На рисунке изображена система трансмембранных белков. Мембранные процессы

В котором он постоянно находится. Трансмембранные белки плотно закрепляются в мембране при помощи специального класса липидов, называемых кольцевая липидная оболочка . Многие из этих белков выполняют транспортную функцию, позволяя специфическим веществам пересекать биологическую мембрану, что бы попасть внутрь клетки или же напротив, не давая им покинуть её пределов.

В водном растворе трансмембранные белки слипаются и выпадают в осадок. Для их эктракции требуется использовать детергенты или неполярные растворители, хотя некоторые из них (бета-бочки) можно экстрагировать используя денатурирующие агенты . Все трансмембранные белки являются интегральными белками мембраны , но не все интегральные белки являются трансмембранными .

Классификация

По структуре

Существует два типа трансмембранных белков : белки, состоящие из альфа спиралей и β-бочки. Альфаспиральные белки располагаются на внутренних мембранах клеток бактерий или в плазматических мембранах клеток эукариот, а также иногда в наружных мембранах бактерий . Это очень большая группа трансмембранных белков: у человека 27 % всех белков составляют альфаспиральные белки мембраны . β-бочки встречаются только во внешних мембранах грамотрицательных бактерий , в стенках грамположительных бактерий и наружных мембранах митохондрий и хлоропластов . Все трансмембранные β-бочки обладают сходной топологией, что может говорить об их общем эволюционном происхождении и сходном механизме укладки.

По топологии

Эта классификация основана на положении N- и C-концевых доменов и относится ко всем интегральным белкам мембраны. К I, II и III типам относятся белки, которые пересекают мембрану только один раз, а к типу IV относятся те белки, которые пересекают мембрану несколько раз. Трансмембранные белки I типа имеют N-концевую сигнальную последовательность и заякорены на липидной мембране при помощи последовательности остановки транслокации , которая как высвобождается транслаконом , таким образом, что две части белка остаются торчать по разные стороны мембраны. Они расположены таким образом что их N-конец направлен в просвет эндоплазматического ретикулума в процессе их синтеза и транслокации (N-конец будет направлен во внеклеточное пространство, если зрелый белок расположен на плазмалемме). Белки II и III типа заякорены сигнальной якорной последовательностью , которая расположена не на конце, а внутри полипептидной цепи. Белки II типа направлены в просвет ЭР своим C-концом , а белки III типа N-концом. Тип IV подразделяют на IV-A, у которых N-конец направлен в цитозоль и IV-B, у которых N-конец направлен в просвет ЭПР . К V типу относятся интегральные белки, которые не являются трансмембранными и заякорены на липидной мембране при помощи кавелнтно-связанных липидов. К типу VI относятся белки, которые имеют как трансмембранные домены, так и липидные якори .

Напишите отзыв о статье "Трансмембранный белок"

Примечания

Отрывок, характеризующий Трансмембранный белок

– Нет, пятьдесят, – сказал англичанин.
– Хорошо, на пятьдесят империалов, – что я выпью бутылку рома всю, не отнимая ото рта, выпью, сидя за окном, вот на этом месте (он нагнулся и показал покатый выступ стены за окном) и не держась ни за что… Так?…
– Очень хорошо, – сказал англичанин.
Анатоль повернулся к англичанину и, взяв его за пуговицу фрака и сверху глядя на него (англичанин был мал ростом), начал по английски повторять ему условия пари.
– Постой! – закричал Долохов, стуча бутылкой по окну, чтоб обратить на себя внимание. – Постой, Курагин; слушайте. Если кто сделает то же, то я плачу сто империалов. Понимаете?
Англичанин кивнул головой, не давая никак разуметь, намерен ли он или нет принять это новое пари. Анатоль не отпускал англичанина и, несмотря на то что тот, кивая, давал знать что он всё понял, Анатоль переводил ему слова Долохова по английски. Молодой худощавый мальчик, лейб гусар, проигравшийся в этот вечер, взлез на окно, высунулся и посмотрел вниз.
– У!… у!… у!… – проговорил он, глядя за окно на камень тротуара.
– Смирно! – закричал Долохов и сдернул с окна офицера, который, запутавшись шпорами, неловко спрыгнул в комнату.
Поставив бутылку на подоконник, чтобы было удобно достать ее, Долохов осторожно и тихо полез в окно. Спустив ноги и расперевшись обеими руками в края окна, он примерился, уселся, опустил руки, подвинулся направо, налево и достал бутылку. Анатоль принес две свечки и поставил их на подоконник, хотя было уже совсем светло. Спина Долохова в белой рубашке и курчавая голова его были освещены с обеих сторон. Все столпились у окна. Англичанин стоял впереди. Пьер улыбался и ничего не говорил. Один из присутствующих, постарше других, с испуганным и сердитым лицом, вдруг продвинулся вперед и хотел схватить Долохова за рубашку.
– Господа, это глупости; он убьется до смерти, – сказал этот более благоразумный человек.
Анатоль остановил его:
– Не трогай, ты его испугаешь, он убьется. А?… Что тогда?… А?…
Долохов обернулся, поправляясь и опять расперевшись руками.
– Ежели кто ко мне еще будет соваться, – сказал он, редко пропуская слова сквозь стиснутые и тонкие губы, – я того сейчас спущу вот сюда. Ну!…
Сказав «ну»!, он повернулся опять, отпустил руки, взял бутылку и поднес ко рту, закинул назад голову и вскинул кверху свободную руку для перевеса. Один из лакеев, начавший подбирать стекла, остановился в согнутом положении, не спуская глаз с окна и спины Долохова. Анатоль стоял прямо, разинув глаза. Англичанин, выпятив вперед губы, смотрел сбоку. Тот, который останавливал, убежал в угол комнаты и лег на диван лицом к стене. Пьер закрыл лицо, и слабая улыбка, забывшись, осталась на его лице, хоть оно теперь выражало ужас и страх. Все молчали. Пьер отнял от глаз руки: Долохов сидел всё в том же положении, только голова загнулась назад, так что курчавые волосы затылка прикасались к воротнику рубахи, и рука с бутылкой поднималась всё выше и выше, содрогаясь и делая усилие. Бутылка видимо опорожнялась и с тем вместе поднималась, загибая голову. «Что же это так долго?» подумал Пьер. Ему казалось, что прошло больше получаса. Вдруг Долохов сделал движение назад спиной, и рука его нервически задрожала; этого содрогания было достаточно, чтобы сдвинуть всё тело, сидевшее на покатом откосе. Он сдвинулся весь, и еще сильнее задрожали, делая усилие, рука и голова его. Одна рука поднялась, чтобы схватиться за подоконник, но опять опустилась. Пьер опять закрыл глаза и сказал себе, что никогда уж не откроет их. Вдруг он почувствовал, что всё вокруг зашевелилось. Он взглянул: Долохов стоял на подоконнике, лицо его было бледно и весело.
– Пуста!
Он кинул бутылку англичанину, который ловко поймал ее. Долохов спрыгнул с окна. От него сильно пахло ромом.
– Отлично! Молодцом! Вот так пари! Чорт вас возьми совсем! – кричали с разных сторон.
Англичанин, достав кошелек, отсчитывал деньги. Долохов хмурился и молчал. Пьер вскочил на окно.

Теперь можно создавать сложные, специально разработанные трансмембранные белки с нуля, сообщают ученые. Исследование, проведенное молекулярными инженерами из Университета «Washington Institute for Protein Design», позволит исследователям создавать трансмембранные белки, не встречающиеся в природе, для выполнения конкретных задач.

В живом мире трансмембранные белки обнаружены в мембране всех клеток и клеточных органелл. Они необходимы для нормальной работы. Например, многие естественные трансмембранные белки действуют как шлюзы для перемещения конкретных веществ через биологическую мембрану. Некоторые трансмембранные белки принимают или передают сигналы клеток. Из-за таких ролей многие препараты предназначены для нацеливания трансмембранных белков и изменения их функций.

«Наши результаты прокладывают путь для разработки мембранных белков, которые могут имитировать протеины, обнаруженные в природе, или иметь совершенно новую структуру, функцию и использование», — сказал Дэвид Бейкер, профессор биохимии, который возглавлял проект. Исследование публикуется в номере журнала Science за 1 марта. Пейлонг Лу, старший научный сотрудник лаборатории Baker, является ведущим автором статьи.

Но понимание того, как трансмембранные белки объединяются и как они работают, оказалось сложным. Поскольку они действуют, будучи встроенными в клеточную мембрану, трансмембранные белки оказались более трудными для изучения, чем белки, которые действуют в водном растворе, которые составляют цитоплазму клеток или внеклеточную жидкость.

В новом исследовании Лу и его коллеги использовали компьютерную программу, разработанную в лаборатории Бейкера и названную Rosetta, которая может предсказать структуру, в которую белок будет складываться после того, как он был синтезирован. Архитектура белка имеет решающее значение, так как структура белка определяет его функцию.

Форма белка образуется из сложных взаимодействий между аминокислотами, составляющими белковую цепь, и взаимодействий между аминокислотами и окружающей средой. В конечном счете, белок принимает форму, которая наилучшим образом уравновешивает все эти факторы, так что белок достигает наименьшего возможного энергетического состояния.

Программа Rosetta, используемая Лу и его коллегами, может предсказать структуру белка, принимая во внимание эти взаимодействия и рассчитывая самое низкое общее энергетическое состояние. Она создает десятки тысяч модельных структур для аминокислотной последовательности, а затем идентифицирует те, которые имеют низкое энергетическое состояние.

Определение структуры трансмембранных белков затруднено, потому что части трансмембранных белков должны проходить через внутреннюю часть мембраны, которая состоит из жиров, называемых липидами.

В водных жидкостях аминокислотные остатки, которые имеют полярные боковые цепи — компоненты, которые могут иметь заряд в определенных физиологических условиях или которые участвуют в водородных связывания, как правило, расположены на поверхности белка, где они могут взаимодействовать с водой, которая имеет отрицательные и положительно заряженные стороны его молекулы. В результате полярные остатки на белках называются гидрофильными или «водолюбивыми».

С другой стороны, неполярные остатки, как правило, находятся в пределах ядра белка. Такие остатки называются гидрофобными. В результате, взаимодействие между водолюбивыми и водоудерживающими остатками белка и окружающих водных жидкостей помогает сгибать белки и стабилизирует окончательную структуру белка.

Однако в мембранах сложность белка больше, поскольку внутренняя поверхность липидов мембраны неполярна, то есть она не имеет разделения электрических зарядов. Это означает, что белок должен быть устойчивым, и на его поверхности должны быть размещены неполярные, опасные для воды остатки, а полярные должны быть внутри. Затем нужно найти способ стабилизировать структуру, создав связи между гидрофильными остатками в ядре.

Ключом к решению проблемы, говорит Лу, было применение метода, разработанного лабораторией Бейкера для создания белков, чтобы полярные, гидрофильные остатки действовали таким образом, чтобы было достаточно сформировать полярно-полярные взаимодействия, которые могли бы связать белок вместе изнутри.

«Объединение этих «замкнутых сетей водородной связи» было похоже на сборку головоломки с пистолетом», — сказал Бейкер.

При таком подходе Лу и его коллеги смогли изготовить сконструированные трансмембранные белки внутри бактерий и клеток млекопитающих с использованием всего 215 аминокислот. Полученные белки оказались очень термически стабильными и способными правильно ориентироваться на мембране. Подобно природным трансмембранным белкам, эти белки являются многопроходными, то есть они несколько раз пересекают мембрану и собираются в стабильные многобелковые комплексы, такие как димеры, тримеры и тетрамеры.

«Мы показали, что теперь можно точно сконструировать сложные, многопроходные трансмембранные белки, которые могут находится в клетках, что позволит исследователям создавать трансмембранные белки с совершенно новыми структурами и функциями», — сказал Пейлонг Лу.

Больше информации: «Accurate computational design of multipass transmembrane proteins» Science (2018). DOI: 10.1126/science.aaq1739

Если основная роль липидов в составе мемб­ран заключается в стабилизации бислоя, то бел­ки отвечают за функциональную активность мембран. Одни из них обеспечивают транспорт определённых молекул и ионов, другие явля­ются ферментами, третьи участвуют в связыва­нии цитоскелета с внеклеточным матриксом или служат рецепторами для гормонов, медиаторов,

эйкозаноидов, липопротеинов, оксида азота (N0). На долю белков приходится от 30 до 70% массы мембран. Белки определяют особеннос­ти функционирования каждой мембраны.

Особенности строения

и локализации белков в мембранах

Мембранные белки, контактирующие с гид­рофобной частью липидного бислоя, должны быть амфифильными. Те участки белка, кото­рые взаимодействуют с углеводородными цепя­ми жирных кислот, содержат преимущественно неполярные аминокислоты. Участки белка, на­ходящиеся в области полярных «головок», обо­гащены гидрофильными аминокислотными ос­татками.

Локализация белков в мембранах. Трансмембранные белки, например: 1 - гликофорин А; 2 - рецептор адреналина. Поверхностные белки: 3 - белки, связанные с интегральными белками, например, фермент сукцинатдегидрогеназа; 4 - белки, присоединенные к полярным «головкам» липидного слоя, например, протеинкинаэа С; 5 - бел­ки, -заякоренные» в мембране с помощью короткого гидрофобного концевого домена, например, цитохрои b 5 ;6 - «заякоренные» белки, ковалентно соединённые с пипидом мембраны (например, фермент щелочная фосфатаза).

Белки мембран различаются по своему поло­жению в мембране. Они могут глу­боко проникать в липидный бислой или даже пронизывать его - интегральные белки, либо разными способами прикрепляться к мембра­не - поверхностные белки.

Поверхностные белки

Поверхностные белки часто прикрепляются к мембране, взаимодействуя с интегральными

белками или поверхностными участками липидного слоя.

Белки, образующие комплексы с интеграль­ными белками мембраны

Ряд пищеварительных ферментов, участвую­щих в гидролизе крахмала и белков, прикреп­ляется к интегральным белкам мембран микро­ворсинок кишечника.

Примерами таких комплексов могут быть сахараза-изомальтаза и мальтаза-гликоамилаза.

Белки, связанные с полярными «головками» липидов мембран

Полярные или заряженные домены белковой молекулы могут взаимодействовать с полярны­ми «головками» липидов, образуя ионные и во­дородные связи. Кроме того, множество раство­римых в цитозоле белков при определённых условиях могут связываться с поверхностью мембраны на непродолжительное время. Иног­да связывание белка - необходимое условие проявления ферментативной активности. К та­ким белкам, например, относят протеинкиназу С, факторы свёртывания крови.

Закрепление с помощью мембранного «якоря»

«Якорем» может быть неполярный домен белка, построенный из аминокислот с гидро-

фобными радикалами. Примером такого белка может служить цитохром b 5 мембраны ЭР. Этот белок участвует в окислительно-восстанови­тельных реакциях, как переносчик электронов.

Роль мембранного «якоря» может выполнять также ковалентно связанный с белком остаток жирной кислоты (миристиновой - С 14 или пальмитиновой - С 16). Белки, связанные с жирными кислотами, локализованы в основном на внутренней поверхности плазматической мембраны. Миристиновая кислота присоединя­ется к N-концевому глицину с образованием амидной связи. Пальмитиновая кислота обра­зует тиоэфирную связь с цистеином или слож-ноэфирную с остатками серина и треонина.

Небольшая группа белков может взаимодей­ствовать с наружной поверхностью клетки с помощью ковалентно присоединённого к С-концу белка фосфатидилинозитолгликана. Этот «якорь» - часто единственное связующее зве­но между белком и мембраной, поэтому при действии фосфолипазы С этот белок отделяет­ся от мембраны.

Трансмембранные (интегральные) белки

Некоторые из трансмембранных белков про­низывают мембрану один раз (гликофорин), дру­гие имеют несколько участков (доменов), пос­ледовательно пересекающих бислой.

Трансмембранные домены, пронизывающие бислой, имеют конформацию α -спирали. Поляр­ные остатки аминокислот обращены внутрь глобулы, а неполярные контактируют с мембранны­ми липидами. Такие белки называют «вывернуты­ми» по сравнению с растворимыми в воде белка­ми, в которых большинство гидрофобных остатков аминокислот спрятано внутрь, а гидрофильные располагаются на поверхности.

Радикалы заряженных аминокислот в соста­ве этих доменов лишены заряда и протониро-ваны (-СООН) или депротонированы (-NH 2).

Гликозилированные белки

Поверхностные белки или домены интеграль­ных белков, расположенные на наружной по­верхности всех мембран, почти всегда гликози-лированы. Олигосахаридные Остатки могут быть присоединены через амидную группу аспараги-на или гидроксильные группы серина и треонина.

Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов или адгезии.

Латеральная диффузия белков

Некоторые мембранные белки перемещают­ся вдоль бислоя (латеральная диффузия) или по­ворачиваются вокруг оси, перпендикулярно его поверхности.

Латеральная диффузия интегральных белков в мембране ограничена, это связано с их боль­шими размерами, взаимодействием с другими мембранными белками, элементами цитоскелета или внеклеточного матрикса.

Белки мембран не совершают перемещений с одной стороны мембраны на другую («флип-флоп» перескоки), подобно фосфолипидам.

Принципы структурной организации мембранных белков и способы ее предсказания для трансмембранных белков

С высоким разрешением удалось установить структуру только одного класса мембранных белков - реакционного центра бактерий, однако и в этом случае положение белка относительно липидного бислоя не определено однозначно. Распространять принципы его организации на другие мембранные белки следует с осторожностью. Некоторую ясность может внести использование термодинамических принципов, а также учет того факта, что основная масса экспериментальных данных согласуется с предположением о высоком содержании в мембранных белках а-спиралей. Термодинамические факторы налагают определенные ограничения на то, какого типа белково-липидные структуры могут быть стабильными.

Мембранные белки - это амфифильные соединения

Любые мембранные белки, непосредственно контактирующие с гидрофобной сердцевиной липидного бислоя, должны быть амфифильными. Те участки полипептида, которые экспонированы в растворитель, скорее всего обогащены полярными и ионизируемыми аминокислотными остатками, а остатки, контактирующие с лилидными углеводородными цепями, должны быть в основном неполярными. Все это логически следует из энергетических принципов, рассмотренных в разд. 2.3.1. Заряженные или полярные аминокислоты вообще говоря могут находиться внутри бислоя, однако на это налагаются определенные ограничения.

Рассмотрим три уровня амфифильных структур в мембранных белках: первичную, вторичную и третичную амфифильность.

1. Первичные амфифильные структуры содержат протяженный участок из преимущественно неполярных аминокислотных остатков, длина которого достаточна для пересечения бислоя. Такие структуры выявлены как в реакционном центре, так и в бактериородопсине. У этих белков все пронизывающие мембрану элементы являются а-спиральными. а-Спиральная структура предпочтительна потому, что при этом образуются все водородные связи, в которых могут участвовать атомы водорода полипептидного каркаса. Альтернативная структура, у которой отсутствует одна из водородных связей, менее стабильна примерно на 5 ккал / моль. Все это позволяет высказать предположение о том, что поворот полипептидной цепи внутри мембраны маловероятен. В местах поворота от трех до пяти аминокислотных остатков не смогли бы образовать водородные связи, и это дестабилизировало бы структуру примерно на 15-20 ккал / моль. В глобулярных, водорастворимых белках области поворота располагаются преимущественно на поверхности белковой глобулы, где амидные группы могут образовывать водородные связи с водой; по-видимому, в молекулах мембранных белков повороты также будут происходить лишь в экспонированных в воду участках.

Не исключено, что 3-слой тоже может образовывать трансмембранные элементы, имеющие, например, форму /J-цилиндров, как в случае порина. Требования, предъявляемые к образованию водородных связей атомами водорода полипептидного остова в подобных структурах, могут быть удовлетворены, но лишь при условии взаимодействия между отдельными ^-цепями. Как такая структура может встраиваться в мембрану, не совсем ясно, а ограничения, налагаемые механизмами сборки мембранных белков, вообще неизвестны.

2. Вторичные амфифильные структуры. В таких структурах гидрофобные остатки периодически встречаются вдоль цепи, и при укладке полипептида в определенную вторичную структуру они образуют сплошную поверхность. Периодичность некоторых элементов вторичной структуры указана в табл. 1. В качестве примера белков, в которых вторичные амфифильные структуры, по-видимому, играют важную роль, можно привести порины. В них полярные и неполярные аминокислотные остатки в каждой из /3-цепей чередуются. Все полярные остатки находятся на одной стороне складчатого слоя, выстилая наполненную водой пору. Заметим, что все сказанное о порине носит гипотетический характер.

Таблица 1. Параметры вторичной структуры

Структура

Периодичность или число остатков на виток

Расстояние

между остатками, А

Радиус или ширина, А

Неизогнутая

(З-цепь

Изогнутая /З-цепь

Зю-Спираль

а-Спираль

а-спираль, в которой гидрофобные остатки встречаются через каждую вторую или третью мономерную единицу, должна иметь гидрофобную и полярную поверхности. Подобные структуры часто представляют в виде спирального кольца с указанием боковых цепей - так, как это сделано на рис. Вторичные амфифильные структуры могут возникать в ситуациях, схематически показанных на рис. ЗЛО.

а. Поверхностно-активные сегменты белка; одна сторона спирали взаимодействует с гидрофобной областью липидного бислоя, а другая контактирует с водной фазой и полярной областью бислоя. Амфифильные а-спирали способны образовывать многие пептидные гормоны, а также разрушающие мембрану пептиды, например меллитин.

б. Трансмембранные элементы; неполярная поверхность спирали обращена к липидной фазе, а полярная выстилает водный канал, пронизывающий бислой. Это весьма распространенная модель, построенная главным образом исходя из результатов исследования никотинового ацетилхолинового рецептора, функционирующего как химически возбудимый канал. Однако основанные на экспериментальных данных выводы о том, что мембрану пронизывает именно амфифильная спираль, вызвали возражения. Такой наполненный водой канал, как в порине, может образовать и амфифильная 3-цепь.

в. Трансмембранные элементы; неполярная часть поверхности контактирует с липидами, а полярные группы - с полярными группами других трансмембранных элементов. Именно этот принцип лежит в основе «вывернутых» структур, каким предположительно является бактериородопсин. Полярные взаимодействия между амфифильными спиралями в принципе могли бы стабилизировать взаимодействия между субъединицами в олигомерных белках.

3. Третичные амфифильные структуры. Об их существовании можно говорить только предположительно. Их гидрофобная поверхность должна формироваться на уровне третичной структуры остатков, расположенных в самых разных участках полипептидной цепи. Подобные структуры могут быть характерны для белков, связывающихся с бислоем, но не имеющих четко выраженных гидрофобных доменов, определяемых по любому из указанных выше критериев. Возможным примером такого рода является а-лактальбумин.

Ионизируемые аминокислотные остатки в трансмембранных сегментах

Многие модели мембранных белков предполагают, что в их трансмембранных сегментах находятся ионизируемые остатки. Эти остатки, вероятно, играют важную функциональную и / или структурную роль. В некоторых случаях эта роль однозначно установлена: 1) остатки лизина в бактериородопсине и родопсине образуют шиффовы основания с простетической группой ретиналя, что необходимо для светового возбуждения молекулы; 2) остатки гистидина в полипептидах реакционного центра бактерий участвуют в связывании с фотосинтетическими пигментами; 3) заряженные остатки в лактозопермеазе из Е. coli участвуют в осуществлении этим белком транспортных функций; возможно, эти остатки образуют сеть водородных связей внутри молекулы белка.

Перенос заряженных групп из воды в среду с низкой диэлектрической проницаемостью внутри мембраны энергетически очень невыгоден, и эти группы необходимо каким-либо образом стабилизировать. Неоднократно предполагалось, что для стабилизации достаточно образования ионных пар, и этот принцип использовался при построении трехмерной модели бактериородопсина. Однако расчеты показали, что свободная энергия переноса ионной пары из воды в среду с низкой диэлектрической проницаемостью тоже весьма велика. Для дальнейшей стабилизации необходимы дополнительные полярные взаимодействия, возможно, с участием других полярных групп или с помощью водородных связей.

В принципе даже одиночная заряженная группа внутри мембраны может стабилизироваться через взаимодействия с полярными группами и при участии водородных связей, эффективно делокализующих заряд. Можно привести несколько примеров изолированных, де-сольватированных ионов, стабилизированных за счет взанмодействий в водорастворимых белках. Аналогичные принципы, по-видимому, действуют в случае заряженных остатков трансмембранных сегментов интегральных белков.

Однако представляется более вероятным, что ионизируемые аминокислоты нейтрализуются внутри мембраны за счет протонирования или депротонирования. Свободная энергия нейтрализации заряженных аминокислот, по оценкам, составляет примерно 10-17 ккал / моль. В отсутствие специфических условий для полярных взаимодействий, стабилизирующих заряженный остаток в трансмембранном сегменте, он скорее всего будет нейтрализован.

Заряженные аминокислоты в сегментах, экспонированных в водную среду

Как мы уже говорили, заряженные остатки распределены между двумя сторонами реакционного центра бактерий асимметрично. Такая асимметрия характерна и для некоторых других внутренних мембранных белков бактерий. Так, основные остатки Lys и Arg в четыре раза чаще встречаются в тех соединяющих трансмембранные элементы участках, которые расположены на внутренней стороне мембраны, а не на наружной. Для кислых остатков Asp и Glu подобная тенденция не выявляется. Возможно, эта асимметрия связана с механизмом сборки мембранного белка, но как именно - неясно. Более того, неизвестно, можно ли обобщить это наблюдение и имеет ли оно какую-либо предсказательную ценность.

В глобулярных, водорастворимых белках остатки пролина редко находятся в серединной части а-спирали. По данным исследований 58 белков, содержащих 331 а-спираль, выявлено 30 таких случаев. В половине из них пролин располагался в местах повреждения спирали, а в остальных случаях находился в области искривления или нерегулярности структуры.

В то же время у бактериородопсина пролиновые остатки расположены в средней части трех из семи трансмембранных спиралей, а у родопсина - в пяти из семи таких спиралей. Подобная тенденция выявлена и для других трансмембранных сегментов интегральных белков, особенно транспортных. Значение этого феномена неизвестно. Следует отметить, однако, что из-за наличия циклической боковой цепи пролин не образует водородных связей с остатками, находящимися на предыдущем витке а-спирали. Это может способствовать формированию структур, в которых водородная связь образуется за счет специфичного взаимодействия с остатком, расположенным в другом пронизывающем мембрану участке. Подобное полярное взаимодействие внутри бислоя могло бы стабилизировать трехмерную структуру мембранных белков.

Способы идентификации первичных амфифильных структур

Однозначная структурная информация о мембранных белках получена лишь в нескольких случаях, но зато в распоряжении исследователей имеются обширные данные об аминокислотной последовательности, основанные на результатах секвенирования ДНК. Для идентификации трансмембранных а-спиралей, предположительно имеющих длину - 20 остатков и состоящих преимущественно из гидрофобных аминокислот, разработано несколько методов анализа аминокислотной последовательности. В основе каждого из них лежит расположение аминокислот в ряд в соответствии с неким параметром, который отражает вероятность обнаружения этого остатка в трансмембранном сегменте.

Существует два типа шкал. В одном случае аминокислоты классифицируют по их относительной полярности или «гидрофобности». Эти шкалы имеют термодинамическую природу и основаны на величине изменения свободной энергии при переносе аминокислоты из водного раствора в углеводородную среду. Однако число способов количественной оценки гидрофобности аминокислот весьма велико, и они не во всем согласуются между собой. Часто используются данные, относящиеся одновременно к более чем одной физической характеристике. Примером такого рода является шкала «гидропатии» Кайта и Дулиттла, основанная на данных о гидрофобности, измеряемой по потенциалу гидрации, а также о вероятности нахождения остатков внутри глобулы.

Шкала Голдмана, Энгелмана и Стейца основана на количественной оценке свободной энергии переноса а-спиралей из водной среды внутрь мембраны. На рис. сравнивается шкала Кайта - Дулиттла со шкалой Голдмана-Энгелмана-Стейца.

По оценка Энгелмана и др., изменение свободной энергии при внедрении в мембрану полианионной а-спирали длиной 20 остатков составляет 30 ккал / моль. Расчет основан на оценке площади поверхности спирали, экспонированной в растворитель. Вклад в энергию каждой боковой группы оценивали с учетом площади поверхности, экспонированной в водную среду внутри спирали. Учитывали также свободную энергию переноса в бислой полярных групп. Например, предполагали, что глутамин при переносе в бислой будет протонироваться и свободная энергия этого процесса составит 10,8 ккал / моль. Подобно этому, перенос гидроксилов будет «стоить» примерно 4,0 ккал / моль.

Все сказанное выше показывает, как выигрыш в энергии взаимодействий при переносе а-спирали внутрь бислоя может использоваться для «втягивания» в бислой полярных боковых групп. Например, один остаток аргинина может встроиться в бислой в составе неполярной трансмембранной спирали, если он депротонирован; для этого требуется 16,7 ккал / моль при рН 7,0. Суммарная свободная энергия переноса а-спирали по-прежнему останется отрицательной. Однако ситуация изменится, если в бислой понадобится встроить два аргининовых остатка или если аргинин будет положительно заряжен. Конечно, полярные остатки могут стабилизироваться внутри бислоя благодаря специфическим взаимодействиям, но реально учесть это при расчетах очень трудно. Например, боковые группы серина, цистеина и треонина могут образовывать водородные связи с полипептидным остовом, а кислые и основные остатки могут образовывать ионные пары; появление таких пар возможно, если эти остатки расположены через четыре или пять мономерных единиц друг от друга.

Второй тип шкал, который используется для классификации аминокислот, основан на данных о частоте, с которой аминокислоты действительно встречаются в пронизывающих мембрану сегментах.

При этом эмпирически учитывается гидрофобность, а также многие другие факторы, которые нельзя оценить количественно, как гидрофобность. Недостаток этого полуэмпирического подхода состоит в отсутствии точных данных о границах трансмембранных участков. Тем не менее подобные шкалы могут быть столь же полезны, как и шкалы, основанные на термодинамических параметрах. В качестве примера можно привести шкалу «склонности» к мембране Куна и Лейгха или шкалу «погруженности спирали в мембрану» Рао и Аргоса. Четыре наиболее гидрофобных остатка по шкале Голдмана-Энгелмана-Стейца являются также четырьмя остатками с наивысшим значением параметра по шкале Рао и Аргоса.

На рис. представлены профили трех разных мембранных белков, полученные с использованием различных шкал. При построении этих профилей учитываются средние значения чисел на шкалах, приписываемые каждой аминокислоте в пределах выбранного «окна»; это среднее откладывается относительно номера остатка в полипептиде. Например, если «окно» составляет 19 остатков, значение, приписанное положению 40, будет средним числом на шкале для всех аминокислот от 31 до 49 включительно. Значение, приписанное положению 41, будет средним для остатков с 32 по 50 и т.д. Пики на профиле соответствуют гидрофобным участкам или тем участкам, которые с большей вероятностью образуют трансмембранные спирали. Для построения профиля важен размер окна; большинство кривых на рис. были построены при размере окна в 19 остатков.

Попытаемся проинтерпретировать построенные профили. По шкале Голдмана-Энгелмана-Стейца пики при значениях, близких к нулю, соответствуют трансмембранным спиралям. Значение 1,25 по шкале Кайта-Дулиттла является наименьшим значением, отвечающим известной трансмембранной спирали в L-субъе-динице реакционного центра R. viridis. Во всех трех случаях, представленных на рис. 3.12, профили для субъединиц реакционного центра сходны.

На рис. приведены два профиля для цитохрома Р450 из микросом. Этот белок был выбран потому, что данные о его первичной структуре позволяют высказать предположение о наличии у него восьми трансмембранных спиралей. Однако имеющиеся экспериментальные данные указывают на существование только одного N - koh - цевого якоря в мембране. Как профиль Кайта-Дулиттла, так и профиль Голдмана-Энгелмана-Стейца выявляют N-конце-вой участок, но они указывают и на наличие одного или более дополнительных трансмембранных сегментов, что не соответствует действительности. Отметим, что многие из построенных моделей мембранных белков, которые основываются лишь на данных об аминокислотной последовательности, могут быть некорректными.

На рис. приведены три профиля для бактериородопсина. Несмотря на их сходство, видны различия в форме пиков, отвечающих семи трансмембранным сегментам. Алгоритм Голдмана-Энгелма-на-Стейца не учитывает стабилизирующего эффекта, связанного с образованием ионной пары из близко расположенных заряженных остатков в пределах одной спирали. С учетом этого фактора разделение между двумя последними спиралями становится более четким.

Одна из проблем, с которыми сталкивается применение всех описанных выше алгоритмов, состоит в том, чтобы исключить гидрофобные сегменты в известных глобулярных белках, не являющиеся трансмембранными, но располагающиеся внутри белка. Однако, когда мы ищем достаточно протяженные участки, эта проблема не возникает.

Отметим, что алгоритмы, используемые для выявления а-спиральных структур в растворимых глобулярных белках, например алгоритм Чоу-Фасмана, непригодны для обнаружения трансмембранных элементов. Эти алгоритмы неприменимы для описания структуры неглобулярных участков, какими являются сегменты, расположенные внутри бислоя.

Алгоритмы, предназначенные для идентификации трансмембранных участков, нельзя использовать в случае сегментов, являющихся вторичными амфифильными структурами или пересекающих мембрану в виде /3-слоя. В первом случае этот участок исключается из рассмотрения из-за наличия в нем полярных остатков, а во втором трансмембранный сегмент оказывается слишком коротким, поскольку для пересечения бислоя необходимо лишь 10-12 аминокислотных остатков в составе /3-структуры. Некоторые алгоритмы предназначались скорее для выявления ^-поворотов, а не самих трансмембранных элементов. Хотя это позволяет избежать некоторых проблем, связанных с выделением различных классов трансмембранных элементов, неясно, насколько приемлемыми они окажутся при более широком их применении.

Способы идентификации вторичных амфифильных структур

Разработано несколько подходов к выявлению вторичной амфифильности или асимметрии в распределении гидрофобных остатков в сегментах полипептидной цепи. Достаточно часто а-спирали и /3-слои в глобулярных белках характеризуются периодичностью в распределении гидрофобных остатков. Использование спирального кольца как качественного показателя не всегда оправданно, необходимы более количественные подходы. Основной из них - это определение периодичности в распределении гидрофобных остатков с помощью методов фурье-преобразования. В качестве примера можно привести гидрофобный момент.

1. Гидрофобный момент. Этот параметр был предложен Эйзенбергом и др. Он определяется как

и представляет собой некую векторную сумму гидрофобности остатков в сегменте из N элементов. Гидрофобность каждого остатка представлена в виде вектора, который характеризуется углом, образуемым боковой цепью и осью полипептидного остова. Для а-спирали 6 = 100°. На рис. 3.9, Б «векторы» гидрофобности представлены в проекции на плоскость спирального кольца, и гидрофобный момент равен их векторной сумме. Гидрофильный остаток представляется вектором с отрицательной направленностью. Для случайной последовательности значение ци в силу случайного распределения гидрофобных остатков будет очень мало. В то же время в пептиде меллитине гидрофобные остатки расположены с одной стороны структуры, а полярные - с другой. Численное значение гидрофобного момента приписывается аминокислоте, находящейся в центре анализируемого сегмента. Следовательно, можно «просканировать» последовательность и приписать каждому положению среднюю гидрофобность, а также найти ^н-

Эйзенберг и др. проанализировали сегменты длиной 11 остатков из многих белков и пептидов, определив гидрофобный момент

и среднюю гидрофобность для каждого из исследуемых сегментов. Для полипептидных сегментов глобулярных белков характерны низкие значения как, так и ци - Трансмембранные элементы гидрофобного характера имеют высокие значения, но низкие значения рн, являясь в основном неполярными. Пептиды и участки белков, относящиеся к «поверхностно-активным», имеют высокие значения цн из-за сильной асимметрии в распределении полярных и неполярных остатков. С помощью этого алгоритма были идентифицированы некоторые сегменты поверхностно-активных белков, например участки дифтерийного токсина и пируватоксидазы из Е. coli.

Гидрофобный момент служит количественной мерой периодичности в распределении гидрофобных остатков в разных участках полипептида. Важную роль при этом играет выбор 6. Гидрофобный момент является по существу одним из параметров фурье-преобразования функции гидрофобности. Более общие методы, описанные ниже, позволяют проанализировать все фурье-компоненты и выявить любую возможную периодичность.

2. Периодичность последовательности. Разработано много методов идентификации участков белковых молекул, для которых характерны периодические изменения гидрофобности вдоль цепи. Все они включают фурье-преобразование функции, зависящей от гидрофобности аминокислотных остатков вдоль полипептида. Наличие пика с периодом 3,6 указывает на то, что гидрофобный остаток в данном сегменте анализируемого полипептида встречается в среднем через каждые 3,6 остатка. Это означает, что сегмент является а-спиралью, на одной стороне которой находятся преимущественно гидрофобные остатки. Этот метод использовался для идентификации амфифильных участков в некоторых траспортных белках и белках, образующих каналы; в качестве примера можно привести ацетилхолиновый рецептор, натриевый канал, переносчик глюкозы, белок-разобщитель митохондрий и белок полосы 3 эритроцитов, являющийся анионным переносчиком. Однако четкие указания на то, что эти предполагаемые амфифильные спирали являются трансмембранными, отсутствуют.

Эти методы использовались также для анализа пептидов, взаимодействующих с мембранной поверхностью, и аполипопроте-инов.

Пептиды - модели мембранных белков

Пептиды стали использоваться для изучения белково-липидных взаимодействий много лет назад. В большинстве случаев это были природные мембраноактивные пептиды, в первую очередь грамицидин А, аламетицин и меллитин. В настоящее время в качестве модельных систем чаще применяют синтетические пептиды. При этом необходимо помнить о двух моментах: 1) при связывании пептида с мембраной существенны как первичная, так и вторичная амфифильности; 2) пептиды часто обладают полиморфизмом, т.е. способностью изменять конформацию в зависимости от окружения. Не; исключено, что в будущем с помощью синтетических пептидов удастся детально изучить белково-липидные взаимодействия, но пока мы еще очень далеки от этого.

Липидам в составе мембран отводят, в первую очередь, структурные свойства - они создают бислой, или матрикс, в котором размещаются активные компоненты мембраны - белки. Именно белки придают разнообразным мембранам уникальность и обеспечивают специфические свойства. Многочисленные мембранные белки выполняют следующие основные функции: обусловливают перенос веществ через мембраны (транспортные функции), осуществляют катализ, обеспечивают процессы фото- и окислительного фосфорилирования, репликацию ДНК, трансляцию и модификацию белков, рецепцию сигналов и передачу нервного импульса и др.

Принято делить мембранные белки на 2 группы: интегральные (внутренние) и периферические (наружные). Критерием такого разделения служит степень прочности связывания белка с мембраной и, соответственно, степень жесткости обработки, необходимой для извлечения белка из мембраны. Так, периферические белки могут высвобождаться в раствор уже при промывке мембран буферными смесями с низкой ионной силой, низкими значениями рН в присутствии хелатирующих веществ, например этилендиаминотетраацетата (ЭДТА), связывающих двухвалентные катионы. Периферические белки выделяются из мембран при таких мягких условиях, поскольку связаны с головками липидов или с другими белками мембраны при помощи слабых электростатических взаимодействий, либо с помощью гидро-фобных взаимодействий - с хвостами липидов. Наоборот, интегральные белки представляют собой амфифильные молекулы, имеют на своей поверхности большие гидрофобные участки и располагаются внутри мембраны, поэтому для их извлечения требуется разрушить бислой. Для этих целей наиболее часто используют детергенты или органические растворители. Способы прикрепления белков к мембране довольно разнообразны (рис. 4.8).

Транспортные белки . Липидный бислой является непроницаемым барьером для большинства водорастворимых молекул и ионов, и их перенос через биомембраны зависит от деятельности транспортных белков. Можно выделить два основных типа этих белков: каналы (поры) и переносчики . Каналы представляют собой туннели, пересекающие мембрану, в которых места связывания транспортируемых веществ доступны на обеих поверхностях мембраны одновременно. Каналы в процессе транспорта веществ не претерпевают каких-либо конформационных изменений, их конформация меняется лишь при открывании и закрывании. Переносчики, наоборот, в процессе переноса веществ через мембрану изменяют свою конформацию. Причем в каждый конкретный момент времени место связывания переносимого вещества в переносчике доступно только на одной поверхности мембраны.

Каналы, в свою очередь, можно разделить на две основные группы: потенциалзависимые и регулируемые химически. Примером потенциалзависимого канала является Na + -канал, его работа регулируется изменением напряжения электрического поля. Иными словами, эти каналы открываются и закрываются в ответ на изменение трансмембранного потенциала . Химически регулируемые каналы

открываются и закрываются в ответ на связывание специфических химических агентов. Например, никотиновый ацетилхолиновый рецептор при связывании с ним нейромедиатора переходит в открытую конформацию и пропускает одновалентные катионы (подрадел 4.7 данной главы). Термины «пора» и «канал» обычно взаимозаменяемы, но под порой чаще понимают неселективные структуры, различающие вещества главным образом по размеру и пропускающие все достаточно малые молекулы. Под каналами чаще понимают ионные каналы. Скорость транспорта через открытый канал достигает 10 6 - 10 8 ионов в секунду.

Переносчики также можно разделить на 2 группы: пассивные и активные. С помощью пассивных переносчиков через мембрану осуществляется транспорт одного типа веществ. Пассивные переносчики задействованы в облегченной диффузии и лишь увеличивают поток вещества, осуществляемый по электрохимическому градиенту (например, перенос глюкозы через мембраны эритроцитов). Активные переносчики транспортируют вещества через мембрану с затратами энергии. Эти транспортные белки накапливают вещества на одной из сторон мембраны, перенося их против электрохимического градиента. Скорость транспорта с помощью переносчиков в очень сильной степени зависит от их типа и колеблется от 30 до 10 5 с -1 . Часто для обозначения отдельных переносчиков используют термины «пермеаза», «транслоказа», которые можно считать синонимами термина «переносчик».

Ферментные функции мембранных белков . В клеточных мембранах функционирует большое количество разнообразных ферментов. Одни из них локализуются в мембране, находя там подходящую среду для превращения гидрофобных соединений, другие благодаря участию мембран располагаются в них в строгой очередности, катализируя последовательные стадии жизненно важных процессов, третьи нуждаются в содействии липидов для стабилизации своей конформации и поддержания активности. В биомембранах обнаружены ферменты - представители всех известных классов. Они могут пронизывать мембрану насквозь, присутствовать в ней в растворенной форме или, являясь периферическими белками, связываться с мембранными поверхностями в ответ на какой-либо сигнал. Можно выделить следующие характерные типы мембранных ферментов:

1) трансмембранные ферменты, катализирующие сопряженные реакции на противоположных сторонах мембраны. Эти ферменты имеют, как правило, несколько активных центров, размещающихся на противоположных сторонах мембраны. Типичными представителями таких ферментов являются компоненты дыхательной цепи или фотосинтетические редокс-центры, катализирующие окислительно-восстановительные процессы, связанные с транспортом электронов и созданием ионных градиентов на мембране;

2) трансмембранные ферменты, участвующие в транспорте веществ. Транспортные белки, сопрягающие перенос вещества с гидролизом АТР, например, обладают каталитической функцией;

3) ферменты, катализирующие превращение связанных с мембраной субстратов. Эти ферменты участвуют в метаболизме мембранных компонентов: фосфолипидов, гликолипидов, стероидов и др.

4) ферменты, участвующие в превращениях водорастворимых субстратов. С помощью мембран, чаще всего в прикрепленном к ним состоянии, ферменты могут концентрироваться в тех областях мембран, где содержание их субстратов наибольшее. Например, ферменты, гидролизующие белки и крахмал, прикрепляются к мембранам микроворсинок кишечника, что способствует увеличению скорости расщепления этих субстратов.

Белки цитоскелета . Цитоскелет представляет собой сложную сеть белковых волокон разного типа и присутствует только в эукариотических клетках. Цитоскелет обеспечивает механическую опору для плазматической мембраны, может определять форму клетки, а также местоположение органелл и их перемещение при митозе. С участием цитоскелета осуществляются также такие важные для клетки процессы, как эндо- и экзоцитоз, фагоцитоз, амебоидное движение. Таким образом, цитоскелет является динамическим каркасом клетки и определяет ее механику.

Цитоскелет формируется из волокон трех типов:

1) микрофиламенты (диаметр ~ 6 нм). Представляют собой нитевидные органеллы - полимеры глобулярного белка актина и других связанных с ним белков;

2) промежуточные филаменты (диаметр 8- 10 нм). Сформированы кератинами и родственными им белками;

3) микротрубочки (диаметр ~ 23 нм) - длинные трубчатые структуры.

Состоят из глобулярного белка тубулина, субъединицы которого формируют полый цилиндр. Длина микротрубочек может достигать нескольких микрометров в цитоплазме клеток и нескольких миллиметров в аксонах нервов.

Перечисленные структуры цитоскелета пронизывают клетку в разных направлениях и тесно связываются с мембраной, прикрепляясь к ней в некоторых точках. Эти участки мембраны играют важную роль в межклеточных контактах, с их помощью клетки могут прикрепляться к субстрату. Они же играют важную роль в трансмембранном распределении липидов и белков в мембранах.