Динамическая устойчивость энергосистемы. Устойчивость энергосистем статическая устойчивость физические основы устойчивости

Состояние системы в любой момент времени или на некотором интервале времени, называется режимом системы. Режим характеризуется показателями, количественно определяющими условия работы системы. Эти показатели называются параметрами режима . К ним относятся значения мощности, напряжения, частоты, углов сдвига векторов ЭДС, напряжений, токов.

Режим электрической системы может быть установившимся или переходным .

В любых переходных процессах происходят закономерные последовательные изменения параметров режима, вызванные какими-либо причинами. Эти причины называются возмущающими воздействиями . Они создают начальные отклонения параметров режима – возмущения режима .

В нормальных условиях эксплуатации всегда имеют место малые изменения нагрузки. Поэтому строго неизменного режима в системе не существует и, говоря об установившемся режиме, всегда имеют в виду режим малых возмущений.

Малые возмущения не должны вызывать нарушения устойчивости системы, то есть не должны приводить к прогрессивно возрастающему изменению параметров исходного режима системы.

Статическая устойчивость – это способность системы восстанавливать исходный (или близкий к исходному) режим после малого его возмущения.

В определенных условиях установившийся режим может быть неустойчивым. Это происходит при работе системы в предельных режимах (слишком большая или малая передаваемая мощность, снижение напряжения в узлах нагрузки и т.д.). В этих случаях малые возмущения приводят к прогрессивно возрастающему измене­нию параметров режима, которые вначале происходят очень медленно, проявляясь в виде самопроизвольного изменения, называемого иногда сползанием (текучестью) параметров нормального режима системы.

При исследовании статической устойчивости заранее предполагается, что установить абсолютные значения изменений параметров режима при их отклонениях от установившихся значений невозможно. Причина и место их возникновения не фиксированы. Это некие свободные возмущения , имеющие вероятностный характер.

Задача исследования статической устойчивости сводится, следовательно, только к определению характера изменения параметров режима без определения величины возмущений. При этом анализ ограничивается малой областью e, заданной в области установившегося значения параметров.

Статическую устойчивость электрической системы можно оценивать разными способами:

1. С помощью практических критериев, основанных на упрощающих допу­щениях. При этом ответ получается только в форме «да – нет», «уйдет – не уйдет» режим из начального его состояния при малом возмущении системы.

2. С помощью метода малых колебаний, основанного на исследовании уравнений движения. В этом случае физическая природа происходящих явлений выясняется более полно: устанавливается не только устойчивость режима, но и характер движения (апериодическое или колебательное, нарастающее или затухающее).



Аварийные режимы в электрической системе возникают при КЗ, аварийных отключениях нагруженных агрегатов или линий и т.п. Под действием больших возмущений возникают резкие изменения режима.

Большие возмущения могут возникать и в нормальных режимах: отключении и включении генераторов, линий, пуске мощных двигателей и т.д.

По отношению к большим возмущениям вводится понятие динамической устойчивости.

Динамическая устойчивость – это способность системы восстанавливать исходное состояние после большого возмущения.

Введенные выше понятия “ малых ” и “ больших ” возмущений условны. Малое возмущение в данном случае понимается как возмущение, влияние которого на характер поведения системы проявляется практически независимо от места появления возмущающего воздействия и его величины. В связи с этим в диапазоне режимов, близких к исходному, система рассматривается как линейная.

Большое возмущение – это возмущение, влияние которого на характер поведения системы зависит от времени существования, величины и места появления воз­мущающего воздействия.

В связи с этим при исследовании динамической устойчивости система во всем диапазоне исследования должна рассматриваться как нелинейная.

Основным методом исследования динамической устойчивости электрических систем на современном этапе является численное интегрирование дифференциальных уравнений, описывающих поведение системы.

Эти расчеты проводятся на ЭВМ, которые работают по программам, контролирующим точность вычислений путём уменьшения шага интегрирования до тех пор, пока модуль разности между вычисленными значениями функции не окажется меньше некоторого заданного положительного числа e.

В зависимости от цели расчетов на практике часто пользуются упрощенными методами, не претендующими на высокую точность. Эти методы применяются, когда можно ограничиться общей характеристикой процесса. Среди упрощенных методов наибольшее распространение получил метод последовательных интервалов, суть которого заключается в приближенном вычислении интеграла.

Но существует более простой и наглядный метод, основанный на энергетическом подходе к анализу динамической устойчивости, который называется методом площадей. При этом методе кинетическая энергия системы определяется по площади графика переходного процесса. Задача исследования заключается в сра­внении площадей ускорения и торможения, то есть сравнения кинетиче­­ской энергии, полученной в процессе ускорения ротора генератора с той энергией, которая расходуется в процессе торможения ротора.

Динамическая устойчивость -способность сист.возвращаться в исходное состояние после большого возмущения. Предельный р-м - р-м, при котором очень малое увеличение нагрузок вызывает нарушение его устойчивости. Пропускной способностью элемента системы называют наибольшую мощность, кот. можно передать через элемент с учетом всех ограничивающих факторов. Позиционная система -такая система, в кот. пар-ры р-ма зависят от текущего состояния, взаимного положения независимо от того как было достигнуто это состояние. При этом реальные динамич.хар-ки эл-ов сист. заменяются статическими. Статические хар-ки -это связи параметров р-ма системы, представленные аналитически или графически не зависящие от времени. Динамические хар-ки –связи пар-ов,полученных при условии,что они зависят от времени. Запас по напряжению: k u =. Запас по мощности: k р =. Допущения,принимаемые при анализе устойчивости : 1.Скорость вращения роторов синхр.машин при протекании электромеханич. ПП изменяется в небольших пределах(2-3%)синхронной скорости. 2.Напряжение и токи статора и ротора генератора изменяются мгновенно. 3.Нелинейность пар-ов сист.обычно не учитывается. Нелинейность же пар-ов р-ма-учитывается, когда от такого учета отказываются, это оговаривают и сист.называется линеаризованной. 4.Перейти от одного р-ма эл.сист. к др. можно,изменив собственные и взаимные сопротивл.схемы, ЭДС генераторов и двигателей. 5.Исследование динамич.устойчивости при несимметричных возмущениях производится в схеме прямой послед-ти.Движение роторов генераторов и двигателей обусловлено моментами,создаваемыми токами прямой послед-ти. Задачи анализа динамической устойчивости связаны с переходом системы от одного установившегося р-ма к др. а) расчет пар-ов динамич. перехода при эксплуатационном или аварийном отключ.нагруженных эл-ов эл.системы. б) определение пар-ов динамич. переходов при КЗ в системе с учетом: - возможного перехода 1 несимметричного КЗ в др.; - работы автоматического повторного включения эл-та,отключившегося после КЗ. Результатами расчета динамич. устойчивости являются: - предельное время отключения расчетного вида КЗ в наиболее опасных точках сист.; - паузы сист. АПВ, установленных на различных эл-ах эл.системы; - пар-ры сист. автоматического ввода резерва(АВР).

Электроэнергетическая система динамически устойчива , если при каком-либо сильном возмущении сохраняется синхронная работа всех её элементов. Для выяснения принципиальных положении динамической устойчивости рассмотрим явления, происходящие при внезапном отключении одной из двух параллельных цепей ЛЭП (рис.а ). Результирующее сопротивление в нормальном режиме определяется выражением , а после отключения одной из цепей – выражением Так как , то справедливо отношение

При внезапном отключении одной из цепей ЛЭП ротор не успевает из-за инерции мгновенно изменить угол δ. Поэтому режим будет характеризоваться точкой b на другой угловой характеристике генератора – характеристике 2 на рис.

После уменьшения его мощности возникает избыточный ускоряющий момент, под действием которого угловая скорость ротора и угол δ увеличиваются. С увеличением угла мощность генератора возрастает по характеристике 2 . В процессе ускорения ротор генератора проходит 61.1. точку с , после которой его вращающий момент становится опережающим. Ротор начинает заторможиваться и, начиная с точки d его угловая скорость уменьшается. Если угловая скорость ротора возрастает до значения= точке е , то генератор выпадает из синхронизма. Об устойчивости системы можно судить по изменению угла δ во времени. Изменение δ, показанное на рис. а , соответствует устойчивой работе системы. При изменении δ по кривой, изображенной на рис. б , система неустойчива.

отличительные признаки статической и динамической устойчивости: при статической устойчивости в процессе появления возмущений мощность генератора меняется по одной и той же угловой характеристике, а после их исчезновения параметры системы остаются такими же, как и до появления возмущений; для динам.уст наоборот.

Анализ динамической устойчивости простейших систем графическим методом. Если статическая устойчивость характеризует установившийся режим системы, то при анализе динамической устойчивости выявится способность системы сохранять синхронный режим работы при больших его возмущениях. Большие возмущения возникают при различных КЗ, отключении ЛЭП, генераторов, трансформаторов и пр. Одним из следствий возникшего возмущения является отклонение скоростей вращения роторов генераторов от синхронной. Если после какого-либо возмущения взаимные углы роторов примут определённые значения (их колебания затухнут около каких-либо новых значений), то считается, что динамическая устойчивость сохраняется. Если хотя бы у одного генератора ротор начинает проворачиваться относительно поля статора, то это признак нарушения динамической устойчивости. В общем случае о динамической устойчивости системы можно судить по зависимостям б= f (t ), полученным в результате совместного решения уравнений движения роторов генераторов. Анализ динамической устойчивости простейшей системы графическим методом. Рассмотрим простейший случай, когда электростанция G работает через двухцепную линию на шины бесконечной мощности (см. рис. а). а - принципиальная схема; б - схема замещения в нормальном режиме; в - схема замещения в послеаварийном режиме; г - графическая иллюстрация динамического перехода: характеристики нормального и аварийного режимов (кривые 1, 2 соответственно).Условие постоянства напряжения на шинах системы (U = const ) исключает качания генераторов приёмной системы и значительно упрощает анализ динамической устойчивости. Характеристика мощности, соответствующая нормальному (доаварийному) режиму, может быть получена из выражения без учета второй гармоники, что вполне допустимо в практических расчетах. Принимая E q = E , тогде . Предположим, что линия L 2 внезапно отключается. Рассмотрим работу генератора после её отключения. Схема замещения системы после отключения линии показана на рис.,в. Суммарное сопротивление послеаварийного режима увеличится по сравнению сX dZ (суммарное сопротивление нормального режима). Это вызовет уменьшение максимума характеристики мощности послеаварийного режима (кривая 2, рис. г). После внезапного отключения 61.2. линии происходит переход с характеристики мощности 1 на характеристику 2. Из-за инерции ротора угол не может измениться мгновенно, поэтому рабочая точка перемещается из точкиа в точку b.На валу возникает избыточный момент, определяемый разностью мощности турбины и новой мощности генератора (Р = Р 0 - Р(0)). Под влиянием этой разности ротормашины начинает ускоряться, двигаясь в сторону больших углов . Это движение накладывается на вращение ротора с синхронной скоростью, и результирующая скорость вращения ротора будетw = w 0 + , гдеw 0 - синхронная скорость вращения; - относительная скорость. В результате ускорения ротора рабочая точка начинает движение по характеристике 2. Мощность генератора возрастает, а избыточный момент - убывает. Относительная скорость возрастает до точки с. В точке с избыточный момент становится равным нулю, а скорость - максимальной. Движение ротора со скоростьюне прекращается в точкес , ротор по инерции проходит эту точку и продолжает движение. Но избыточный момент при этом меняет знак и начинает тормозить ротор. Относительная скорость вращения начинает уменьшаться и в точке d становится равной нулю. Угол в этой точке достигает своего максимального значения. Но и в точкеd относительное движение ротора не прекращается, так как на валу агрегата действует тормозной избыточный момент, поэтому ротор начинает движение в сторону точки с , относительная скорость при этом становится отрицательной. Точку с ротор проходит по инерции, около точки b угол становится минимальным, и начинается новый цикл относительного движения. Колебания угла (t ) показаны на рис., г. Затухание колебаний объясняется потерями энергии при относительном движении ротора.Избыточный момент связан с избытком мощности выражением , где ω - результирующая скорость вращения ротора.

Для выяснения принципиальных положений анализа динамической устойчивости рассмотрим явления, возникающие при внезапном отключении одной из двух параллельных цепей линии электропередачи одномашинной энергосистемы (рис. 2.1, а).

Рис. 2.1. Одномашинная энергосистема (а) и ее схемы замещения: для нормального режима (б) и режима с отключенной цепью (в)

Взаимное реактивное сопротивление схемы замещения (рис. 2.1, б), равное

определяет максимум fj M угловой характеристики мощности генератора Р ] (б) в исходном режиме:

После отключения одной из цепей линии электропередачи (рис. 2.1,) будет получено новое, большее по значению, сопротивление

Максимум новой угловой характеристики /J|(5) составит, соответственно, меньшую величину (рис. 2.2):

Рис. 2.2.

Точке пересечения а характеристики мощности турбины /т(5) = const и угловой характеристики генератора /j(5) = Ры sin 6 в нормальном режиме соответствуют угол 6 0 , мощность Р () и скорость (частота) Ь. В результате нарушается баланс мощностей (моментов) на валу ротора генератора и турбины за счет уменьшения тормозящего момента, обусловленного электрической нагрузкой. Угол 8 0 и относительная скорость

сохраняют свои значения в момент отключения цепи в силу инерции ротора генератора. В дальнейшем под действием избыточного ускоряющего момента относительная скорость и нарастает и при значении угла 8 С становится наибольшей.

Рис. 2.3.

В точке с ускоряющий и тормозящий моменты уравновешиваются, но ротор по инерции, за счет дополнительной кинетической энергии, накопленной на участке Ьс, будет продолжать относительное движение. Однако это движение будет происходить с замедлением, поскольку справа от точки с ускоряющий момент турбины меньше, чем тормозящий электромагнитный момент генератора. Увеличение угла прекратится при значении 8,„, когда дополнительная кинетическая энергия, приобретенная ротором на участке Ьс, компенсируется равной по величине потенциальной энергией на участке cm. Очевидно, что при значении угла 6,„ режим не установится, поскольку в этом состоянии тормозящий момент генератора выше ускоряющего момента турбины. Под действием избыточного тормозящего момента от точки т ротор будет возвращаться к углу 8 С и снова по инерции его пройдет. Однако к начальному углу 6 0 ротор нс возвратится вследствие потерь на трение и действия демпфирующих моментов. Амплитуда изменения угла при дальнейших качаниях ротора будет уменьшаться (рис. 2.2, б), и окончательно режим системы установится в новой точке устойчивого равновесия - точке с.

Однако возможен и другой исход процесса. Если угол достигнет критической величины 8 кр, соответствующей точке/(рис. 2.3, а), прежде, чем относительная скорость и примет нулевое значение, то избыточный момент на валу ротора генератора становится вновь ускоряющим. Относительная скорость и ротора опять начинает возрастать до выпадения генератора из синхронизма. Такой характер нарушения устойчивости называется динамическим.

Основной причиной динамических нарушений устойчивости энергосистем являются короткие замыкания, приводящие к резким изменениям электромагнитных моментов синхронных машин.

Установившийся режим работы энергосистемы является квазиустановившемся, так как характеризуется малыми изменениями перетоков активной и реактивной мощности, значений напряжений и частоты. Таким образом, в энергосистеме постоянно один установившийся режим работы переходит к другому установившемуся режиму работы. Малые изменения режима работы энергосистемы возникают вследствие увеличения или снижения потребления электроустановок потребителя. Малые возмущения, вызывают реакцию системы в виде колебаний скорости вращения роторов генераторов, которые могут быть нарастающими или затухающими, колебательными или апериодическими. Характер получаемых колебаний определяет статическую устойчивость данной системы. Статическая устойчивость проверяется при перспективном и рабочем проектировании, разработке специальных устройств автоматического регулирования (расчеты и эксперименты), вводе в эксплуатацию новых элементов системы, изменении условий эксплуатации (объединение систем, ввод новых электростанций, промежуточных подстанций, линий электропередачи).

Под понятием статической устойчивости понимают способность энергосистемы восстанавливать исходный или близкий к исходному режим работы энергосистемы после малого возмущения или медленных изменениях параметров режима.

Статическая устойчивость является необходимым условием существования установившегося режима работы системы, но не предопределяет способность системы продолжать работу при возникновении конечных возмущений, например, коротких замыканий, включения или отключения линий электропередачи.

Различают два вида нарушений статической устойчивости: апериодическое (сползание) и колебательное (самораскачивание).

Статическая апериодическая (сползание) устойчивость связана с изменением баланса активной мощности в энергосистеме (изменение разности между электрической и механической мощностями), что приводит к росту угла δ, в результате может произойти выпадение машины из синхронизма (нарушение устойчивости). Угол δ изменяется без колебаний (апериодически), сначала медленно, а затем всё быстрее, как бы сползая (см. рис. 1,а).

Статическая периодическая (колебательная) устойчивость связана с настройками автоматических регуляторов возбуждения (АРВ) генераторов. АРВ должны быть настроены таким образом, чтобы исключить возможность самораскачивания системы в широком диапазоне режимов работы. Однако, при некоторых сочетаниях ремонтов (схемно-режимной ситуации) и настройках регуляторов возбуждения могут возникнуть колебания в системе регулирования, вызывающие нарастающие колебания угла δ вплоть до выпадения машины из синхронизма. Это явление и называется самораскачиванием (см. рис. 1,б).

Рис.1. Характер изменения угла δ при нарушении статической устойчивости в виде сползания (а) и самораскачивания (б)

Статическая апериодическая (сползание) устойчивость

Первый этап исследования статической устойчивости – это исследование статической апериодической устойчивости. При исследовании статической апериодической устойчивости предполагается, что вероятность колебательного нарушения устойчивости при увеличении перетока по межсистемным связям очень мала и можно пренебречь самораскачиванием. Для определения области апериодической устойчивости энергосистемы производят утяжеление режима работы энергосистемы. Метод утяжеления заключается в последовательном изменении параметров узлов или ветвей, или их групп заданными шагами с последующим расчетом нового установившегося режима на каждом шаге изменения и выполняется до тех пор, пока обеспечивается возможность расчета.

Рассмотрим простейшую схему сети, которая состоит из генератора, силового трансформатора, линии электропередачи и шин бесконечной мощности (см. рис.2).

Рис.2. Схема замещения расчетной цепи

В рассматриваемом простейшем случае электромагнитная мощность, которую можно передать от генератора к шинам бесконечной мощности, описывается следующим выражением:

В записанном выражении переменная представляет собой модуль линейного напряжения на шинах станции, приведенный к стороне ВН, а переменная - модуль линейного напряжения в точке шин бесконечной мощности.

Рис.3. Векторная диаграмма напряжений

Взаимный угол между вектором напряжения и вектором напряжения обозначается через переменную - , для которого в качестве положительного направления принимается направление против часовой стрелки от вектора напряжения .

Следует отметить, что формула для электромагнитной мощности написана в предположении, что генератор снабжен автоматическим регулятором возбуждения, который контролирует напряжение на стороне генераторного напряжения (), а также для простоты выкладок пренебрегли активным сопротивлением в элементах расчетной схемы.

Анализируя формулу для электромагнитной мощности можно сделать вывод, что величина передаваемой мощности в энергосистему зависит от угла между напряжениями. Данная зависимость получила название угловой характеристикой мощности электропередачи (см. рис.4).

Рис.4. Угловая характеристика мощности

Установившийся (синхронный) режим работы генератора определяется равенством двух моментов, действующих на вал турбогенератора (считаем, что можно пренебречь моментом сопротивления, обусловленным трением в подшипниках и сопротивлением охлаждающей среды): момент турбины Мт , вращающий ротор генератора и стремящийся ускорить его вращение, и синхронный электромагнитный момент Мэм , противодействующий вращению ротора.

Допустим, что в турбину генератора поступает пар, который создает крутящий момент на валу турбины (при некотором приближении он равен внешнему моменту Мвн , передаваемому от первичного двигателя). Установившийся режим работы генератора может быть в двух точках: А и Б, так как в данных точках соблюдается баланс между моментом турбины и электромагнитным моментом с учетом потерь.

точке А увеличение/уменьшение мощности турбины на величину ΔP приведет к увеличению/уменьшению угла d, соответственно. Таким образом, сохраняется равновесие моментов, действующих на вал ротора (равенство момента турбины и электромагнитного момента с учетом потерь), и тем самым нарушение синхронной машины с сетью не происходит.

При работе синхронной машины в точке В увеличение/уменьшение мощности турбины на величину ΔP приведет к уменьшению/ увеличению угла d, соответственно. Таким образом, равновесие моментов, действующих на вал ротора, нарушается. В результате либо генератор выпадает из синхронизма (т. е. ротор начинает вращаться с частотой, отличающейся от частоты вращения магнитного поля статора), либо синхронная машина переходит в точку устойчивой работы (точка А).

Таким образом, из рассмотренного примера видно, что простейшим критерием сохранения статической устойчивости является положительный знак у выражения, которое определяет отношение приращения мощности к приращению угла:

Таким образом, область устойчивой работы определяется диапазоном углов от 0 до 90 градусов, а в области углов от 90 до 180 градусов, устойчивая параллельная работа невозможна.

Максимальное значение мощности, которая может быть передана в энергосистему, называется пределом статической устойчивости, и соответствует значению мощности при взаимном угле 90 градусов:

Работа на предельной мощности, соответствующей углу 90 градусов, не производится, так как малые возмущения, всегда имеющиеся в энергосистеме (например, колебания нагрузки), могут вызвать переход в неустойчивую область и нарушение синхронизма. Максимальное допустимое значение передаваемой мощности принимается меньшим предела статической устойчивости на величину коэффициента запаса статической апериодической устойчивости по активной мощности.

Запас статической устойчивости для электропередачи в нормальном режиме должен составлять не менее 20%. Значение допустимого перетока активной мощности в контролируемом сечении по данному критерию определяется по формуле:

Запас статической устойчивости для электропередачи в послеаварийном режиме должен составлять не менее 8%. Значение допустимого перетока активной мощности в контролируемом сечении по данному критерию определяется по формуле:

Статическая периодическая (колебательная) устойчивость

Неправильно выбранный закон управления или неправильная настройка параметров автоматического регулятора возбуждения (АРВ) может привести к нарушению колебательной устойчивости. При этом нарушение колебательной устойчивости может происходить в режимах не превышающих предельного режима по апериодической устойчивости, что неоднократно наблюдалось в действующих электроэнергетических системах.

Исследование колебательной статической устойчивости сводится к следующим этапам:

1. Составление системы дифференциальных уравнений, которая описывает рассматриваемую электроэнергетическую систему.

2. Выбор независимых переменных и выполнение линеаризации записанных уравнений с целью формирования системы линейных уравнений.

3. Составление характеристического уравнения и определение области статической устойчивости в пространстве регулируемых (независимых) параметров настройки АРВ.

Об устойчивости нелинейной системы судят по затуханию переходного процесса, который определяется корнями характеристического уравнения системы. Для обеспечения устойчивости необходимо и достаточно, чтобы корни характеристического уравнения имели отрицательные вещественные части.

Для оценки устойчивости применяют различные методы анализа характеристического уравнения:

1. алгебраические методы (метод Рауса, метод Гурвица), основанные на анализе коэффициентов характеристического уравнения.

2. частотные методы (метод Михайлова, Найквиста, D-разбиения), основанные на анализе частотных характеристик.

Мероприятия по повышению предела статической устойчивости

Мероприятия по повышению предела статической устойчивости определяются при анализе формулы для определения электромагнитной мощности (формула записана в предположении, что генератор снабжен автоматическим регулятором возбуждения):

1. Применение АРВ сильного действия на генерирующем оборудовании.

Одним из эффективных средств повышения статической устойчивости является применение АРВ генераторов сильного действия. При использовании устройств АРВ генераторов сильного действия угловая характеристика видоизменяется: максимум характеристики смещается в область значений углов больших 90° (с учетом относительного угла генератора).

2. Поддержание напряжения в точках сети с помощью устройств компенсации реактивной мощности.

Установка устройств компенсации реактивной мощности (СК, УШР, СТК и т.п.) для поддержания напряжения в точках сети (устройства поперечной компенсации). Устройства позволяют поддерживать напряжения в точках сети, что благоприятно сказывается на пределе статической устойчивости.

3. Установка устройств продольной компенсации (УПК).

При увеличении длины линии соответственно возрастает ее реактивное сопротивление и вследствие этого существенно ограничивается предел передаваемой мощности (ухудшается устойчивость параллельной работы). Уменьшение реактивного сопротивления длинной линии электропередачи повышает ее пропускную способность. Для уменьшения индуктивного сопротивления линии электропередачи в рассечку линии устанавливают устройство продольной компенсации (УПК), которое представляет собой батарею статических конденсаторов. Таким образом результирующее сопротивление линии уменьшается, тем самым увеличивается пропускная способность.

Областью статической устойчивости энергосистемы называется множество ее режимов, в которых обеспечивается статическая устойчивость при определенном составе генераторов и фиксированной схеме электрической сети. Поверхность, ограничивающую множество устойчивых режимов, называют границей области статической устойчивости.

Области устойчивости строятся в координатах параметров, влияющих на устойчивость режима. Такими наиболее важными параметрами являются активные мощности генераторов, нагрузки в узлах схемы энергосистемы, напряжения генераторов; чаще всего в качестве таких параметров используются перетоки по линиям электропередачи в тех или иных сечениях энергосистемы.

Пользоваться областями устойчивости в многомерном пространстве практически невозможно; поэтому следует стремиться к уменьшению количества координат. Для уменьшения числа независимых координат учитывают различную степень влияния параметров на устойчивость режима, т.е. используют те же положения и методы, что и при эквивалентировании схем и режимов энергосистем.

Определение границ области статической устойчивости выполняется с помощью расчетов установившихся режимов, начиная с заведомо устойчивого, при таком изменении параметров, которое приводит к предельному режиму. В реальной энергосистеме утяжеление режима по активной мощности, вызванное любой причиной (командой диспетчера или возникшее самопроизвольно – из-за изменения нагрузки или возникновения аварийного небаланса мощности), сопровождается некоторым изменением частоты. Отклонение частоты в свою очередь – приводит к изменению перетоков мощности вследствие изменения мощности нагрузки (в соответствии с ее регулирующим эффектом по частоте) и изменения мощности генераторов (в соответствии со статизмом регуляторов скорости турбин). Попытка учета этих факторов в их взаимодействии приводит к необходимости подробного моделирования процессов при изменении частоты в системе и выполнения весьма трудоемких расчетов по специальным программам. Все это крайне усложнило бы методику выполнения расчетов статической устойчивости, недопустимо увеличило бы объем расчетов. Поэтому к расчетам утяжеления режимов с учетом процессов при изменении частоты прибегают только тогда, когда в этом есть действительная необходимость.

Области устойчивости строятся в координатах только активных мощностей, когда напряжения в энергосистеме при утяжелениях ее режимов изменяются мало или однозначно определяются заданными перетоками мощности. Если же вариации напряжения, возможные в различных режимах, приводят к существенным изменениям предельных мощностей, то напряжения в контролируемых точках включаются в число учитываемых координат или строится несколько областей устойчивости для разных уровней напряжения.

Расчеты статической устойчивости в послеаварийных режимах, вызванных возникновением значительных аварийных небалансов мощности, могут во многих случаях также производиться при неизменной частоте. При этом (если это необходимо) влияние изменения частоты на потокораспределение может быть учтено приближенно путем принудительного изменения балансов мощностей частей энергосистемы, разделяемых рассматриваемым сечением, на величину, пропорциональную крутизне их частотных характеристик.

При достаточных резервах реактивной мощности почти безразлично, осуществляется ли утяжеление режима перераспределением генерации или нагрузки. Для таких случаев рекомендована следующая процедура:

1) увеличение генерации в одной части энергосистемы с соответствующим (равным с точностью до изменения потерь) уменьшением генерации в другой части;

2) если на загружаемых генераторах достигнуты ограничения по располагаемой активной мощности, то дальнейшее утяжеление осуществляется уменьшением нагрузки в той же части энергосистемы;

3) если генераторы разгружены до практически реализуемого минимума, то осуществляется увеличение нагрузки.

При изменениях нагрузки предполагается, что отношение Р н /Q н остается неизменным, что соответствует наличию однотипных приемников.

Если при утяжелении режима реактивные мощности генераторов достигают ограничений по Q гmin , Q г max , то два указанных способа утяжеления режима - изменением Р г и Р н - становятся неравнозначными. Увеличению активной нагрузки соответствует рост потребляемой реактивной мощности; это приводит к снижению напряжения. При том же направлении утяжеления, но с уменьшением активной мощности генераторов, возрастает их располагаемая реактивная мощность, что способствует повышению напряжения. Следовательно, во втором случае значения Р пр могут оказаться выше.

Запас статической устойчивости для данного режима работы энергосистемы определяется его близостью к границе области устойчивости, которая может быть обусловлена апериодическим или колебательным нарушением устойчивости. Запас статической устойчивости характеризуется коэффициентами запаса по активной мощности в сечениях энергосистемы и по напряжению в узлах нагрузки. Коэффициент запаса статической устойчивости по активной мощности определяется для всех сечений схемы энергосистемы, в которых необходима количественная проверка достаточности запаса. Неучет какого-либо из опасных сечений может привести к нарушению устойчивости энергосистемы при достижении перетоком в этом неконтролируемом сечении предельного значения.

Значение максимально допустимого перетока , при котором в контролируемом сечении обеспечивается требуемый минимальный запас статической устойчивости К р, может быть определено исходя из (6.1):

. (7.8)

Запас статической устойчивости по напряжению вводится для обеспечения статической устойчивости нагрузки. Для определения запаса по напряжению какого-либо узла нагрузки в данном режиме напряжение U в этом режиме сравнивается с критическим напряжением в том же узле U кр по выражению (6.2). Значение критического напряжения определяется свойствами нагрузки, главным образом загрузкой двигателей и протяженностью линий электропередачи, входящих в узел нагрузки. При определении коэффициента запаса по напряжению можно полагать, что критическое напряжение в узлах нагрузки при номинальных напряжениях до 110-220 кВ составляет 75% напряжения в рассматриваемом узле при нормальном режиме энергосистемы в том же сезоне и при том же времени суток, для которых определяется К U .

Область максимально допустимых режимов, рассчитанная для требуемого значения К р , может иметь дополнительные эксплуатационные ограничения по токам, уровням напряжения и пр. Особое внимание обращается на токи генераторов, поскольку утяжеление режима вплоть до предельного выполняется при предельно допустимых кратностях перегрузки по токам статора и ротора, допустимых для кратковременных, обычно двадцатиминутных режимов. Максимально допустимые режимы рассматриваются как длительные.