контроллера в работе импульсного блока

Шим - контроллеры играют важную роль в импульсном блоке. Он отвечает за процессы, связанные с широтно — импульсной модуляцией. Шим - контролёр способствует выработке импульсов, у которых одинаковая частота, но в то же время разная длительность включения. Все подаваемые импульсы соответствуют определённой логической единице. У импульсов одинаковая не только частота, но и одинаковая величина амплитуды. Продолжительность функционирования логической единицы может меняться в процессе её работы. Такие перемены помогают наилучшим образом управлять работой электронной системы.

Таким образом, шим - контролёр - одна из важных цепочек, участвующих в работе импульсного блока. В некоторых видах помимо шим - контролёра благополучное функционирование блока питания обеспечивает импульсный трансформатор и специальный каскад силовых ключей.

А в каких сферах используются импульсные блоки питания? В первую очередь, в электронике. Об этом речь пойдёт далее.

Особенности работы микросхемы или как может работать ноутбук

Компьютерный блок питания и роль шим - контролёра в нём Все современные компьютеры, в том числе и ноутбуки, оснащены импульсными блоками питания. Установленные в ноутбуке или в обычном компьютере блоки содержат индивидуальную микросхему шим - контролёра. Стандартной микросхемой считают микросхему TL494CN.

Прежде всего стоит сказать о главной задаче микросхемы TL494CN. Итак, главной задачей схемы является широтно — импульсная модуляция. Другими словами микросхема вырабатывает импульсы напряжения. Одни импульсы регулируемы, другие нет. В микросхеме предусмотренно примерно 6 способов выводов сигналов. Упомянем некоторые интересные подробности каждого вывода микросхемы ноутбука.

Первый вывод. Считается положительным входом усилителя сигнала ошибки. Уровень напряжения на первом выводе оказывает значительное влияние на функционирование последующих выводов. При низком напряжении при втором выводе у выхода усилителя ошибки будут низкие показатели. И напротив, при повышенном напряжении показатели усилителя ошибки повысятся .

Второй вывод. Второй же вывод является напротив отрицательным выходом для усилителя. Здесь показатели напряжения немного по-иному оказывают своё влияние на усилитель. Так, при высоком напряжении (выше чем на первом выводе) у выхода усилителя низкие показатели. В случае низкого напряжения усилитель обладает высокими данными.

Третий вывод. Служит неким контактным звеном. Перемены в уровне напряжения зависят от двух диодов, которыми наделен внутренний усилитель. Во время изменения уровня сигнала хотя бы на одном диоде меняется уровень напряжения всего усилителя. В некоторых случаях третий вывод обеспечивает скорость изменения ширины импульсов.

Четвёртый вывод. Способен управлять диапазон скважности всех выходных импульсов. Уровень поступаемого напряжения в четвёртом выводе влияет на ширину импульсов в микросхеме шим - контролёра.

Пятый вывод. Перед пятым выводом стоит немного другая задача. Он присоединяет врямязадующий конденсатор к заданной микросхеме. Ёмкость присоединённого конденсата оказывает значительное влияние на частоту выходных импульсов шим - контролёра.

Шестой вывод. Служит для подключения времязадающего регистра, который также влияет на частоту.

Все эти шесть выводов способствуют выполнению главной задачи, которая поставлена перед микросхемой шим - контролёра - выход импульсов с широкой модуляцией. А это действие, в свою очередь, влияет на работу импульсного блока, а значит и на работу ноутбука.

Если шим - контролёр выходит из строя

Временами шим - контролёры их схемы и источник питания (в том числе и встроенные в ноутбук) могут ломаться и выходить из строя. В таких случаях понадобится выявить неисправности (в одних случаях проверять необходимо источник питания, в других проверять стоит саму схему). Для этой цели были разработаны мультиметры . Мультиметры тщательно исследуют работоспособность шим - контролёров и при необходимости помогают устранить неисправности. Самыми распространёнными причинами, почему следует проверять эти устройства, считают нестабильную работу платы и изменения показателей напряжения. Если их устранить, техника будет работать.

На сегодняшний день разработано около 14 различных топологий импульсных источников питания (табл. 1). Каждая обладает уникальными свойствами, позволяющими использовать ее для решения своего круга задач.

Таблица 1. Базовые топологии схем, применяемые при построении импульсных источников питания

Топология Схема Мощность,
Вт
Область применения Особенности
Обратноходовый
(flyback)
до 300 Источники питания бытовой аппаратуры (TV, DVD и т.п.), мощные зарядные устройства и внешние блоки питания. Простота схемы, низкая стоимость
Прямоходовый
(feed forward)
до 300 Источники питания бытовой аппаратуры (TV, DVD и т.п.), мощные зарядные устройства, внешние и встроенные блоки питания. Пониженный уровень помех, повышенная эффективность при низких выходных напряжениях
Резонансный
(resonance)
до 300 Источники питания бытовой аппаратуры (TV, DVD и т.п.) Высокая рабочая частота и как следствие — малые габариты, простота фильтрации помех
Двухтактный
(push-pull)
100…5000 Внешние и встраиваемые источники питания для бытовой, промышленной и автомобильной аппаратуры Пониженный уровень помех
Полумостовой
(half-bridge)
100…1000 Внешние и встраиваемые источники питания (например, компьютеры) Малые габариты
Пониженный уровень помех
Мостовой
(full-bridge)
100…3000 Блоки бесперебойного питания, зарядные устройства Повышенный КПД

Сегодня «сердцем» практически любого современного трансформаторного импульсного источника питания средней и высокой мощности является специализированная ИС, управляющая работой внешнего силового транзистора/транзисторов. В подавляющем большинстве таких источников используется несколько режимов управления работой силовых транзисторов: широтно-импульсный (PWM — ШИМ), частотно-импульсный (FPM — ЧИМ), квазирезонансный (QR). Также зачастую с целью повышения КПД используется смешанный режим: ЧИМ или квазирезонансный режимы — на низкой выходной мощности, а ШИМ — на средних и больших мощностях.

Задачи и функции ШИМ-контроллеров сводятся не только к управлению внешними силовыми транзисторами и поддержанию выходного напряжения на требуемом уровне с заданной погрешностью. В действительности в перечень этих функции в обязательном порядке входят:

контроль состояния ключевых транзисторов (ограничение тока и скважности импульсов управления);

плавный запуск после подачи питания (плавный пуск);

контроль уровня входного напряжения и его «провалов» и «выбросов»;

защита от пробоя силового трансформатора и выходным цепей выходного выпрямителя;

контроль температуры самого контроллера (реже и силовых транзисторов).

Условно все производимые ШИМ-контроллеры STMicroelectronics (табл. 2) можно разделить на три группы: управление по напряжению, управление по току и смешанное управление.

Таблица 2. Краткие характеристики и параметры ШИМ-контроллеров STMicroelectronics

Наимено-
вание
Режим
управления
Входное
напря-
жение, В
Выходное
напря-
жение, В
Макс.
выход-
ной
ток, А
Макс.
частота
регули-
рования,
кГц
Скваж-
ность,
%
Корпус
Мин. Макс. Мин. Макс.
SG2525A Напряжение 8 35 0,5 500 49 DIP16/SO16
SG3524 Напряжение 8 40 0,1 300 45 DIP16/SO16
SG3525A Напряжение 8 35 0,5 500 49 DIP16/SO16
L5991 Ток 12 20 4,92 5,08 1,5 100 93 DIP16/SO16
UC2842B Ток 11 30 1 500 100 DIP8/SO8
UC2843B Ток 8,2 30 1 500 100 DIP8/SO8
UC2844B Ток 11 30 1 500 50 DIP8/SO8
UC2845B Ток 8,2 30 1 500 50 DIP8/SO8
UC3842B Ток 11 30 1 500 100 DIP8/SO8
UC3843B Ток 8,2 30 1 500 100 DIP8/SO8
UC3844B Ток 11 30 1 500 50 DIP8/SO8
UC3845B Ток 8,2 30 1 500 50 DIP8/SO8
L6566A Смешанное 8 23 4,95 5,05 0,8 300 70 SO16
L6566B Смешанное 8 23 4,95 5,05 0,8 300 70 SO16
L6668 Смешанное 9,4 22 0,8 105 75 SO16

SG2525A/SG3524/SG3525A — серия управляемых напряжением ШИМ-контроллеров (рис. 1) с фиксированной частотой преобразования, специально спроектированных для построения любых типов импульсных источников питания (согласно заявлению компании-производителя) и позволяющих до минимума сократить число необходимых внешних компонентов.


Рис. 1.

Это стало возможным благодаря наличию встроенного опорного источника питания (+5,1 В ±1%), возможности управления частотой работы внешней RC-цепью, длительностью интервала «мертвого» времени — одним внешним резистором, длительностью времени плавного старта — одним внешним конденсатором (вывод SOFT-START), встроенным драйверам (±200 мА) для управления внешними силовыми транзисторами или внешним маломощным трансформатором. Помимо всего вышеуказанного, в ИС предусмотрена возможность синхронизации нескольких источников от одного внешнего тактового сигнала (вывод SYNC) и защиты по току внешних силовых транзисторов (вывод SHUTDOWN). Область применения — практически любой DC/DC-конвертер малой и средней мощности (рис. 2 и рис. 3).


Рис. 2.


Рис. 3.

UC2842B/3B/4B/5B и UC3842B/3B/4B/5B популярная серия малогабаритных ШИМ-контроллеров с фиксированной частотой преобразования и управлением током, размещенных в 8-выводных корпусах SO и MiniDIP (рис. 4).

Рис. 4.

Несмотря на то, что она выпускается уже около 10 лет, по-прежнему остается одной из самых востребованных серий в основном благодаря низкой стоимости и высокой надежности, отчасти благодаря простоте реализации. Предназначены для построения однотактных DC/DC-преобразователей с входным напряжением до 8,2…30 В. Наличие RC-генератора (частота работы до 500 кГц), встроенного мощного драйвера (±200 мА) для управления внешним полевым или биполярным транзистором, встроенного термостабилизированного опорного источника +5 В ± 1% позволяют строить на основе ИС этой серии обратноходовые источники питания с необходимым набором защитных функций — защита от перенапряжения на входе, защита внешнего силового транзистора по току, температурная защита ИС. Для исключения ложного срабатывания встроенного компаратора по току (Current Sense) из-за возможных помех, возникающих при переключениях внешнего силового транзистора, реализован т.н. режим блокировки компаратора (Leading Edge Blanking) на фиксированное время (около 100 нс) с моментов переключения транзистора (рис. 5).


Рис. 5.

Особенность серии управление по току внешнего силового транзистора, что позволяет исключить из схемы дополнительные гальванически развязанные цепи обратной связи (оптрон), что позволяет в значительной степени уменьшить габариты и стоимость конечного DC/DC-преобразователя. Кроме того, при построении маломощных преобразователей (до 3 Вт) существует возможность исключения внешнего силового транзистора и использования вместо него встроенный выходной драйвер.

L5991/L5991A — серия ШИМ-контроллеров с управлением по току, высокой частотой работы (до 1 МГц) и повышенной функциональностью (рис. 6).

Рис. 6.

К отличительным особенностям ИС этой серии относятся: мощный драйвер с выходным током до 1 А для управления мощным полевым транзистором, программируемый плавный запуск, возможность синхронизации как по входу (Slave), так и по выходу (Master), вход отключения с сокращением тока потребления до 120 мкА, возможность ограничения максимальной скважности внешними RC-цепями, наличие режима Standby, повышающего экономичность (работа с малой нагрузкой или без нее). Серия создана для построения мощных обратноходовых DC/DC-преобразователей.

Для исключения ложного срабатывания встроенного компаратора по току (Current Sense) из-за возможных помех, возникающих при переключениях внешнего силового транзистора, реализован т.н. режим блокировки компаратора (Leading Edge Blanking) на фиксированное время (около 100 нс) с моментов переключения транзистора (рис. 7).


Рис. 7.

L6566A/L6566B/L6668 серия многофункциональных ШИМ-контроллеров, специально спроектированных для работы в составе обратноходовых импульсных преобразователей напряжения средней и высокой мощности (рис. 7). Отличительные особенности ИС: два режима работы по выбору — режим с фиксированной частотой (Fixed Frequency — FF) и квазирезонансный режим (Quasi-resonant — QR). Частота работы в режиме с фиксированной частотой, которая определяется номиналами внешней RC-цепи. Дополнительный вход FMOD позволяет работать в режиме модуляции частоты, что позволяет уменьшить помехи от работы источника. В ИС встроен источник питания с высоковольтным входом, предназначенный для начального запуска.

Отдельно стоить отметить особенности работы ИС в квазирезонансном режиме, в котором источник работает на гране режимов непрерывного и прерывистого тока. Для этой цели в силовом трансформаторе должна быть предусмотрена дополнительная обмотка, предназначенная для точного определения момента открытия силового транзистора. В этом режиме достигается максимальная эффективность преобразователя: на малых нагрузках частота работы низкая, а потери на силовом транзисторе минимальны. На средней и большой нагрузке частота работы увеличивается до заданной частоты, определяемой внешней RC-цепью.

L6566A/L6566B/L6668 прежде всего ориентированы на применение в составе одно- и многоканальных AC/DC-преобразователей средней и высокой мощности (рис. 8). Основными приложениями являются внешние блоки питания ноутбуков, бытовой техники, встраиваемые источники питания для промышленной аппаратуры и т.п.


Рис. 8.

Заключение

На сегодняшний момент семейства ШИМ-контроллеров компании STMicroelectronics уверенно и прочно заняли нишу в ряду недорогих надежных многофункциональных, и в то же время простых в эксплуатации импульсных источников питания малой, средней и большой мощности. В большинстве своем их можно встретить как в обычной бытовой технике (компьютеры, ноутбуки, DVD-проирыватели, ЖК-телевизоры и мониторы и т.п.), так и в сложной промышленной и медицинской аппаратуре. Одной из причин этого стала весьма низкая цена при высокой функциональности в малогабаритных 8- и 16-выводных SO- и DIP-корпусах, высокой надежности с увеличенным жизненным циклом (согласно опыту многих разработчиков). Большая популярность некоторых серий, сохраняющаяся вот уже более десяти лет, дает определенную гарантию производителям источников питания, что ШИМ-контроллеры от STMicroelectronics не будут сняты с производства еще долгие годы.

Получение технической информации, заказ образцов, поставка —
e-mail:

TI анонсировала новые DSP

Моделирование системы и первоначальная реализация алгоритма в большинстве случаев производится на базе арифметики с плавающей точкой. После чего, отлаженный алгоритм загружается на микроконтроллер или цифровой сигнальный процессор с фиксированной точкой. Процессоры с плавающей точкой используются только в приложениях, требующих высокой точности и производительности, где цена конечного устройства не критична.

Для таких приложений компания Texas Instruments выпустила цифровые сигнальные процессоры с плавающей точкой TMS320F28335, TMS320F28334, TMS320F28332. Но, как и раньше, не остановилась на этом. Появились новые DSP TMS320F2823x с фиксированной точкой, которые программно и аппаратно совместимы с процессорами с плавающей точкой TMS320F2833x.

Теперь пользователи могут моделировать систему, отлаживать ее на платформе с плавающей точкой (TMS320F2833x), а затем просто перекомпилировать полученный программный код под TMS320F2823x, сократив тем самым время разработки (время загрузки приложения на платформу с фиксированной точкой) и стоимость конечного устройства.

Серийное производство TMS320F2823x и TMS320F2833x начнется во втором квартале 2008 года.

Наимено-
вание
МГц Flash,
кБ
ОЗУ,
кБ
TMS320F28235 150 512 68
TMS320F28234 150 256 68
TMS320F28232 100 128 52

TI раскрывает подробности своего 45-нм техпроцесса

Компания Texas Instruments (TI) готова к серийному выпуску своих первых 45-нанометровых микросхем. Переход к нормам 45 нм, как утверждается, позволил снизить энергопотребление чипов на 63% и повысить производительность на 55% по сравнению с 65-нанометровыми продуктами

В настоящее время TI отгружает ознакомительные образцы первого 45-нанометрового процессора для устройств с поддержкой сетей 3.5G. В производстве новинки применяется напряженный кремний, иммерсионная литография и диэлектрики со сверхмалым значением диэлектрической постоянной (ultra-low K).

Указанный процессор позволит выпускать более компактные и легкие устройства для сетей 3.5G.

О компании ST Microelectronics
В данной статье мы поговорим с вами о шим контроллерах : что это, для чего и где применяется.
ШИМ – широтно-импульсный модулятор.
Для преобразования напряжения в телевизионной аппаратуре и других электронных устройствах используются ШИМ контроллеры . С помощью прибора удалось внедрить в производство инновационные идеи и новые технологии. Основными преимуществами ШИМ-контроллеров являются скромные габариты, отличные показатели быстродействия и высокая надежность.

Наиболее востребованы ШИМ контроллеры при изготовлении модулей питания импульсного типа. Постоянное напряжение на входе устройства преобразуется в импульсы прямоугольной формы, формируемые с определенной частотой и скважностью. С помощью управляющих сигналов на выходе устройства удается осуществлять регулирование работы транзисторного модуля большой мощности. В результате разработчики получили блок управления напряжением регулируемого типа.

В телевизионной аппаратуре компактные ШИМ-контроллеры весьма востребованы. Кроме того, устройства используются в другой электронной аппаратуре, а также в качестве узлов системы управления скоростью электроприводов в бытовых приборах. В зависимости от параметров системы и управляющего сигнала, ШИМ-контроллеры меняют скорость движения силового агрегата. Обратная связь может быть выполнена как по значению силы тока, так и по уровню напряжения.

Типовая конструкция ШИМ-контроллера, используемого в телевизионной и другой электронной аппаратуре, характеризуется наличием нескольких выходов. Общий вывод соединен с аналогичным контактом схемы подачи питания модуля. Вывод контроля питания и вывод питания расположены рядом друг с другом. Первый из них отвечает за контроль напряжения на выходе схемы и отключает ее при снижении значения ниже пороговой величины. Второй вывод отвечает за энергоснабжение схемы .

Напряжение на выходе снимается с соответствующего вывода. Существуют двухплечевые и одноплечевые ШИМ-контроллеры. Первые из них применяются для управления стандартными транзисторами. При необходимости их закрытия, контроллер замыкает соответствующий контакт на общий кабель. При работе с транзистором биполярного типа применяется одноплечевой каскад, так как для регулировки требуется изменение силы тока. Для отключения транзистора необходимо запретить прохождение тока. Поэтому замыкание на общий контакт не используется.

ШИМ-контроллеры, используемые в телевизионной аппаратуре, характеризуются наличием следующих возможностей:
  • Устройства способны вырабатывать опорное напряжение с высокой степенью точности. Зачастую данный вывод коммутируется с общим проводом. При этом используется емкость значением 1 мФ и более, что позволяет повысить качество стабилизации выходного значения.
  • Ограничитель тока срабатывает при значительном превышении напряжения на соответствующем выводе над пороговым. В этом случае происходит автоматическое отключение силовых ключей.
  • Мягкий старт используется для постепенного увеличения величины импульсов на выходе до расчетных показателей. Наличие емкости между соответствующим выводом и общим проводом приводит к ее постепенной зарядке. В результате каждый импульс становится шире вплоть до достижения требуемой величины.

Современные источники питания для различной аппаратуры проектируются на основе ШИМ-контроллеров. От качества компонентов зависит срок жизни модуля. Основная цель, для которой ШИМ-контроллеры включаются в схемы источников напряжения, это обеспечение стабильной величины напряжения на выходе. Небольшие габариты контроллеров дают им преимущество перед стандартными схемами с использованием трансформаторов.

ШИМ-контроллеры, применяемые в источниках питания , кроме стабилизации выходного напряжения, реализуют еще несколько дополнительных возможностей. Использование широтно-импульсной модуляции позволяет осуществить контроль величины сигнала. При этом имеется возможность менять протяженность импульса и скважность.
ШИМ-контроллеры обладают высокими показателями КПД, что позволяет значительно расширить область их использования. Особенно это касается аппаратуры для воспроизведения звука. Кроме того, при использовании в источниках питания ШИМ-контроллеров, значительно расширяется диапазон доступных мощностей прибора.

Устройства на базе ШИМ-контроллеров являются универсальными и могут использоваться не только в телевизионной аппаратуре, но и во многих других приборах. Блоки питания различного электрооборудования реализуются на основе данных контроллеров. Использование устройств позволяет сократить затраты на эксплуатацию оборудования и повышает его качество работы. Высокий КПД делает разработку источников на ШИМ-контроллерах перспективным и востребованным направлением деятельности.

В схемотехнике современных импульсных источников питания (ИИП) приобрели широкую популярность ШИМ-регуляторы, выполненные в малогабаритных планарных корпусах с шестью выводами. Обозначение типа корпуса может быть SOT-23-6, SOT-23-6L, SOT-26, TSOP-6, SSOT-6. Внешний вид и расположение выводов показаны на рисунке ниже. В данном случае на левом фрагменте картинки представлена кодовая маркировка LD7530A

Назначение выводов:
1 - GND. (Общий провод).
2 - FB. (FeedBack - Обратная Связь). Вход для управления длительностью импульсов сигналом с выходного напряжения. Иногда может иметь обозначение COMP (входной компаратор).
3 - RI/RT/CT/COMP/NC - В зависимости от типа микросхемы, может быть задействован для частотозадающей RC цепи (RI/RT/CT), либо для организации защиты, как вход компаратора отключения ШИМ при пороговом значение на его входе, указанном в документе. В некоторых типах микросхем этот вход может быть никак не задействован (NC - No Connect).
4 - SENSE, по другому CS (Current Sense) - Вход с датчика тока в истоке ключа.
5 - VCC - Вход напряжения питания и запуска микросхемы.
6 - OUT (GATE) - Выход для управления затвором (Gate) ключа.

Функционально подобные регуляторы работают по принципу популярных ранее микросхем ШИМ серии xx384x, которые хорошо зарекомендовали себя в плане надёжности и устойчивости.

Некоторые затруднения часто возникают при замене или выборе аналога для подобных ШИМ-регуляторов по причине применения кодовой маркировки в обозначении типа микросхем. Ситуация осложняется большим количеством производителей компонентов, которые не всегда предоставляют документацию в массовый доступ, так же не все производители готовых устройств снабжают схемами ремонтные сервисные центры, поэтому реальные схемные решения ремонтникам часто приходится изучать по установленным компонентам и монтажным соединениям непосредственно на плате.

В практике часто встречаются микросхемы ШИМ и кодом маркировки EAxxx и Eaxxx. Официальной документации на них не найдено в свободном доступе, но сохранились обсуждения на форумах и кусочки картинок из PDF от System General, которая публикует их как SG6848T и SG6848T2. Рисунок прилагается.


Вниманию мастеров предлагаем таблицы, составленные из доступной в интернете информации и документов PDF для подбора аналогов при замене наиболее распространённых шестиногих планарных ШИМ c цоколёвкой выводов: pin1 - GND, pin2 - FB (COMP), pin4 - Sense, pin5 - Vcc, pin6 - OUT.
Основным их различием является применение и назначение вывода 3.

ШИМ-регуляторы (PWM), без использования вывода 3.

Name Part Namber Diler Marking
SG6849 SG684965TZ Fairchild / ON Semi BBxx
SG6849 SG6849-65T, SG6849-65TZ System General MBxx EBxx
SGP400 SGP400TZ System General AAKxx

ШИМ-регуляторы (PWM) с установкой резистора 95-100 kOhm на вывод 3.

Применяя перечисленные ниже ШИМ, частоту следует установить резистором RT (RI) от вывода 3 на землю. Обычно его номинал выбирается 95-100 kOhm для частоты 65-100 KHz. Более точно смотрите в прилагаемой документации. Файлы PDF упакованы в RAR.

Name Part Namber Diler Marking
AP3103A AP3103AKTR-G1 Diodes Incorporated GHL
AP8263 AP8263E6R, A8263E6VR AiT Semiconductor S1xx
AT3263 AT3263S6 ATC Technology 3263
CR6848 CR6848S Chip-Rail 848H16
CR6850 CR6850S Chip-Rail 850xx
CR6851 CR6851S Chip-Rail 851xx
FAN6602R FAN6602RM6X Fairchild / ON Semi ACCxx
FS6830 FS6830 FirstSemi
GR8830 GR8830CG Grenergy 30xx
GR8836 GR8836C, GR8836CG Grenergy 36xx
H6849 H6849NF HI-SINCERITY
H6850 H6850NF HI-SINCERITY
HT2263 HT2263MP HOT-CHIP 63xxx
KP201 Kiwi Instruments
LD5530 LD5530GL LD5530R Leadtrand xxt30 xxt30R
LD7531 LD7531GL, LD7531PL Leadtrend xxP31
LD7531A LD7531AGL Leadtrend xxP31A
LD7535/A LD7535BL, LD7535GL, LD7535ABL, LD7535AGL Leadtrend xxP35-xxx35A
LD7550 LD7550BL, LD7550IL Leadtrend xxP50
LD7550B LD7550BBL, LD7550BIL Leadtrend xxP50B
LD7551 LD7551BL/IL Leadtrend xxP51
LD7551C LD7551CGL Leadtrend xxP51C
NX1049 XN1049TP Xian-Innuovo 49xxx
OB2262 OB2262MP On-Bright-Electronics 62xx
OB2263 OB2263MP On-Bright-Electronics 63xx
PT4201 PT4201E23F Powtech 4201
R7731 R7731GE/PE Richtek 0Q=
R7731A R7731AGE Richtek IDP=xx
SD4870 SD4870TR Silan Microelectronics 4870
SF1530 SF1530LGT SiFirst 30xxx
SG5701 SG5701TZ System General AAExx
SG6848 SG6848T, SG6848T1, SG6848TZ1, SG6848T2 Fairchild / ON Semi AAHxx EAxxx
SG6858 SG6858TZ Fairchild / ON Semi AAIxx
SG6859A SG6859ATZ, SG6859ATY Fairchild / ON Semi AAJFxx
SG6859 SG6859TZ Fairchild / ON Semi AAJMxx
SG6860 SG6860TY Fairchild AAQxx
SP6850 SP6850S26RG Sporton Lab 850xx
SP6853 SP6853S26RGB, SP6853S26RG Sporton Lab 853xx
SW2263 SW2263MP SamWin
UC3863/G UC3863G-AG6-R Unisonic Technologies Co U863 U863G

ШИМ-регуляторы, в которых вывод 3 используется иначе.

При использовании перечисленных ниже ШИМ (PWM-контроллеров) следует обратить внимание на вывод 3, который может использоваться для организации защиты - тепловой или от превышения входного напряжения.
Частота может быть фиксированной 65kHz, либо устанавливаться номиналом конденсатора на выводе 3.
При замене любых микросхем на аналоги внимательно изучайте документацию. Файлы PDF упакованы в архив RAR.

Name Part Namber Diler Marking
AP3105/V/L/R AP3105KTR-G1, AP3105VKTR-G1, AP3105LKTR-G1, AP3105RKTR-G1 Diodes Incorporated GHN GHO GHP GHQ
AP3105NA/NV/NL/NR AP3105NAKTR-G1, AP3105NVKTR-G1, AP3105NLKTR-G1, AP3105NRKTR-G1 Diodes Incorporated GKN GKO GKP GKQ
AP3125A/V/L/R AP3125AKTR-G1, AP3125VKTR-G1, AP3125LKTR-G1, AP3125RKTR-G1 Diodes Incorporated GLS GLU GNB GNC
AP3125B AP3125BKTR-G1 Diodes Incorporated GLV
AP3125HA/HB AP3125HAKTR-G1, AP3125HBKTR-G1 Diodes Incorporated GNP GNQ

Неотъемлемой частью каждого компьютера является блок питания (БП) . Он важен так же, как и остальные части компьютера. При этом покупка блока питания осуществляется достаточно редко, т. к. хороший БП может обеспечить питанием несколько поколений систем. Учитывая все это к приобретению блока питания необходимо отнестись очень серьезно, так как судьба компьютера в прямой зависимости от работы блока питания.

Основное назначение блока питания - формирование напряжения питания , которое необходимо для функционирования всех блоков ПК. Основные напряжения питания компонентов это:

  • +12В
  • +3,3В

Существуют также дополнительное напряжение:

  • −12В

Для осуществления гальванической развязки достаточно изготовить трансформатор с необходимыми обмотками. Но для питания компьютера нужна немалая мощность , особенно для современных ПК . Для питания компьютера пришлось бы изготовлять трансформатор, который имел бы не только большой размер, но и очень много весил. Однако с ростом частоты питающего тока трансформатора для создания того же магнитного потока необходимо меньше витков и меньше сечение магнитопровода. В блоках питания, построенных на основе преобразователя, частота питающего напряжения трансформатора в 1000 и более раз выше. Это позволяет создавать компактные и легкие блоки питания.

Простейший импульсный БП

Рассмотрим блок-схему простого импульсного блока питания , который лежит в основе всех импульсных блоков питания.

Блок схема импульсного блока питания .

Первый блок осуществляет преобразование переменного напряжения сети в постоянное . Такой преобразователь состоит из диодного моста, выпрямляющего переменное напряжение, и конденсатора, сглаживающего пульсации выпрямленного напряжения. В этом боке также находятся дополнительные элементы: фильтры сетевого напряжения от пульсаций генератора импульсов и термисторы для сглаживания скачка тока в момент включения. Однако эти элементы могут отсутствовать с целью экономии на себестоимости.

Следующий блок – генератор импульсов , который генерирует с определенной частотой импульсы, питающие первичную обмотку трансформатора. Частота генерирующих импульсов разных блоков питания различна и лежит в пределах 30 – 200 кГц. Трансформатор осуществляет главные функции блока питания: гальваническую развязку с сетью и понижение напряжения до необходимых значений.

Переменное напряжение, получаемое от трансформатора, следующий блок преобразует в постоянное напряжение. Блок состоит из диодов выпрямляющих напряжение и фильтра пульсаций. В этом блоке фильтр пульсаций намного сложнее, чем в первом блоке и состоит из группы конденсаторов и дросселя. С целью экономии производители могут устанавливать конденсаторы малой емкости, а также дроссели с малой индуктивностью.

Первый импульсный блок питания представлял собой двухтактный или однотактный преобразователь . Двухтактный означает, что процесс генерации состоит из двух частей. В таком преобразователе по очереди открываются и закрываются два транзистора. Соответственно в однотактном преобразователе один транзистор открывается и закрывается. Схемы двухтактного и однотактного преобразователей представлены ниже.

.

Рассмотрим элементы схемы подробнее:

    Х2 — разъем источник питания схемы.

    Х1 — разъем с которого снимается выходное напряжение.

    R1 — сопротивление, задающее начальное небольшое смещение на ключах. Оно необходимо для более стабильного запуска процесса колебаний в преобразователе.

    R2 — сопротивление, которое ограничивает ток базы на транзисторах, это необходимо для защиты транзисторов от сгорания.

    ТР1 — Трансформатор имеет три группы обмоток. Первая выходная обмотка формирует выходное напряжение. Вторая обмотка служит нагрузкой для транзисторов. Третья формирует управляющее напряжение для транзисторов.

В начальный момент включения первой схемы транзистор немного приоткрыт, т. к. к базе через резистор R1 приложено положительное напряжение. Через приоткрытый транзистор протекает ток, который также протекает и через II обмотку трансформатора. Ток, протекающий через обмотку, создает магнитное поле. Магнитное поле создает напряжение в остальных обмотках трансформатора. В следствии на обмотке III создается положительное напряжение, которое еще больше открывает транзистор. Процесс происходит до тех пор, пока транзистор не попадет в режим насыщения. Режим насыщения характеризуется тем, что при увеличении приложенного управляющего тока к транзистору выходной ток остается неизменным.

Так как напряжение в обмотках генерируется только в случае изменения магнитного поля, его роста или падения, то отсутствие роста тока на выходе транзистора, следовательно, приведет к исчезновению ЭДС в обмотках II и III. Пропадание напряжения в обмотке III приведет к уменьшению степени открытия транзистора. И выходной ток транзистора уменьшится, следовательно, и магнитное поле будет уменьшаться. Уменьшение магнитного поля приведет к созданию напряжения противоположной полярности. Отрицательное напряжение в обмотке III начнет еще больше закрывать транзистор. Процесс будет длиться до тех пор, пока магнитное поле полностью не исчезнет. Когда магнитное поле исчезнет, отрицательное напряжение в обмотке III тоже исчезнет. Процесс снова начнет повторяться.

Двухтактный преобразователь работает по такому же принципу, но отличие в том, что транзисторов два, и они по очереди открываются и закрываются. То есть когда один открыт - другой закрыт. Схема двухтактного преобразователя обладает большим преимуществом, так как использует всю петлю гистерезиса магнитного проводника трансформатора. Использование только одного участка петли гистерезиса или намагничивание только в одном направлении приводит к возникновению многих нежелательных эффектов, которые снижают КПД преобразователя и ухудшают его характеристики. Поэтому в основном везде применяется двухтактная схема преобразователя с фазосдвигающим трансформатором. В схемах, где нужна простота, малые габариты, и малая мощность все же используется однотактная схема.

Блоки питания форм-фактора АТХ без коррекции коэффициента мощности

Преобразователи, рассмотренные выше, хоть и законченные устройства, но в практике их использовать неудобно. Частота преобразователя, выходное напряжение и многие другие параметры «плавают», изменяются в зависимости от изменения: напряжения питания, загруженности выхода преобразователя и температуры. Но если ключами управлять контроллером, который бы мог осуществлять стабилизацию и различные дополнительные функции, то можно использовать схему для питания устройств. Схема блока питания с применением ШИМ-контроллера довольно проста, и, в общем, представляет собой генератор импульсов, построенный на ШИМ-котроллере.

ШИМ – широтно-импульсная модуляция . Она позволяет регулировать амплитуду сигнала прошедшего ФНЧ (фильтр низких частот) с изменением длительности или скважности импульса. Главные достоинства ШИМ это высокое значение КПД усилителей мощности и большие возможности в применении.


Данная схема блока питания имеет небольшую мощность и в качестве ключа использует полевой транзистор, что позволяет упростить схему и избавиться от дополнительных элементов, необходимых для управления транзисторных ключей. В блоках питания большой мощности ШИМ-контроллер имеет элементы управления («Драйвер») выходным ключом. В качестве выходных ключей в блоках питания большой мощности используются IGBT-транзисторы.

Сетевое напряжение в данной схеме преобразуется в постоянное напряжение и чрез ключ поступает на первую обмотку трансформатора. Вторая обмотка служит для питания микросхемы и формирования напряжения обратной связи. ШИМ-котроллер генерирует импульсы с частотой, которая задана RC-цепью подключенной к ножке 4. Импульсы подаются на вход ключа, который их усиливает. Длительность импульсов изменяется в зависимости от напряжения на ножке 2.

Рассмотрим реальную схему АТХ блока питания. Она имеет намного больше элементов и в ней присутствуют еще дополнительные устройства. Красными квадратами схема блока питания условно поделена на основные части.


Схема АТХ блока питания мощностью 150–300 Вт

Для питания микросхемы контроллера, а также формирования дежурного напряжения +5, которое используется компьютером, когда он выключен, в схеме находиться еще один преобразователь. На схеме он обозначен как блок 2. Как видно он выполнен по схеме однотактного преобразователя. Во втором блоке также есть дополнительные элементы. В основном это цепочки поглощения всплесков напряжений, которые генерируются трансформатором преобразователя. Микросхема 7805 – стабилизатор напряжения формирует дежурное напряжение +5В из выпрямленного напряжения преобразователя.

Зачастую в блоке формирования дежурного напряжения установлены некачественные или дефектные компоненты, что вызывает снижение частоты преобразователя до звукового диапазона. В результате чего из блока питания слышен писк.

Так как блок питания питается от сети переменного напряжения 220В , а преобразователь нуждается в питании постоянным напряжением, напряжение необходимо преобразовать. Первый блок осуществляет выпрямление и фильтрацию переменного сетевого напряжения. В этом блоке также находится заграждающий фильтр от помех, генерируемых самим блоком питания.

Третий блок это ШИМ-контроллер TL494. Он осуществляет все основные функции блока питания. Защищает блок питания от коротких замыканий, стабилизирует выходные напряжения и формирует ШИМ-сигнал для управления транзисторными ключами, которые нагружены на трансформатор.

Четвертый блок состоит из двух трансформаторов и двух групп транзисторных ключей. Первый трансформатор формирует управляющее напряжение для выходных транзисторов. Поскольку ШИМ-контроллер TL494 генерирует сигнал слабой мощности, первая группа транзисторов усиливает этот сигнал и передает его первому трансформатору. Вторая группа транзисторов, или выходные, нагружены на основной трансформатор, который осуществляет формирование основных напряжений питания. Такая более сложная схема управления выходными ключами применена из-за сложности управления биполярными транзисторами и защиты ШИМ-контроллера от высокого напряжения.

Пятый блок состоит из диодов Шоттки, выпрямляющих выходное напряжение трансформатора, и фильтра низких частот (ФНЧ). ФНЧ состоит из электролитических конденсаторов значительной емкости и дросселей. На выходе ФНЧ стоят резисторы, которые нагружают его. Эти резисторы необходимы для того, чтобы после выключения емкости блока питания не оставались заряженными. Также резисторы стоят и на выходе выпрямителя сетевого напряжения.

Оставшиеся элементы, не обведенные в блоке это цепочки, формируют «сигналы исправности ». Этими цепочками осуществляется работа защиты блока питания от короткого замыкания или контроль исправности выходных напряжений.


Теперь посмотрим, как на печатной плате блока питания мощностью 200 Вт расположены элементы. На рисунке показаны:

    Конденсаторы, выполняющие фильтрацию выходных напряжений.

    Место не распаянных конденсаторов фильтра выходных напряжений.

    Катушки индуктивности, выполняющие фильтрацию выходных напряжений. Более крупная катушка играет роль не только фильтра, но и еще работает в качестве ферромагнитного стабилизатора. Это позволяет немного снизить перекосы напряжений при неравномерной нагрузке различных выходных напряжений.

    Микросхема ШИМ-стабилизатора WT7520.

    Радиатор на котором установлены диоды Шоттки для напряжений +3.3В и +5В, а для напряжения +12В обычные диоды. Необходимо отметить, что часто особенно в старых блоках питания, на этом же радиаторе размещаются дополнительно элементы. Это элементы стабилизации напряжений +5В и +3,3В. В современных блоках питания размещаются на этом радиаторе только диоды Шоттки для всех основных напряжений или полевые транзисторы, которые используются в качестве выпрямительного элемента.

    Основной трансформатор, который осуществляет формирование всех напряжений, а также гальваническую развязку с сетью.

    Трансформатор, формирующий управляющие напряжения для выходных транзисторов преобразователя.

    Трансформатор преобразователя, формирующий дежурное напряжение +5В.

    Радиатор, на котором размещены выходные транзисторы преобразователя, а также транзистор преобразователя формирующего дежурное напряжение.

    Конденсаторы фильтра сетевого напряжения. Их не обязательно должно быть два. Для формирования двухполярного напряжения и образования средней точки устанавливают два конденсатора равной емкости. Они делят выпрямленное сетевое напряжение пополам, тем самым формируя два напряжения разной полярности, соединенных в общей точке. В схемах с однополярным питанием конденсатор один.

    Элементы фильтра сети от гармоник (помех), генерирующихся блоком питания.

    Диоды диодного моста, осуществляющие выпрямление переменного напряжения сети.


Блок питания 350 Вт устроен эквивалентно. Сразу бросается в глаза больших размеров плата, увеличенные радиаторы и большего размера трансформатор преобразователя.

    Конденсаторы фильтра выходных напряжений.

    Радиатор, охлаждающий диоды, выпрямляющие выходное напряжение.

    ШИМ-контролер АТ2005 (аналог WT7520), осуществляющий стабилизацию напряжений.

    Основной трансформатор преобразователя.

    Трансформатор, формирующий управляющее напряжение для выходных транзисторов.

    Трансформатор преобразователя дежурного напряжения.

    Радиатор, охлаждающий выходные транзисторы преобразователей.

    Фильтр сетевого напряжения от помех блока питания.

    Диоды диодного моста.

    Конденсаторы фильтра сетевого напряжения.

Рассмотренная схема долго применялась в блоках питания и сейчас иногда встречается.

Блоки питания формата АТХ с коррекцией коэффициента мощности

В рассмотренных схемах нагрузкой сети служит конденсатор, подключаемый к сети через диодный мост. Заряд конденсатора происходит только в том случае если на нем напряжение меньше чем сетевое. В результате ток носит импульсный характер, что имеет множество недостатков.

Перечислим эти недостатки:

  1. токи вносят в сеть высшие гармоники (помехи);
  2. большая амплитуда тока потребления;
  3. значительная реактивная составляющая в токе потребления;
  4. сетевое напряжение не используется в течение всего периода;
  5. КПД таких схем имеет небольшое значение.

Новые блоки питания имеют усовершенствованную современную схему, в ней появился еще один дополнительный блоккорректор коэффициента мощности (ККМ) . Он осуществляет повышение коэффициента мощности. Или более простым языком убирает некоторые недостатки мостового выпрямителя сетевого напряжения.

S=P + jQ

Формула полной мощности

Коэффициент мощности (КМ) характеризует, сколько в полной мощности активной составляющей и сколько реактивной. В принципе, можно сказать, а зачем учитывать реактивную мощность, она же мнимая и не несет пользу.

Допустим, у нас есть некий прибор, блок питания, с коэффициентом мощности 0,7 и мощностью 300 Вт. Видно из расчетов, что наш блок питания имеет полную мощность (сумму реактивной и активной мощности) больше, чем указанная на нем. И эту мощность должна дать сеть питания 220В. Хотя эта мощность не несет пользы (даже счетчик электричества ее не фиксирует) она все же существует.

То есть внутренние элементы и сетевые провода должны быть рассчитаны на мощность 430 Вт, а не 300 Вт. А представьте себе случай, когда коэффициент мощности равен 0,1 … Из-за этого ГОРСЕТЬЮ запрещается использовать приборы с коэффициентом мощности менее 0,6, а в случае обнаружения таковых на владельца налагается штраф.

Соответственно кампаниями были разработанные новые схемы блоков питания, которые имели ККМ. Вначале в качестве ККМ использовался включенный на входе дроссель большой индуктивности, такой блок питания называют блок питания с PFC или пассивным ККМ. Подобный блок питания обладает повышенным КМ. Для достижения нужного КМ необходимо оснащать блоки питания большим дросселем, так как входное сопротивление блока питания носит емкостной характер из-за установленных конденсаторов на выходе выпрямителя. Установка дросселя значительно увеличивает массу блока питания, и повышает КМ до 0,85, что не так уж и много.


На рисунке представлен блок питания компании FSP мощностью 400 Вт с пассивной коррекцией коэффициента мощности. Он содержит следующие элементы:

    Конденсаторы фильтра выпрямленного сетевого напряжения.

    Дроссель, осуществляющий коррекцию коэффициента мощности.

    Трансформатор главного преобразователя.

    Трансформатор, управляющий ключами.

    Трансформатор вспомогательного преобразователя (дежурного напряжения).

    Фильтры сетевого напряжения от пульсаций блока питания.

    Радиатор, на котором установлены выходные транзисторные ключи.

    Радиатор, на котором установлены диоды, выпрямляющие переменное напряжение главного трансформатора.

    Плата управления скоростью вращения вентилятора.

    Плата, на которой установлен ШИМ-контроллер FSP3528 (аналог KA3511).

    Дроссель групповой стабилизации и элементы фильтра пульсаций выходного напряжения.

  1. Конденсаторы фильтра пульсаций выходного напряжения.


Вследствие не высокой эффективности пассивной ККМ в блок питания была введена новая схема ККМ, которая построена на основе ШИМ-стабилизатора, нагруженного на дроссель. Эта схема приносит множество плюсов блоку питанию:

  • расширенный диапазон рабочих напряжений;
  • появилась возможность значительно уменьшить емкость конденсатора фильтра сетевого напряжения;
  • значительно повышенный КМ;
  • уменьшение массы блока питания;
  • увеличение КПД блока питания.

Есть и недостатки у этой схемы – это снижение надежности БП и некорректная работа с некоторыми источниками бесперебойного питани я при переключениях режимов работы батарея / сеть. Некорректная работа этой схемы с ИБП вызвана тем, что в схеме существенно снизилась емкость фильтра сетевого напряжения. В момент, когда кратковременно пропадает напряжение, сильно возрастает ток ККМ, необходимый для поддержания напряжения на выходе ККМ, в результате чего срабатывает защита от КЗ (короткого замыкания) в ИБП.


Если посмотреть на схему, то она представляет собой генератор импульсов, который нагружен на дроссель. Сетевое напряжение выпрямляется диодным мостом и подается на ключ, который нагружен дросселем L1 и трансформатором Т1. Трансформатор введен для обратной связи контроллера с ключом. Напряжение с дросселя снимается с помощью диодов D1 и D2. Причем напряжение снимается поочередно с помощью диодов, то с диодного моста, то с дросселя, и заряжает конденсаторы Cs1 и Cs2. Ключ Q1 открывается и в дросселе L1 накапливается энергия нужной величины. Размер накопленной энергии регулируется длительностью открытого состояния ключа. Чем больше накоплено энергии, тем большее напряжение отдаст дроссель. После выключения ключа происходит отдача накопленной энергии дросселем L1 через диод D1 конденсаторам.

Такая работа позволяет использовать полностью всю синусоиду переменного напряжения сети в отличие от схем без ККМ, а также стабилизировать напряжение, питающее преобразователь.

В современных схемах блоков питания, часто применяют двухканальные ШИМ-контроллеры . Одна микросхема осуществляет работу, как преобразователя, так и ККМ. В результате существенно снижается количество элементов в схеме блока питания.


Рассмотрим схему простого блока питания на 12В с использованием двуканального ШИМ-контроллера ML4819. Одна часть блока питания осуществляет формирование постоянного стабилизированного напряжения +380В. Другая часть представляет собой преобразователь, формирующий постоянное стабилизированное напряжение +12В. ККМ состоит, как и в выше рассмотренном случае, из ключа Q1, нагруженного на него дросселя L1 трансформатора Т1 обратной связи. Диоды D5, D6 заряжают конденсаторы С2,° C3,° C4. Преобразователь состоит из двух ключей Q2 и Q3, нагруженных на трансформатор Т3. Импульсное напряжение выпрямляется диодной сборкой D13 и фильтруется дросселем L2 и конденсаторами С16,° C18. С помощью патрона U2 формируется напряжение регулирования выходного напряжения.


Рассмотрим конструкцию блока питания, в которой есть активный ККМ:

  1. Плата управления токовой защитой;
  2. Дроссель, выполняющий роль как фильтра напряжений +12В и +5В, так и функцию групповой стабилизации;
  3. Дроссель фильтра напряжения +3,3В;
  4. Радиатор, на котором размещены выпрямительные диоды выходных напряжений;
  5. Трансформатор главного преобразователя;
  6. Трансформатор, управляющий ключами главного преобразователя;
  7. Трансформатор вспомогательного преобразователя (формирующий дежурное напряжение);
  8. Плата контроллера коррекции коэффициента мощности;
  9. Радиатор, охлаждающий диодный мост и ключи главного преобразователя;
  10. Фильтры сетевого напряжения от помех;
  11. Дроссель корректора коэффициента мощности;
  12. Конденсатор фильтра сетевого напряжения.

Конструктивные особенности и типы разъемов

Рассмотрим виды разъемов , которые могут присутствовать на блоке питания. На задней стенке блока питания размещается разъем для подключения сетевого кабеля и выключатель. Раньше рядом с разъемом сетевого шнура размещался также разъем для подключения сетевого кабеля монитора. Опционально могут присутствовать и другие элементы:

  • индикаторы сетевого напряжения, или состояния работы блока питания
  • кнопки управления режимом работы вентилятора
  • кнопка переключения входного сетевого напряжения 110 / 220В
  • USB-порты встроенные в блок питания USB hub
  • другое.


На задней стенке все реже размещают вентиляторы, вытягивающие из блока питания воздух. Все чаше вентилятор размещают в верхней части блока питания из-за большего пространства для установки вентилятора, что позволяет установить большой и тихий активный элемент охлаждения. На некоторых блоках питания устанавливают даже два вентилятора и сверху и сзади.


С передней стенки выходит провод с разъемом подключения питания материнской платы . В некоторых блоках питания, модульных, он, как и другие провода, подключается через разъем. Ниже на рисунке указана .


Можно заметить, что каждое напряжение имеет свой цвет провода:

  • Желтый цвет - +12 В
  • Красный цвет - +5 В
  • Оранжевый цвет - +3,3В
  • Черный цвет - общий или земля

Для остальных напряжений цвета проводов у каждого производителя могут варьироваться.

На рисунке не отображены разъемы дополнительного питания видеокарт, так как они подобны разъема дополнительного питания процессора. Также существуют другие виды разъемов, которые встречаются в компьютерах фирменной сборки компаний DelL, Apple и других.


Электрические параметры и характеристики блоков питания

Блок питания имеет множество электрических параметров, большинство из которых не отмечаются в паспорте. На боковой наклейке блока питания отмечается обычно только несколько основных параметров – рабочие напряжения и мощность.

Мощность блока питания

Мощность часто обозначают на этикетке большим шрифтом. Мощность блока питания, характеризует, сколько он может отдать электрической энергии подключаемым к нему приборам (материнская плата, видеокарта, жесткий диск и др.).

По идее, достаточно просуммировать потребление используемых компонентов и выбрать блок питание немного большей мощности для запаса. Для подсчета мощности вполне годятся рекомендации указанные в паспорте видеокарты , если таковой есть, тепловой пакет процессора и т. д.

Но на самом деле все намного сложнее, т. к. блок питания выдает различные напряжения - 12В, 5В, −12В, 3,3В и др. Каждая линия напряжения рассчитана на свою мощность. Логично было подумать, что эта мощность фиксированная, а сума их равна мощности блока питания. Но в блоке питания стоит один трансформатор для генерации всех этих напряжений, используемых компьютером (кроме дежурного напряжения +5В). Правда, редко, но все же можно найти блок питания с двумя раздельными трансформаторами, но такие источники питания дорогие и чаще всего используются в серверах. Обычные же БП ATX имеют один трансформатор. Из-за этого мощность каждой линии напряжений может плавать: увеличивается, если другие линии слабо нагружены, и уменьшаться, если остальные линии сильно нагружены. Поэтому часто на блоках питания пишут максимальную мощность каждой линии, и в результате, если их просуммировать, выйдет мощность даже больше, чем действительная мощность блока питания. Таким образом, производитель может запутать потребителя, например, заявляя слишком большую номинальную мощность, которую БП обеспечить не способен.

Отметим, что если в компьютере установлен блок питания недостаточной мощности , то это вызовет не корректную работу устройств («зависания», перезагрузки, щелкание головок жесткого диска ), вплоть до невозможности включения компьютера . А если в ПК установлена материнская плата, которая не рассчитана на мощность компонентов, которые на ней установлены, то зачастую материнская плата функционирует нормально, но со временем разъемы подключения питания выгорают вследствие постоянного их нагрева и окисления.


Стандарты и сертификаты

При покупке БП, в первую очередь необходимо посмотреть на наличие сертификатов и на соответствие его современным международным стандартам. На блоках питания чаще всего можно встретить указание следующих стандартов:

    RoHS, WEEE – не содержит вредных веществ

    UL, cUL – сертификат на соответствие своим техническим характеристикам, а также требованиям безопасности для встроенных электроприборов

    CE - сертификат который показывает, что блок питания соответствует строжайшим требованиям директив европейского комитета

    ISO – международный сертификат качества

    CB - международный сертификат соответствия своим техническим характеристикам

    FCC – соответствие нормам электромагнитных наводок (EMI) и радионаводок (RFI), генерируемых блоком питания

    TUV - сертификат соответствия требованиям международного стандарта ЕН ИСО 9001:2000

  1. ССС – сертификат Китая соответствия безопасности, электромагнитным параметрам и защите окружающей среды

Также есть компьютерные стандарты форм-фактора АТХ, в котором определены размеры, конструкция и многие другое параметры блока питания, включая допустимые отклонения напряжений при нагрузке. Сегодня существуют несколько версий стандарта АТХ:

  1. ATX 1.3 Standard
  2. ATX 2.0 Standard
  3. ATX 2.2 Standard
  4. ATX 2.3 Standard

Отличие версий стандартов АТХ в основном касается введения новых разъемов и новых требованиям к линиям питания блока питания.

Рекомендации по выбору блока питания

Когда возникает необходимость покупки нового блока питания ATX, то вначале необходимо определится с мощностью, которая необходима для питания компьютера, в который этот БП будет установлен. Для ее определения достаточно просуммировать мощности компонентов, используемых в системе, например воспользовавшись специальным калькулятором. Если нет такой возможности, то можно исходить из правила, что для среднестатистического компьютера с одной игровой видеокартой вполне хватает блока питания мощностью 500–600 ватт.

Учитывая, что большинство параметров блоков питания можно узнать только протестировав его, следующим этапом настоятельно рекомендуем ознакомиться с тестами и обзорами возможных претендентов - моделей блоков питания , которые доступны в вашем регионе и удовлетворяю ваши запросы как минимум по обеспечиваемой мощности. Если же таковой возможности нет, то выбирать необходимо по соответствию блока питания современным стандартам (чем большему числу, тем лучше), при этом желательно наличие в блоке питания схемы АККМ (APFC). Приобретая блок питания, также важно включить его, по возможности прямо на месте покупки или сразу по приходу домой, и проследить, как он работает, чтоб источник питания не издавал писков, гудения или другого постороннего шума.

В общем, необходимо выбрать блок питания, который был бы мощным, качественно сделанным, с хорошими заявленными и реальными электрическими параметрами, а также окажется удобным в эксплуатации и тихим во время работы, даже при высокой нагрузке на него. И ни в коем случае при покупке источника питания не стоит экономить пару долларов. Помните, что от работы этого устройства главным образом зависит стабильность, надежность и долговечность работы всего компьютера.